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Memoo Depma ssasxcacmovcs Kpawum npu paxmopusa-
uii wucen N=p-q y éunaoky 6susvkux p i q. O6uucmosanrvia
CKAAOHICMb 0a306020 ANZOPUMMY MeMOOY GUSHAUAEMb-
ca kinvkicmio npoonux snavensv X npu eupiuenni pieHAHHS
Y?’=X?-N, a maxoxc ckaadnicmio apumemuunux onepa-
will. /Tns i 3HudCenHs 3anponoHoeano 6 aKocmi donycmu-
Mux pozensdamu mi 3 npoonux X, ona axux (X°—N)modbb
€ Keadpamnum 3aaumrom no mooyato bb, naseanoezo 6azo-
evwm. ITpu euxopucmanni 6az060i ocnosu mooyas bb wucao
npoonux X amenuyemocs 6 vucao pas, oausvke 0o Z(N,bb) =
=bb/bb*, de bb* — uucao enemenmie mnoxcunu T Kopenie
pienanns (Ymodb)2modb=((Xmodb)?—Nmodb)modb, a Z —
KoeQdiyienm npucrkopenus.

Busnaueno, wo na eeaununy Z(N,bb) enuesaromo snaue-
Hus samauxie Nmodp (npu p=2 euxopucmosyromocs 3aauu-
xu Nmod8). 3anpononoeano nocmanoexy sadaui nowyxy
bb 3 maxcumanvoin Z(N,bb) npu oomescensax na oocse
nam’smi EOM, de susnauaromoCs nOKAsHuKu cmenemis npo-
cmux vucen — mnoxcnuxie bb, ma cnocio it eupiwenns.

Jnsa smenwenns wucaa apupmemuunux onepauii 3 6eiu-
KUMU HUCTIAMU NONOHYEMBCS 3AMICHIL MAKUX BUKOHYGA-
mu onepauii 3i 3HAUEHHAMU DIZHUUL MINC HAUOIUNCHUMU
snauennamu eaemenmie mnoxcunu T. Todi apupmemuu-
Hi onepauii MHONCEHHS i 000ABAHHS 3 GEUKUMU UUCIAMU
suKonyromoca pioxo. A axuo xeaopamnuil xopine 3 X°—N
U3HAMAMU MINLKU Y BUNAOKAX, KOJIU SHAUEHHS

(X’-N)modb 6yoymv xeadpamnumu sanuuxamu 0as
b0azamvox pisnux ocnoe mooyas b, mo obuucn06aILHOIO
CKJIA0HICMIO UiEl onepauii MOINCHA 3HeXmysamu.

Bcmanosaeno, wo mooi sanpononosanuti moougirxosa-
nuti anzopumm memooy Depma ona qucen 212! zabesne-
UYE IHUNCEHHA 00MUCTIOBAILHOT CKAAOHOCME 8 NOPIGHAHHI 3
6azoeum anzopummom 6 cepeonvomy 6 107 pas

Kmiouoei carosa: paxmopusauis, memoo Pepma, o6uuc-
J106abHA CKAAOHICMb, 6A308a 0CHO8A, NPOPIOHCYBAHHS,
Keaopammi 3aaumxu

u] =,
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1. Introduction

At present, the issue of information security is one of
the most relevant. One of the ways to solve it is information
encryption. Among the ways of encryption, the asymmetric
crypto-algorithm (ACA) RSA has acquired widespread appli-
cation. Its cryptographic resistance is caused by the complex-
ity of factorization of big numbers N=p-g, where p and g are
prime numbers. In papers [1, 2], it was shown that the known
examples of compromising the RSA algorithm work only for

its specific implementations, and, as a rule, in the general case
are not most effective for solving a factorization problem.

Up to now, many factorization methods have been devel-
oped. The most frequently used methods include the methods
of the number field sieve (GNFS), the quadratic sieve method
(QS), the Pollard method and the Fermat method [3—6]. In
this case, it is believed that each of these methods is the best
(most effective in terms of computational complexity) for its
application area. Thus, the Fermat method is most effective at
sufficiently close values of prime factors p and g, The Pollard




p-method is most effective at a small enough value of one of
the multipliers. Except for the regions of values of N, where
the most effective methods are the Fermat method or the Pol-
lard p-method, the method of quadratic sieve is most effective
for N<10"9 [4], the method of the number field sieve is most
effective at N>101°, That is why the development of modifi-
cations of these methods that make it possible to reduce the
computational complexity of any of these methods at the stage
of cryptographic analysis of ACA RSA will ensure greater
reliability of an encryption key. It should also be noted that
both the QS and the GNFS are the variations of the factor
foundation method, which is a generalization of the Fermat
factorization method. That is why the Fermat method holds a
special position among the well-known factorization methods,
and the research, associated with decreasing computational
complexity of the algorithm of its implementation can be rele-
vant for other methods.

2. Literature review and problem statement

It is commonly known that the Fermat method is used
only for factors p and ¢ of number N that are close by values.
The region of its application is quite narrow. The main ideas,
associated with reduced computational complexity of the
algorithm that implements it, were proposed and studied
relatively long ago and are presented in paper [9].

According to the classic variant of the algorithm of the
Fermat method [10, 11], to derive the values of p and q, the
equation is solved

X’ -N=Y?, 1)

where X and Y are positive integers.
Unknown X is represented in the form of

Xi=([\/ﬁ]+1)+xi=x0+k. 2)
The solution to equation (1) is obtained by searching

the values of k=0, 1, 2,..., until residue X*—N is complete
square of integer. If solution (1) is obtained at

X =x0+x*,
where
Y* _ (X*)Z—N,

p and q are determined according to ratios:

p=X-Y, 3)
q=X+Y.

The main disadvantage of the Fermat factorization meth-
od is the need for multiple performance of arithmetically
complex operations of raising to square, subtraction and cal-
culating the square root for big numbers, which determines
its computational complexity. In this case, it is necessary to
distinguish between the following components of the prob-
lem of high computational complexity of the basic algorithm:

1) a large number of X, for which the ratio (1) should be
checked;

2) significant computational complexity of the operation
of deriving square root of multidigit numbers;

3) high computational complexity of the operations of
multiplication and addition of multidigit numbers.

