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IIpu posze’sazanni zadau Mexawixu KoMno3umieé 3pyuHo
suKopucmosyeamu mooeab KOMNOZUMA Y 6U2NA0L CYUiNb-
H020 00HOPIOH020 cepedosuwa 3 epexmueHuMu cmanu-
Mu, wo adexeéamno 6idodparcaromv 1020 HaubiLouw cymme-
6i xapaxmepucmuxu. Y cyuacnomy mawunooyoyeanni ma
Oyoienuymei wupoxe 3acMoCY8anHsa 3HAX00AMb KOMNOIUMU,
apmoeani noposichucmumu goaoxnamu. Ha cvozooni nesioo-
MUMU € AHATTMUMHIL 3ANEHCHOCMI 01 ePeKMUBHUX NPYICHUX
CMAMUX MAKUX KOMNOZUMHUX MAMePIanié 3 mpancmpontu-
MU CKa008uUMU. 3a0a1a OMPUMAHHS MAKUX 3ATEHCHOCMel
Po36’azyemvca y 0aniil nydixauii.

Ompumano ananimuuni 3anexncnocmi 0 egexmue-
H020 M03006ICHL020 MOOYAL NPYXHCHOCMI ma KoediuicH-
ma Ilyaccona 00HOCNPAMOBAH020 60JOKHUCMO20 KOMNO3U-
ma, wo MiCmumos mpaHcmponHi Mampuuio ma nopoNcHuUcme
sonoxno. Komnosum modemoemoca cyuionum oonopionum
mpancmponnum mamepianom. Ha mincdpasnux nogepxmnsax
BUKOHYIOMBC YMOBU 10eanvHo20 3’conanns. [Ins ompuman-
HA AHATMUMHUX 3ATeHCHOCm el PO36°A3ano 061 Kpaiiosi 3ada-
ui: NPO N03006ICHE POIMAYEAHHA CKAAOEH020 UUIIHOpA,
KOMNOHEHMAMU K020 € MPAHCMPONHI MAMPUUS MA NOPONC-
HUCMe B8OJIOKHO, MA CYUINLHO20 00HOPIOH020 UUNIHOPA, WO
Modentoe mpancmponnuii komnozum. Buxopucmanns ymoe
Y3200%CeHHs NepemiueHs Ma HANPYHCeHb, OMPUMAHUX NPU
Ppo36’azanni yux 3adau, 3a0e3neuuno MONCAUICmv ompu-
MAHHS POPMYN eexmueno20 n030063#CHL020 MOOYILS NPYIHC-
Hocmi ma xoegiuienma Ilyaccona. Ii popmyau eidoépa-
JHcaromo 3aneHCHOCMi ePexmusHUx cmaaux 6i0 NPYNCHUX
xapaxmepucmux mampuyi, 60J0KHA U 00’ €MHUX UACMOK
80JI0KHA MA NOPONHCHUHYU 8 HLOMY.

IIpoeedeno nopienanns pesyavmamise po3paxyHkie 3a
ompumanumu Qopmynamu 3 pesyivmamamu 064uciens 3a
paniue 6i0oMuMU CRi6EIOHOUWEHHAMU 0N I30MPONHUX CKAA-
dosux. Ile nopienanns noxazano, wo ix 6i0HOCHE BIOXUNCHNI
He nepesuuye 001020 6idcomka. 3acmMoCy8ants OMPUMAHUX
3anexcnHocmeii 003605€ NPoeKmMyeamu KOHCMpYKuii 3 ene-
MeHmamu, 6U20MOBaAEHUMU 3 KOMNOIUUTUHUX Mamepiaie

Kmouogi cnosa: oonocnpamosanuii 6010KHUCMUL KOM-
nozum, no3006ICHE POIMALHEHHA, NOPONCHUCME BOJOKHO,
epexmueni npyxncui cmani
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1. Introduction

Fibrous composites are widely used as structural mate-
rials in engineering, construction, and other sectors of indus-
trial activities.

The application of such materials when designing various
structures makes it possible to change the properties of struc-
tural elements by altering the composition of a composite,
the concentration and arrangement of fibers. The properties
of composites depend on the mechanical characteristics of
constituent elements. Their combination creates a synergy
that is manifested in the formation of new physical-mecha-
nical properties in a composite, not inherent to its individual
phase elements. When designing structures from composite
materials, it is necessary to calculate the stressed-strained

state, which requires data on the effective elastic constants
in a composite. That predetermines the relevance of the task
on defining these indicators.

It is possible to significantly extend the range of tech-
nical characteristics of composite materials by using hollow
fibers for the reinforcement. In this regard, an important
problem is the homogenization of a composite. Solving this
problem implies obtaining the analytical dependences of
effective elastic constants of a composite on the values of
corresponding constants for its constituents, as well as the
volumetric share of the content of fiber and the cavity inside
it in a composite. Adequate evaluation of the mechanical
characteristics of a composite material is not possible with-
out taking into consideration the transtropic properties of
components.




2. Literature review and problem statement

Determining the physical-mechanical properties of com-
posites based on the properties of their structural elements is
one of the most important tasks for modern mechanics of com-
posite materials, solving which employs the analytical, nu-
merical and experimental methods. There is a growing body
of scientific research into the construction of effective me-
chanical characteristics for fibrous composites consisting of
the matrix and fiber of different types. Specifically addressed
are the anisotropic, plastic, viscous-elastic components of
a composite, as well as the existence of thermal expansion, etc.

Paper [1] proposed, based on the precise theory of rein-
forcement, ratios for determining the effective elastic charac-
teristics of unidirected composites on the basis of isotropic
plastics, reinforced, in line with the hexagonal scheme, by
long transtropic fibers. Study [2] proposed ratios for de-
termining the longitudinal elastic modulus and a Poisson’s
coefficient for a bi-phase fibrous composite with transtropic
components.

To define the thermoelastic characteristics and characte-
ristics of thermal conductivity of a composite with spherical
and cylindrical inclusions, paper [3] applies a variational
asymptotic method (VAMUCH). This same method is used
to determine the elastic-plastic, electro-magnetoelastic and
other properties of composites in [4].

Paper [5] considers asymptotic methods for the calcula-
tion of non-homogenous composite materials with respect
to the micromechanical effects caused by the peculiarities of
internal structure.

A procedure for calculating the effective viscoelastic
characteristics of composites under steady cyclic oscillations,
based on the method for solving local problems on visco-
elasticity using a periodicity cell of composites, is described
in [6]. The authors gave examples of the numerical simula-
tion of viscoelastic characteristics of unidirected-reinforced
composites. Paper [7] addressed issues related to numerical
determination of the effective thermo-viscoelastic charac-
teristics of unidirected composites with a polymeric matrix
based on the properties of the components. Based on a me-
thod that exploits the Volterra principle, the authors solve
the problem on determining the viscoelastic mechanical
characteristics of a composite applying known characteristics
of their viscoelastic components [8].

Using a method of homogenization, paper [9] determined
effective elastic properties of composites with different
shapes and distributions of inclusions (with spherical and
elliptical particles, fibers of cylindrical shape, including the
semi-spherical ends). Authors of [10] developed two, relative-
ly new, approaches to the homogenization of multiphase com-
posites, namely the effective self-correcting scheme (ESCS)
and the direct derivative from interaction (IDD) [10]. The
effectiveness of these procedures is compared with classical
approaches and with the relevant results acquired from mo-
deling using a method of finite elements.

The influence of a heterogeneous transition layer that
forms between the matrix and the fiber, on the stressed-
strained state of unidirected fibrous composites was investi-
gated in [11]. In this case, the Poisson ratio and a coefficient
of thermal expansion of the inter-phase were considered to
be constant, while the longitudinal modulus of elasticity such
that changes according to the linear and power laws.

In [12], authors constructed an improved model of the
sliding lag in order to study the influence of surface rough-

ness on mechanical properties of the unidirected fibrous
polymeric composites with a stage structure.