In most of the known variants of reduction of computa-
tional complexity of the Fermat factorization method, the
procedure of preliminary sifting either of analyzed values X, or
reduction of the check operations of square root calculation is
used. One of the ways of solving the first problem is based on
the results of analysis of values m of lower bits of a factorized
number [12]. Paper [9] considers the possibility of increasing
the pitch of thinning, but the value of such a pitch is a perma-
nent magnitude. Such permanent pitch can be equal to values
of 2, 4, 6 and, in rare cases, of 12. However, it cannot signifi-
cantly affect the reduction of computational complexity of the
algorithm of the Fermat method. That is why the search for the
ways of reduction of the number of check X, for which ration (1)
is checked, is one of the tasks that are explored in this study.

The options of the solution of the second problem were
proposed in [13, 14], where a reduction in the number of op-
erations of square root calculation is achieved by the results
of analysis of least significant bits ?. A modified version
of these algorithms is presented in [15]. In paper [16], the
method for determining that the square root is not an integer
without the procedure of root calculation was proposed.

In papers [17, 18], reduction of computational complexity
of the Fermat factorization method is ensured through the
use of modular arithmetic and the apparatus of continuous
fractions, respectively.

In [9], it is proposed to check whether the difference
X2-N by module of a certain set of foundations of modules b
that are prime numbers will be quadratic residue.

At satisfaction of ratio (1) for an arbitrary foundation of
module, the equality will be satisfied

Y?modb=(X"-N)modb, O)
which is equivalent to satisfaction of the ratio

(Y modb)’ mod b=
= ((X modb)’ Inodb—Nmodb)mod b. (5)

It should be noted that if the ratio (1) is satisfied, there is
equality (4) and (5) for an arbitrary b. The opposite is false,
that is, satisfaction of (1) does not follow from satisfaction
of (5). However, if the ratio (5) is not satisfied, the ratio (1)
will not be satisfied. That is why for the X, for which (5) is
not satisfied, it may not be possible to derive square root, as
it may not be the exact square of an integer.

Through the implementation of checks (5) for set
MB={b,}, of foundations of modules, computational com-
plexity of the Fermat method decreases. If each of the mod-
ules is a prime number, then, as noted in [9], when using
one additional module in (5), the number of X, for which
difference X>~N can be complete square, decreases actually
by two times. Such X will be subsequently called admissible.

However, when using the first foundation of modules,
which will be subsequently called basic and designated bb, the
number of X, for which the ratios (5) will be analyzed at other
values of modules, will decrease only approximately by half.

Let us assume that bb is a foundation of module and bb*
is the number of roots of the equation (5) at b=>bb. If subse-
quently during analysis of the check X, only 65" of them will
be analyzed, the number of analyzed X will decrease by the
number of times equal to



Z(N, bb) = bb / bb*,

(©6)

where Z(N, bb) will subsequently be called acceleration co-
efficient.

In the scientific literature, there are no methods of the
use as the basic foundation of module b of the numbers,
which are products of primes numbers or powers of such
prime numbers, at using of which the pitch for X will be
non-uniform, and estimates of the value of Z(N, bb). Such
idea was proposed by the authors in papers [19-21], where
the values of bb were determined from the condition of en-
suring the lowest possible reduction in the number
of admissible X, and the impact of the number of N
on the number of admissible X in (5) at b=bb was
not assessed. Such research is one of the problems
that are being solved.

4. Analysis of influence of number N and exponents of
prime numbers in the structure of basic foundation

The results of research into the impact of number N and
powers of prime numbers in the structure bb were derived
based on conducting numerical experiments. Analysis and
generalization of the results are given below.

A general idea of the change in acceleration coefficient at
changes of bb and a fixed value of N can be obtained based
on the data of Tables 1, 2, which show the information for all
Nmodbb<60, coprime with 2, 3 and 5.

Table 1

Value of acceleration coefficients Z(bb, Nmodbb) for various bb
as products of number 60 on powers of 2, 3 and 5 for values of

Nmodbb<60 coprime with 2, 3 and 5

The hardware capabilities of calculations, such Vari
‘ . . ariants of values of bb
as graphic charts have considerably increased
lately. While the algorithm of the Fermat method Nmodbb |60 (240(180| 300 | 720 | 900 [1,200(960| 540 | 1500 |8,640{24,000
is easy to de-parallel, the task of number factoriza- |4 *3 | *5 |*12] *15 | *20 |*16] *9 | *25 | *144] *400
tion could be performed using graphic processors. 5| 10| 15 [10.71] 30 |32.14|21.43| 20 | 22.5 | 12.1 | 90 | 48.39
However, the types of data that are currently used 7 |75/ 15(225| 7.5 | 45 |22.50|15.00| 15 |33.75| 7.5 | 67.5 | 15.00
in them do not imply the possibility of working 11 {1020 | 10 |21.43| 20 |21.43]42.86] 20 | 10 [24.19| 20 |48.39
with multidigit numbers. The methods for per- 13 17511512250 75 145 [225 | 15 130 13375 75 | 135 | 30
.formlng operations w1th nurqbers. of long type 7 151301551 15 1301 15 1 30 leol 151 15 | 60 | 60
instead of similar operations with big numbers are
one of the most important tasks that are import- 19 5 (10| 15 |10.71| 30 [32.14[21.43| 10 | 22.5 | 12.1 | 45 |24.19
ant when designing modifications of the Fermat 23 |15/30 15 15 30| 15 | 30 |30 15 | 15 | 30 | 30
algorithm. 29 101 20 | 10 [21.43| 20 [21.43|42.86| 40 | 10 |24.19| 40 |96.77
That is why it is advisable to conduct studies re- 31 [ 5]10] 15 (10.71| 30 |32.14|21.43| 10 | 22.5 [ 121 | 45 |24.19
garding the use of the basic foundation of the module 37 1751151225 75 | 45 | 225 | 15 |30 133.75] 75 | 135 | 30
in ratios (5) both in terms of achieving a significant ™= 1001075 3] 20 [21.43(42.86] 40 | 10 |24.19] 40 | 96.77
reduction in the number of admissible X, and for
reducing computational complexity of the opera- 43 |7.5]15(22.5| 7.5 | 45 | 225 15 |15(33.75| 7.5 | 67.5| 15
tions of multiplication and addition of multidigit 47 153015 ] 15 |30 | 15 | 30 |30 | 15 | 15 | 30 | 30
numbers based on the operations with numbers of 49 | 5|10| 15 |10.71] 30 [32.14(21.43| 20 | 22.5 [ 12.1 | 90 |48.39
the long type. 53 (1530 15| 15 [30] 15 | 30 [60| 15 | 15 | 60 | 60
59 10 20 | 10 [21.43| 20 [21.43|42.86| 20 | 10 |24.19| 20 | 48.39
3. The aim and objectives of the study Table 2

Changes in acceleration coefficients Z(bb, Mmodbb) at changes in bb

The aim of this study is to ensure the reduc-
tion of computational complexity of the algorithm

compared to bb=60 for Nmodbb<60, coprime with 2, 3 and 5

of the Fermat method of factorization of big num- Variants of values of bb
bers using the basic foundation of the module that | Nmodbb [60]240]180] 300 [720] 900 [1,200[960] 540 [1,500]8,640 (24,000
is the product of powers of prime numbers. This 1 4 | #3 | *5 |*12] *15 | *20 |*16| *9 | *25 | *144 | *400
will make it possible to design hardwa.re—soft— 1 112 3 (2141 6 164314291 4 | 45 | 242] 18 | 9.68
ware e of sonducting cptaats ACA [T T o5 [ o [atus 1[0 ]
speed and, consequently, to enhance the qual- 1 121 |214) 2 |214)429] 2 | 1 |242] 2 | 484
ity of evaluation of crypto-resistance of ACA 13 1 3 ‘? 1 g i’ ; i 4i5 1 148 j
of RSA.
To accomplish the aim, the following tasks have 19 112 |3 |214] 6 |[643]429] 2 | 45 |242] 9 | 484
been set: 23 1121 1 2 1 2 2 1 1 2 2
— to establish what prime numbers (multipliers 29 1] 21 [214] 2 [214[429] 4 | 1 |242] 4 | 968
bb) influence the value of acceleration coefficient 31 112 |3 [214| 6 [643[429| 2 | 45 |242| 9 | 484
Z(N, bb) at a fixed N, determined according to (6); 37 112131116l 3 2 | 4 l4as5| 1 18 4
—to find out how the values of Z(N, bb) are in- 41 112111214 2 12141429 4 1 124921 4 968
fluenced by numbers N; 43 2131116/ 3 2 |2 |45 1 9 )
- to offeE the1 mel‘Fhoq to reSuc;th.e nqunber1 (?f 47 TEEEEERERE 2 121 1 1 9 9
operations of multiplication and addition of multi-
d?git numbers basedpon using the operation with the 49 11213 ]214] 6 |643]429| 4 | 45 |242] 18 | 968
numbers of the long type when performing arithme- 23 L0 M I U e 2 | 411 1 4 4
tic operations with blg numbers. 59 11 2 11214 2 |214]4.29]| 2 1 1242 2 4.84




Based on an analysis of data from Tables 1, 2, it is possi-
ble to draw two major conclusions:

—at a change in bb, acceleration coefficient varies de-
pending on the value of an additional multiplier in it;

—acceleration coefficients take a series of the same values
for a set of magnitude of Nmodbb, which at various bb is
different.

Thus, at the increase in bb by 3 times (b6=180), acceler-
ation coefficient increases either by three times, or remains
unchanged. At an increase in bb by 9 times (bb=540), accel-
eration coefficient increases either by 4.5 times, or remains
unchanged. In this case, an increase takes place for the same
Nmod3 as at bb=180. If bb increases by 5 or by 25 times,
acceleration coefficient also increases for the same Nmod5.
The increase in bb by 2¢1*3¢2#5¢3 times leads to an increase
in acceleration coefficient that is equal to the product of
accelerations, related to an increase in bb of the exponent of
number 2 by c1, of the exponent of number 3 by ¢2 and the
exponent of number 5 by ¢3.

Thus, we can assume that for multipliers bb equal to p?,
it is possible to determine a set of values Nmodp, for which
the values of acceleration coefficients do not change at the
change of exponent, and those for which they change. This
assumption was checked using numerical experiments for
multipliers bb — prime p from p=2 to p=31. The results of
such research are given below.

a) Multiplier bb p=2. Based on numerical experiments,
it was found that for 2¢, it is advisable to use the value of
exponent £22, since at =1, Nmod2 of acceleration is equal
to 1. Table 3 shows the values of acceleration coefficients
for all odd values of Nmod2? at ¢t=3+7 that are coprime
with bb.

Based on data from Table 3, it is possible to make a
conclusion that the character of a change in the values of
acceleration coefficients for bb=2¢ at ¢>3 is determined by
magnitude of residue Nmod8, which was proved by addition-
al numerical experiments with bb=2" at ¢t<14. For such values
of bb at t=1+14, Table 4 shows the values of acceleration
coefficients depending on Nmod8.