In [1-12], the object of research is the composite mate-
rials, reinforced by solid fibers; however, the authors failed to
take into consideration the existence of a cavity in the fibers,
which, at homogenization, somewhat complicates mathe-
matical models and the derivation of analytical relations
for effective mechanical characteristics. In many structures,
a special role belongs not only to the resistance to deforma-
tions, but the weight and cost of applied materials as well,
which is why it is a relevant task to study the hollow fibers.

Paper [13] reports a comparative analysis of the applica-
tion of hollow and solid glass fibers in the design of composite
materials.

At present, there are formulae for determining the elastic
characteristics in the case of isotropy of components of a bi-
phase composite, reinforced by hollow fibers. These formulae
define the longitudinal modulus of elasticity and a Poisson’s
coefficient [14]:
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where Ef, E,, E, is the longitudinal elasticity modulus of the
fiber, matrix, and composite, respectively; ps, wp, py is the
Poisson’s coefficient of the fiber, matrix, and composite, re-
spectively; Vy, V,, is the volumetric share of the fiber and ma-
trix, respectively; G, G, is the shear modulus of the fiber and
matrix, respectively; ¢ is the ratio of the diameter of a cavity
to the outer diameter of the fiber, x , =3-4u ,, x,, =3-4u,,.

The effectiveness of the use of composite materials, re-
inforced by oriented hollow fibers, was also examined in pa-
per [15]. In [16], effective elastic components of the compo-
site materials with hollow fibers are determined by a method
of sequential regularization. Specifically, the authors derived
the following formula to determine the longitudinal elas-
ticity module:
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where E,, E, E; is the longitudinal elasticity modulus of the
fiber, matrix, and composite, respectively, v,, v is the Poisson’s
ratio of the fiber and matrix, respectively, G,, G is the shear
modulus of the fiber and matrix, respectively, g° =¢&*/a?, a is
the outer radius of the fiber, ¢ is the radius of the cavity inside
the fiber, & is the volumetric share of the fiber, x, =3-4v,,
x=3-4v.

Note that in [14—16] components of a composite are
taken to be isotropic, but for many materials this assumption
leads to inaccuracies in modeling.

Paper [17] derived analytical expressions for the effective
modules of volumetric compression in unidirected-reinforced
materials, whose components are the transtropic matrix and
the hollow or solid cylindrical fibers of various diameters.
The authors failed to obtain formulae for the effective elastic
constants of such materials.



The application of hollow polyester fibers for the rein-
forcement of a composite compared with solid substances was
investigated in [18]. The finite element method is used in the
paper in order to model the behavior of composites and to
study the mode of failure when tested for impact. The result
is that the impact resistance of the composite with hollow
fibers is higher than that with the solid ones.

Paper [19] reviewed experimental studies into behavior
of composites with the epoxy matrix, reinforced by the uni-
directional hollow, solid and mixed, polyester fibers, when
tested for impact.

The results of experimental research into the influence of
the reinforcement of composites by solid glass and hollow fi-
bers for the resistance to deformation at elongation, compres-
sion, bending, as well as the impact resistance of composites,
are highlighted in [20].

Papers [18-20] provide numerical data acquired from
numerical or physical experiments, which makes it im-
possible to directly apply these data for new composite
materials.

One of the ways to obtain effective characteristics is to
investigate the representation of the volumetric element of
a composite material with the transtropic matrix and the
hollow fiber.

3. The aim and objectives of the study

The aim of this study is to derive analytical ratios for
the effective longitudinal elasticity modulus and a Poisson’s
coefficient of the composite with the transtropic matrix and
hollow fiber, by aligning the displacements components of
a homogeneous composite and its components.

To accomplish the aim, the following tasks have been set:

—to determine the components of the stressed-strained
state of the matrix, fibers, and a homogenous composite at
longitudinal elongation of the elementary cell;

— to compare the results obtained based on the proposed
analytical ratios with analogous results obtained based on
known formulae for isotropic components.