Table 4
Acceleration coefficients Z(bb, Nmodbb) for odd Mmod8 at
bb=2' t=1+14
Nmod8 1 3|5 | 7 [Nmod8 1 31517
t=1 1 - -] - t=8 16 41 8| 4
t=2 2 20 -1 - =9 [ 182857 | 4 | 8 | 4
t=3 2 412 |4 |t=10 | 213333 4 | 8 | 4
t=4 4 4 4 4 | t=11 | 22.2609 | 4 8 | 4
t=5 4 4 8 | 4 | =12 | 232727 | 4 | 8 | 4
=6 8 4 8 | 4 | t=13 [ 235402 | 4 | 8 | 4
t=7 |10.6667 | 4 8 | 4 | t=14 | 238140 | 4 | 8 | 4

According to data from Table 4, the magnitude of acceler-
ation coefficient for bb=2% at #>2 is determined by exponent ¢
and the value of Nmod8. This is proved by the data in Table 3
at t=3+7, where, for example, at =7 and Nmod8=1 acceler-
ation coefficients for values of Nmod27, equal to 1, 9, 17, 25,
33, 41, 49, 57, 65, 73, 81, 89, 97, 105 and 113 will be the same
(equal to 32/3), that is, for those that (Nmod27)mod8=1. That
is why the data from Table 4 allow estimating the construc-
tions of the effective primary base bb for the cases when there
is number 2 among prime multipliers bb. Thus, at Nmod8=3
and Nmod8=7 at bb=2" and >3, acceleration coefficient al-
ways equals to 4 and there is no point using power 2 with the
exponent higher than 3 in bb. If Nmod8=5, it will be optimal
to use power 2 with exponent 5 in bb. But if Nmod8=1, it is
possible to use power 2 with exponent 8 and more in bb.

b) Multiplier bb p=3. In case multiplier 3 is included in
bb, it was found that at Nmod3=2, the values of acceleration
coefficients for bb=3" at £>1 coincide, which is proved by nu-
merical experiments with bb=3" at t=1+8. For such values of
bb, Table 5 gives values for acceleration coefficients, depend-
ing on Nmod3 at t=1+8.

Table 3
Acceleration coefficients Z(bb, Nmodbb) for odd Mmod2’at =3+7
bb Acceleration Z=Z(bb, Nmodbb) for all possible values of Nmodbb
3 Nmodbb | 1 3 5 7 - - - - - - - - - - - -
4 2 4 2 4 - - - - - - - - - - - -
16 Nmodbb 1 3 5 7 9 11 13 15 - — - — - - — -
4 4 4 4 4 4 4 4 4 - - - - - - - -
39 Nmodbb 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4
Nmodbb 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4
64 Nmodbb | 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4
Nmodbb 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
4 10.7 4 8 4 10.7 4 8 4 10.7 4 8 4 10.7 4 8 4
Nmodbb | 33 35 37 39 41 43 45 47 49 51 53 35 57 59 61 63
128 4 10.7 4 8 4 10.7 4 8 4 10.7 4 8 4 10.7 4 8 4
Nmodbb | 65 67 69 71 9 75 77 79 81 83 85 87 89 91 93 95
zZ 10.7 4 8 4 10.7 4 8 4 10.7 4 8 4 10.7 4 8 4
Nmodbb | 97 99 101 103 105 107 109 11 113 115 117 119 121 123 125 127
4 10.7 4 8 4 10.7 4 8 4 10.7 4 8 4 10.7 4 8 4




According to Table 5, it is possible to estimate the pos-
sibilities of construction of the effective primary base of bb
for cases when there is number 3 among prime multipliers.
Thus, at Nmod3=2 at bb=3" and >0, acceleration coefficient
always equals to 3. There is no point using power 3 with the
exponent higher than 1 in bb. If Nmod3=1, it is possible to
use power 3 with exponent 4 and more in bb.

Table 5

Z(37, Nmod3) for coprime with 3 Mmod3 at b6=3'and =1+8
Nmod3 1 2 Nmod3 1 2
t=1 1.5 3 t=5 11.0455 3
t=2 4.5 3 t=6 11.7581 3
t=3 6.75 3 t=7 11.8859 3
t=4 10.125 3 t=8 11.9726 3

¢) Multiplier bb p=5. If multiplier 5 is included in bb,
it was found that the values of acceleration coefficients for
bb=5" at t>1 coincide for all Nmod5=2 and Nmod5=3, which
was proved by the numerical experiments with bb=5" at
t=1+6. But at t>1 and Nmod5=1 and Nmod5=4, the value
of acceleration coefficient increases. Such value at every t is
the same at Nmod5=1 and Nmod5=4. For such values of bb,
Table 6 shows the values of acceleration coefficients, depend-
ing on Nmod5.

Table 6
Z(5¢, Nmod5) for Nmod5 coprime with 5 at bb=5"and t=1+6

Nmod5 1 213 4 | Nmod5 1 213 4

t=1 [1.6667(2.5|2.5|1.6667| t=4 [4.2517|2.5|2.5|4.2517
t=2 [3.5714(2.5|2.5|3.5714| t=5 [4.2750{2.5|2.5|4.2750
t=3 [4.0323(2.5]2.5|4.0323| =6 [4.2843]2.5|2.5|4.2843

Based on data from Table 6, it is possible to assess more
accurately the possibilities of the effective primary base of bb
for the cases when there is number 5 among prime multipliers
Thus, at Nmod5=2 or Nmod5=3 at bb=5" and >0

Z(5,Nmod5)=2.5.

That is why it is advisable to use exponent t=1. If
Nmod5=1 and Nmod5=4, it is possible to use in bb power 5
with exponent 2 and more.

d) Multiplier bb p=7. If multiplier 7 is included in bb, it
was found that the values of acceleration coefficients

Table 7
Acceleration coefficients for Mmod7, coprime with 7
Nmod7 1 2 3 4 5 6
t=1 1.75 1.75 2.3333 1.75 2.3333 | 2.3333
=2 | 3.0625 | 3.0625 | 2.3333 | 3.0625 | 2.3333 | 2.3333
t=3 | 3.2358 | 3.2890 | 2.3333 | 3.2890 | 2.3333 | 2.3333

e) Multipliers bb p>7 and p<23. For prime p — multipliers
of bb, equal to 11, 13, 17, 19, 23, it was found that the char-
acter of a change in the values of acceleration coefficients for
bb=p' at t>1 is determined by the value of Nmodp, which was
proved by numerical experiments with bb=p at t=1+4. For
such values of bb, Table 8 shows the values of acceleration
coefficients, depending on Nmodp at =1, 2.