4. Determining the effective elastic constants
of a composite material with hollow fiber
at longitudinal elongation

Principal assumptions:

— materials of the matrix and hollow fiber are transtropic,
the planes of isotropy for the matrix and fibers coincide and
are perpendicular to the axis of the fiber;

—a composite material will be considered as homoge-
neous and transtropic with the plane of isotropy that is per-
pendicular to the axis of the fiber;

— the relationship between stresses and deformations are
described by the Hooke’s law;

— there is a perfect adhesion between the materials of the
matrix and the fiber;

—we consider the hexagonal arrangement of fibers in
a unidirectional composite.

We approximate the volume of an elementary hexagonal
cell by the volume of a cylinder. The radius in this case is
taken such that the volumetric content of fiber in the hexa-
gonal cell and the volumetric content of fiber in the cylindri-
cal cell are the same (Fig. 1).

The representative element of the fibrous unidirectional
composite material that has the transtropic properties is then
represented in the form of a combination of two transtropic
cylinders of infinite length, which model the matrix and hol-
low fiber, respectively.

Fig. 1. Hexagonal cell: @ — radius of the fiber; b — radius

of the matrix; ¢ — radius of the cavity

Let f/ and g be, accordingly, the volumetric content of
fiber and the cavity inside it a composite’s material. Consid-
ering that the area occupied by the matrix in the elementary
cell and the area the fiber occupies inside it are of the same
height, we the obtain the following ratios:
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Consider the joint longitudinal elongation (Fig. 2, a)
of the hollow cylinder (¢<r<a) that simulates the fiber, and
the hollow cylinder (a<r<b) that simulates the matrix. Pro-
ceed to the cylindrical coordinate system Ozr0. The index 1
then will correspond directly to the z axis direction, direc-
tion 2-r, direction 3-0.
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Fig. 2. Longitudinal elongation:
a — joint deformation of the matrix and hollow fiber;
b — deformation of the composite

We shall confine ourselves to the case when conditions
for the perfect connection are satisfied at the interphase



surface of the composite. We believe that the following con-
ditions are met for stresses and displacements:

u; (h)=u(h), (5)

and the outer surface of the matrix and the inner surface of
the hollow fiber are free from stresses:

o, (b)=0, o (c)=0. (6)

Hereinafter symbol denotes the magnitudes that are re-
lated to fiber, and symbol * — magnitudes related to the matrix.

Radial displacements of the transtropic fiber are de-
scribed by the following ratio:

C
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r
where C; and C, are the constants that are determined from

the boundary conditions, u,(7) is the solution to equation:
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which we obtain from equation of equilibrium for the axial-
symmetrical stressed-strained state.
Axial displacements are described by ratio [21]:
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For the displacements and stresses of points in the trans-
tropic matrix, by changing C; with A, and C, with B, we find
the ratio:
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Similarly, we write the ratios describing the stressed-
strained state of the hollow transtropic fiber (change Cy with
C, CQ With D)Z
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Based on the first two conditions (5) and boundary con-
ditions (6), we find the constants A, B, C, and D. We obtain:
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We find ratios oy and of from the third equality (5).
By denoting:

= 9PV (22)
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where
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we obtain:
d'c,=d c,. (24)

Next, consider a similar problem for a homogeneous
transtropic material that simulates the behavior of a compos-
ite (Fig. 2, b).

In this case, the field of stresses will be determined by the
following ratios:

Gzz = cs07 Grr = O’

666 = 0’ Gzr = Gez = G;ﬂ = 0



In order to match the conditions of equilibrium for both
problems, it is required that the following condition should
be satisfied:

n(a’ —c*)o, + ﬂ:(b2 —az)(s; =nb’c,. (26)

Proceeding to the volumetric shares of the components of
a composite, we obtain:

6,/ +0,(1-f-g)=0,. 27)

We obtain with respect to (24):
o = o,d°
O fd+d (1-f-g)
c,d’

= d (1-f-g) 9

Displacements are determined from formulae:

ur(r)z—%60r+C1; uz(z)in002+C2. (29)
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The constants C;=C,=0, given that the conditions
u(0)=0 and u,(0)=0 are satisfied for this problem, which is
why the expressions for displacements take the form:

% 1
u (r)=—-2o,r; u(z)= 7 002
2 1

(30)