Table 8
Values &=Mmodp, for which Z(p, 1)=Z(¢?, i) and Z(p, )<Z(F?, i)

Values i=Nmodp, Values i=Nmodp,
p for which t | Z@p' i) for which t| Z@', Q)

Z(p, )=Z(p i) Zp, <Z(p* i)
11 2,6,7,8,10 L | 2.2000 1,3,4,5,9 L] 18333
T 2 1 2.2000 e 2| 2.6300
13] 2,5,6,7,8, 11 L | 2.1667 1,3,4,9,10,12 1| 18571
A 2121667 T 2| 2.5224
17 3,5,6,7,10,11, | 121250 | 1,2 4,8,9,13, [ 1| 1.9000
12,14 2| 2.1250 15, 16 2| 2.3884
19 2,3.8,10,12, [ 1| 21111 | 1,4,5/6,7,9, |[1]| 18889
13,14, 15,18 | 2| 2.1111 11,16, 17 2| 2.3442
5,7,10, 11,14, | 1| 2.0909 1.2.3.4,6,8,9, 1] 1.9167

23| 15,17, 19, 20,

21,22 21 2.0909 12,13,16,18 | 2| 2.2902

We will show on the examples of numbers N, presented
in Table 9, that taking into consideration the specifics of
numbers N, namely, the residues of dividing N by 8 and by
prime p from 3 to 23, makes it possible to construct a new bb,
at which set D(bb, N) will contain the number of admissible
X, which does not exceed its value for bb=277200, equal to
2880 cells of memory of type int. The primary foundation for
bb=277200 is the product of powers of prime numbers 2, 3,
5, 7, 11: bb=2*3%*52*7*11 and is characterized by the val-
ue of acceleration coefficient for numbers N of magnitude
of 96.25, shown in Table 9. According to the data given in
Tables 4—8, we will construct new, more effective bb’. The
data are shown in Table 9.

for bb=7" at t1 coincide for all Nmod7=3, Nmod7=>5 Table 9

and Nmod7=6, which was proved by numerical exper- Values of N;modp for p=23=8 and prime p=3+23

iments with bb=7" at t=1+3. But at t>1 and Nmod7=1

Nmod7=2 and Nmod7=4, the value of acceleration |/ N s[5 1111137119123

coefficient increases and takes the same value. For such 112 190 107 742 436 404 740 487 152427 933171213121 5 1 1 | 5 [15|22

values of bb, Table 7 shows the acceleration coefficients

depending on Nmod7 at t=1+4. 2| 115103 357 258 699 743 681 239 319 283 |3|2(3 (1| 5| 1 [13|11[17
Based on data from Table 7, it is possible to assess 3| 24197 500 008 691 435 623 032 029 847 [7|2(2|2| 4| 3 |13|16]12

the possibilities of constructing the effective primary |4] 7193959711947 061 718 333 522 687 |7|2|2|1|9 |2 | 1[10] 2

base of bb for the cases when there is number 7 among 5| 3024687551 113421 119054532273 |1|2(3(2| 1 |12] 4 |13|21

prime multipliers of bb. Thus, at Nmod7=3, Nmod7=5 |6] 1798 489957 219 681 011882800933 |5/2|3|1| 3 |1 [13[13] 1

or Nmod7=6 at bb=7"and >0, acceleration coefficient
is always equal to 2.3333. That is why there is no point
using in bb power 7 with exponent more than 1. If
Nmod7=1, Nmod7=2 or Nmod7=4, it is possible to use
in bb power 7 with exponent 2 and more.

Taking into consideration the above recommendations
on the selection of exponents of prime p — multipliers bb, Ta-
ble 10 gives the refined values of b, which take into account
the specificity of factorized number N.



Table 10

Refined primary foundations of bb, formed for numbers N
with respect to data from Tables 4—6

Exponents for prime numbers

that make up new primary , Memory
J foundation bb z amount

21357 [11|13|17|19|23 bb/z
1311|1211 ]|-|—-|—] 840,840 | 312.812 2,688
20311 (1|21 |{1]|-|—-]|—]| 840,840 | 312.812 2,688
331|121 |{1]|-|—-]|—]| 840,840 | 312.812 2,688
40311211 |—-|—-]—]| 840,840 | 364.948 2,304
SO {12 |-|—|—-|—| 752,640 490 1,536
65|11 |2|—|—-|—|1]|—| 446,880 | 387.917 1,152

As it follows from data in Table 10 for refined bd’, due to
taking into account the specificity of number N, the amount
of required memory of the computer decreased and the value
of the acceleration coefficient simultaneously increased by
3.25+5.091 times, which approximately reduces factoriza-
tion time by the same number of times. That is why it is
advisable to consider the problem of searching for the

2) at Nmod8=5, exponent ¢ is always equal to 5;

3) at Nmod8=1, it is necessary to determine the value of
exponent Z.

In case if prime p>2, it is also necessary to consider three
types of variants:

1) Nmodp takes such value that Z(p, Nmodp)=Z(p?,
Nmodp) and ¢=1;

2) t=0 and Z(p°, N)=1 (multiplier p is not used in bb);

3) Nmodp takes such value that Z(p, Nmodp)<Z(p?,
Nmodp) and £>1.

Thus, when choosing the exponent of prime p — mul-
tiplier of bb, the exponent is not determined only for the
third variant. To assess the possible range of exponents in
variant 3, we will use the function of relative increase in
acceleration coefficient, reduced to a memory unit:

s(p, )=(Z(p"™", V/Z(p", D=1/, 12)
which makes it possible to give an approximate estimate of
the effectiveness of the primary base of module, related to
additional multiplying bb by prime multiplier p. The values
of function s(p, ) for prime p>2 and p<31 for the series of
variants of exponent are shown in Table 11.

optimal bb that takes into consideration the specificity Table 11

of numbers N. Values of function s(p, #) for prime p=2 i p<31
plel 2z 0 [z 0 s 0 [ o e 200, 0 2007, D] s, )

— - - - 51 4 8 05 0] 1 175 | 0.10714

o e ool primar G| 15—y ot (1| v

factorized number 7 110.66667 16 0.25 2| 3.0625 | 3.2358 | 0.00808

9 8 16 18.2857 |0.07143 3 3.2358 | 3.2890 |0.002349

When setting the problem of searching for the op- 9| 18.2857 | 213333 |0.08333| 0| 1 | 18333 | 0.07576

timal primary base of module bb, we will use the infor- 10| 21.3333 | 22.2609 |0.02174 1]1.8333 | 2.6300 | 0.03953

mation about the structure of bb, about the properties 11] 22.2609 | 23.2727 |0.02273 13 0 1 1.8571 | 0.06593

of acceleration coefficients and the number of elements 12| 23.2727 | 23.5402 |0.00575 1| 1.8571 | 25224 |0.02755

of set D(bb, Nmodbb): 0 1 1.5 0.16667 17 0 1 1.8889 | 0.05229

i 1 1.5 4.5 0.66667 1] 1.8889 | 2.3884 | 0.01556

bb = le_kz : ) 3 2 4.5 6.75 0.16667 19 0 1 1.9000 | 0.04737

i=1 3 6.75 10.125 | 0.16667 1] 1.9000 | 23442 | 0.01230

A 41 10.125 | 11.0455 |0.03031 0 1 1.9167 | 0.03986

Z(bb,N)=T]z(p! . N) (10) 5| 110455 | 117581 | 002151 20| 1| 1.9167 | 22002 | 0.00847

= 0 1 1.6667 |0.13333 29 0 1 1.9333 | 0.03218

the number of elements of array D(bb, Nmodbb) is |5 1| 1.6667 | 3.5714 |0.22857 1] 19333 | 2.2190 | 0.00510

equal to: 2| 35714 | 40323 [0.02581, [0] 1 1.9375 | 0.03024

3] 4.0323 | 42517 |0.01088 1] 1.9375 | 2.2041 | 0.00444

bb ) ZbbNY=T 10" / Z(pl N, (11)

According to (9) to (11), to determine bb, it is sufficient
to determine the exponents of prime numbers — multipliers
bb, where it is necessary to consider the relationship between
the value of a prime number and an increase in acceleration
at an increase in the exponent. For prime p from 2 to 23, the
corresponding values of acceleration coefficients are deter-
mined according to data from Tables 4—8. When setting the
task of searching for optimal bb with consideration of N, we
will explore the possible types of the variants of values of
exponents, depending on p, among which there will be an op-
tion when multiplier p is not used in bb and then z(p°, N)=1.

For p=2, three types of variants are possible:

1) at Nmod8=3 or Nmod8=7, exponent ¢ is always
equal to 3;

Sorting values s(p, t) in the descending order makes it
possible to assess how effective the addition of multiplier p
in bb will be. The more s(p, t), the higher the effectiveness.
If s(p, t) is close to zero, at an increase in bb, acceleration
coefficient increases slightly, but the amount of memory of a
computer used to store increments for admissible X increases
significantly. To search for the optimal bb taking into con-
sideration the specificity of N and the methods for reducing
computer memory, ratios (9) to (11) and limitations for the
memory amount of the computer are used. The search for a
maximum acceleration coefficient is through the search of
admissible options of exponents of prime p — multipliers N.

In the numerical calculations on determining the opti-
mal bb with consideration of the admissible memory amount
needed to store increments of admissible X, it was accepted
that the primary base of module bb is the product of powers



of prime numbers p equal to 2, 3, 5, 7, 11, 13, 17, 19, 23 29,
31, where the set of options of exponent of prime numbers
p — multipliers bb is selected based on the data from Tables
5-8 and 11 on condition that s(p, £)>0.03 (¢ is an exponent
for p). In this case, the following options of the influence on
acceleration coefficient:

—for p=2 by Nmod8, we selected one of the possible
types of variants, where in case if Nmod8=1, exponents of
t=3+12 were considered;

— for p>3 and p<31, two type of variants were selected:
type 2 as well as one of the types 1 or 3, depending on the
value of Nmodp.

In addition, when determining the required memory
amount of the computer, it was taken into account that bb
is always divided into 4, that is, the cyclic sequence of incre-
ments for bb is repeated at least twice.

In the numerical experiments for memory amount (mag-
nitude Qumay) 10% 103, 104, 10°, 105, 107, for each of the
variants of the influence on acceleration coefficients, the
maximum value of acceleration coefficient was determined.
Since the number of such variants turns out to be quite large
(equal to 3*28=768), Table 12 shows the data only about
Zmmin» Zmax, and mean Z,,, which is equal to the mean value for
all the variants, where coefficient 2 is assigned for reaching
the equality of the variants at p=2 and the type of variant
1, and coefficient 1 is given for variants 2 and 3. Then the
weighted sum of all the obtained maximum acceleration
coefficients was divided by 1,024. Derived values of Zip,
Zmax and Z,, were shown in Table 12 in the form of a diagram
in Fig. 1.

Values: Znin, Zmax, Zcp @nd necessary memory amount of computer Zg(Z2) for different

boundary values Qnax

The computational complexity of the basic algorithm of the
Fermat method will decrease by the same number of times.
Further reduction of computational complexity can be
achieved by reducing the number of operations of multipli-
cation and subtraction of the numbers that exceed boundary
values for the long type, which is considered below.

6. A decrease in the number of arithmetic operations with
the numbers that exceed boundary values for
the long type data

The algorithm of the Fermat method implies two basic
operations for the check X: calculation of difference X?-N
and checking whether this difference will be the square of an
integer. Based on using only the values X, which are admissi-
ble for bb, as check values, the number of check X decreased.
However, this does not exclude performance of the opera-
tions of the calculation of difference X*~N and checking
whether it will be the square of an integer. In addition, the
roots of the equation (5) at b=bb can be big numbers, which
can be seen in data from Table 12. That is why during the
implementation of the modified algorithm of the Fermat
method, it is proposed:

1. To use increments — differences of two nearest values
of the roots of the equation (5) instead of the roots of the
equation (5) at b=bb.

2. For each of the foundations of the modules of set
MB={b,}, to determine the roots of equation (5) at b=>b;
(k=1+m) and form array M of features for numbers from 0
to by—1, in which 1 will mean that
(XZ—N)modbk is the square resi-
due, but zero, which is not true.

The first proposal makes it pos-
sible to represent the current admis-

Table 12

Qmax Zmin Zq(zmin) bb(zmin) Zrnzlx Zq(zmux) bb(zmux) Zcp Sible fOI' bb Check X iIl the form Of:
102 89.610 77 13,800 4725 96 90,720 214.520
103 | 213571 | 924 394,680 1,386 960 2,661,120 579.731 X=X +Ax; =
4 i
104 | 405.786 | 9240 7,498,920 3,003 8,640 51,891,840 | 1,365.952 X4 Ar - X +AX,  (13)
105 | 822.833 | 92,736 | 152,612,460 | 9,572.063 | 92,160 | 1,764,322,560 | 2,976.528 -
105 [1,563.382] 927,360 | 2,899,636,740 | 20,207.687 | 829,440 | 33,522,128,640 | 6,007.030 . .
107 |2,407.279] 8,814,960 42,440,137,740 | 42,252.438 | 9,123,840 | 771,008,958,720| 11,088.624 | Where Xi:1 (X;) is the following (pre-

Z(bb)

450007
40000
35000
30000
25000
20000
15000
10000 —
5000 —  — | -
’ ' —— e — |
100 1000 10000 100000 1000000 10000000
Zq(max)

—=—7(min)
—+—7(max)
——Z(cp)

Fig. 1. Values of acceleration coefficients Z(bb) at limitations
for amount Qmax) of available memory

According to data from Table 12, when using the op-
timal values of the basic foundation of the module, deter-
mined from the condition of the existing memory volume
of computer, which does not exceed 107 cells of the long
type, the number of check X will decrease in comparison
with the basic algorithm of the Fermat method by 2.4x103+
+4.2x10% times, where the mean value equals to 1.1x10% times.

vious) check X, admissible for bb;
Ax; is the increment for current ad-
missible X; X* is some intermediate fixed value, admissible
for bb, which changes when magnitude AX; is close to the
boundary for the data of the long type. In such cases, we
perform operations: X =X +AX;, AX;=0, as well as calculate
residues s;=X*modb;, (k=1+m).

Another proposal makes it possible to significantly
decrease the number of operations of root calculation in
relation to the basic algorithm of the Fermat method. To do
this, in assessing the possibility that difference X*—~N can
be complete square, the values are calculated

Xmodb, =(X" +AX,)mod b, =

=(s, +AX,)mod b, =71, . (k=1+m), (14)
where the sum s, +AX, is the number of the long type, and
numbers 1 ; are smaller than by. It allows finding value
Mgl i]. If M|, ]=0, for the current check X the difference
X?—N cannot be a complete square and the transition to a
new check X, admissible for bb, is performed. At Mg[r, =1,
a similar magnitude for £+1-¢& module from set MB={b,}_,.



Under condition that value Mk[r, ]=1 for all k=1+m, we
calculate square root of X*—N.

At this algorithm, the calculation of the value of check X
(multidigit number) is performed in two cases:

— during calculation of the root of X*—N, when X*—N;
is calculated;

— during recalculation of X'=X"+AX;, where AX; is the
number of the long type.

Since at a sufficient number of modules in set MB={b,}/.,
the first variant occurs so rarely that it can be neglected, the
computational complexity of the proposed modified algo-
rithm is determined by the operations of assigning value
X'+AX; to X', where AX; is a long type number and by calcu-
lations of residues sp=X*modby, (k=1+m).

When presenting multidigit numbers by its coefficients
for the base 1,000 or 1,024, during calculating the value of
X' +AX;, on average 4+5 operations of addition the numbers
of long type and 8+10 operations of division of the sum by
the foundation will be performed. We will estimate how
often the cases of computation of values X'+AX; occur. The
mean value of increments Ax; is estimated by the magnitude
of acceleration coefficient. If we use the optimal values of bb,
obtained at restrictions for the amount of available memory
of the computer of the order of 107 cells of the long type, it is
possible to reach the magnitude of the boundary value of the
number of long type (=2.147x10%) by the number of steps in
the range from 50,000 to 900,000, where the average number
of steps is equal to 2.147x109/11,088.624~193,630.

Now we will estimate the average number of operations
with numbers of long type for values of N close to 21024
performed in the proposed modified Fermat method at the
number of check values for its basic algorithm, equal to
2.147x10%, when computation complexity of calculation op-
erations X*—N and the root from X*—N can be neglected.

For the modified algorithm of the method, we have:

1. One operation X +AX;; on average 4-5 operations of
addition of the numbers of the long type and 8—10 operations
of dividing the sum by the foundation will be performed.

2. During performing operation X'+AX; one time, we
calculate the values of

(X +AX,)mod b, = (s, + AX,)mod b, (k=1+m),

where numbers s, AX; and the sum sk+AX; do not go beyond
the boundaries of data of long type. That is the summary
number of operations of m additions and m calculations of
residues

(s, +AX,)mod b,(k=1+m).

Primary values of s,(k=1+m) are calculated before
the entrance of check values X to the main cycle of the
search of admissible values for bb and are not taken into
account here.

3. On average, around 1.95x10° operations AX;=AX,.{+
+Ax;, each of which is performed for long type numbers,
which during representations of multidigit numbers by the
array of coefficients, during factorization by foundation
1,024 requires every time on average 2 operations of addition
and division.

The total average number of operations with long type
numbers at m<100: addition — around 4x105, division and
determining residue of division — around 4x10°, which is
approximately equal to 2x2.147x10°/Z(N, bb).

1. 2.147x10? operations of increasing X by unity, com-
plexity of which will be neglected.

2.2.147x109 operations calculate the value of X?—N.
We will consider that due to the ratio

(X+1) =N=X’-N+2X+1=Y +2X +1.

Computation complexity of determining the value of
X?*—N can be the magnitude of order of O(logN).

3.2.147x10° operations of calculation of square root,
calculation complexity for which is estimated by magnitude
O(log?N).

Thus, on average, for one check value of X among
2.147x10° operations, the modified algorithm requires
2/Z(N, bb) operations of adding and dividing long type
numbers (including division with residue), and the basic al-
gorithm of the Fermat method — O(logN+log?N) operations.
If we consider that the mean value of Z(N, bb) is equal to
1.1x10%, and N is close to 2194 computational complexity of
the modified algorithm of the Fermat method decrease not
less than by 107 times.

7. Discussion of results of reducing the computational
complexity of the modified algorithm of the Fermat
factorization method

An analysis of the factors that essentially influence
computational complexity of the algorithm of the Fermat
factorization method and its modifications revealed that
they may include:

a) a relative number of values of % in the ratio (2), at which
it is possible to establish beforehand that (x, + k)2 —N will not
be square of an integer (mean value is (z(N,bb)—1)/z(N,bb));

b) arelative number of values of k in the ratio (2), at which
based on checking the ratios (4) for a series of foundations of
modules, it is possible to establish that (xo + k)2 — N will not
be the square of integer (mean value is (1/z(N, bb)*(1-2™),
where m is the number of integers in coprime modules that
are used in the ratios (4));

c) a relative number of values of & in the ratio (2),
at which if the ratios (4) for the selected set of values of
foundations of modules are satisfied, it should be checked
it multidigit number (x0+k)z—N will be the square of
the integer based on calculation of the root from it (mean
value is equal to (1/z(N, bb)*2™, where m is the number of
prime numbers in coprime modules, which are used in the
ratios (4));

d) a relative number of steps of the algorithm, at which it
is necessary to perform operations with multidigit numbers.

The studies, the results of which are presented in the
article, were directed at achieving maximum values for the
factor a) (that is, a maximum value of acceleration coefficient
2(N, bb)), as well as the smallest possible number of steps, at
which the operations with multidigit numbers (factor g) are
performed.

To obtain maximum values of accelerated coefficient,
we found the ratio (10) for z(N, bb) and (11) for the amount
of memory required to store the increments to admissible X
as the difference between their two consecutive values (in
ascending order). Based on them, we stated the problem of
determining the optimal primary foundation of b with con-
sideration of specificity of the factorized number, in which
one of the conditions is a restriction for the amount of avail-



able computer memory. The use of increments to admissible
X instead of their values made it possible to replace most of
the operations, which in the algorithm of the Fermat method
are performed with multidigit numbers, with the operations
with long type numbers. It is possible to solve the challenges,
represented in section 2.

It should be noted that in the modified algorithms of the
Fermat method, presented in [9], the problems concerning
factor b) are solved.

The amount of available memory of a computer (or distrib-
uted computing systems) is the main constraint in practical
use of the proposed modified Fermat algorithm, because the
following problems are solved based on this information:

— determining the optimal primary foundation of bb
taking into consideration the specificity of N, which corre-
sponds to maximum value of z(N, bb);

— determining a set of foundations of modules that are
used to check the ratios (4), where the information about
square residues is stored for each of the foundations.

The restrictions can also include the fact that at
z(N, bb)>1000, its increase by two times is possible, as a rule,
when a new integer appears in bb. And since bb is the product
of powers of prime numbers, it is impossible in practice to
obtain acceleration coefficients Z,,,,>107, let along Z,,;,>107
or Zcp>107.

The presented solutions and the general algorithm of the
modified Fermat algorithm were focused at the possibilities
of their use both for single-processor computers, and for
modern high performance distributed computation systems.
In the latter case, it is important to take into consideration
the amount of available memory for each of the processors,
which was not explored in the study.

Methods of factorization of multidigit numbers can be
considered as an iteration procedure, by which the satisfac-
tion of a certain condition is checked at the check step k. In
the case of the Fermat method, the condition is checked if
the difference (x, +k)2 —N will be the square of an integer.
In this case, it was found for the Fermat method, that it is
not necessarily to determine the square root of (the condi-
tions of factor ¢)), and in most cases it is enough to use the
algorithms of thinning check values (factors a) and b)). It is
possible to set the task of finding the ways to use this idea
for other factorization methods as well. However, in the case
of each of the factorization methods, it is necessary to iden-

tify conditions that should be checked and find the ways of
thinning the check k.

8. Conclusions

1. It was established that powers of prime numbers —
multipliers of bb form an integral of acceleration coefficient,
which does not depend on other prime numbers or powers
of such numbers, and total acceleration coefficient Z(N, bb)
at a fixed N is the product of such coefficients for powers of
prime numbers.

2. Based on numerical experiments, it was found that
depending on residues of dividing N by prime numbers —
multipliers N, for each of the prime numbers p, sets Nmodp
are formed, for which at the fixed bb, acceleration coefficient
Z(N, bb) takes one and the same value. For prime numbers
p from 3 to 31, it was shown based of numerical experi-
ments that there are only 2 groups of values Nmodp. For the
first of them, containing the values Nmodp=1, inequality
Z(N, p*)>Z(N, p) is true, and for the second one, equality
Z(N, pY=Z(N, p), where £>1 is true. Three groups are formed
for powers of prime p=2:

1) Nmod8=1;

2) Nmod8=5;

3) Nmod8=3 and Nmod8=7.

Then, Z(N,2°*%)>Z(N,25)forvariant 1, Z(N, 2>*%)=Z(N, 2°)
for variant 2, Z(N, 23"%)=Z(N, 23), where k>0 for variant 3.
This made it possible to significantly reduce the number of
possible variants of values of bb while solving the problem of
determining its optimal value.

3. When using large values of basic foundation of mod-
ule, it proved to be appropriate to represent the roots of the
equation (5) through the difference between two consec-
utive values (in ascending order). This made it possible in
most cases to perform operations with long-type numbers
instead of multidigit numbers.

4. Based on the obtained results, we described the mod-
ified algorithm of the Fermat method, which in comparison
with the basic algorithm ensures the reduction of computa-
tional complexity on average no less than by 107 times for
the numbers of 2'°%4 order when using the optimal values of
Z(N, bb), provided that it is possible to record up to 107 of the
long-type numbers in the computer memory.
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