The effective constants will be obtained using the con-
ditions for displacements alignment, obtained as a result of
solving the problems considered:

w (8) =1 (0); (k)= (k) = () (31)

Then the second ratio from ratios (31), with respect
to (11) and (30), will be recorded in the form:

=R
23 1 1

(32)

Considering (18) and (28), following the transforms, we
obtain a formula for determining the effective longitudinal
elasticity modulus of the composite material with a trans-
tropic matrix and hollow fiber:

E=E ——(d'f+d"(1-[-g)), (33)
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From the first condition from conditions (31), taking into

consideration (18), (19) and (28), we obtain a ratio for the
Poisson’s coefficient vys:
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Thus, we have derived dependences for the effective
elastic constants of a composite — longitudinal elasticity mo-
dule E; and Poisson’s coefficient vis — on the characteristics
of the transtropic matrix and transtropic hollow fiber.

5. Numerical calculation of the effective elastic constants
of composite materials with hollow fibers

It should be noted that at g=0 the formulae obtained
completely coincide with formulae [2] for determining the
elastic constants of the composite material with a transtropic
matrix and fiber.

Let us compare values for the longitudinal elasticity mo-
dule E; and the Poisson’s coefficient vy, obtained from formu-
lae (33) and (34), respectively, and from formulae (1) to (3),
by varying the volumetric content of the fiber and cavity. First,
we calculate the composite with isotropic components, the
epoxy matrix EDT-10 and the fiber made from alumoborosili-
cate glass, whose elastic characteristics are: E° =7.31-10* MPa,
v'=0.25, E" = 2900 MPa, v’ = 0.35 [22].

Results of the calculations are summarized in Table 1,
assuming that f+g=0.4.

Table 1

Values for the longitudinal elasticity module £4
and the Poisson’ coefficient vy,, calculated from formulae
(33), (34), and (1) to (3)

VOIS‘L?S“C E;, MPa Vis

g S (33) 1) 3) (34) (2)
0 | 04 |30989.12 ] 30,980.00 | 30,989.12 | 0.3040 | 0.3040
0.05 | 035 | 27,334.08 | 27,325.00 | 27,334.08 | 0.3042 | 0.3042
0.4 | 03 |23679.94 | 23,670.00 | 23,679.03 | 0.3045 | 0.3045
0.15 | 0.25 | 20,025.00 | 20,015.00 | 20,023.96 | 0.3048 | 0.3048
0.2 | 02 |16368.8616,360.00 | 16,368.86 | 0.3053 | 0.3053
0.25 | 0.15 [12,715.18 | 12,705.00 | 12,713.69 | 0.3062 | 0.3062
0.3 | 0.1 | 906026 | 9,050.00 | 9,058.38 | 0.3078 | 0.3077
0.35 | 0.05 | 5405.01 | 5395.00 | 5402.57 | 0.3119 |0.3118

It should be noted that the results obtained by different
methods are almost the same. Specifically, the maximum re-
lative error of calculating E; applying the proposed method,
when compared with formula from [13], is 0.2 %; when com-
pared with formula from [15], 0.05 %. The maximum relative
error of calculating the Poisson’s coefficient vis when com-
pared with method from [13], is equal to 0.03 %.

The dependence of the longitudinal elasticity module Ey
on volumetric share of the cavity demonstrates a clearly pro-
nounced descending character, which is consistent with the
physical meaning of these indicators. Values for the Poisson’s
coefficient vis grow with an increase in the volumetric share
of the cavity.

A similar calculation of the effective elasticity constants
E; and vy will be performed for the composite with an iso-
tropic matrix and the transtropic fiber. We employ data for
the composite UD PFRP with the fiber made of the high
density polyethylene VHDPE Tenfor SN1A (E; =60.4 GPa,
E;=4.68 GPa, v;,=0.38, v;,=0.55 G;,=1.65 GPa) and
the matrix made from the epoxy resin Ciba-Geigy 913
(E*=5.55 GPa, v' =0.37) [1]. We shall construct depen-



dence graphs of elastic constants on the volumetric share
of cavity g at fixed values for the volumetric share of

fiber / (Fig. 3).
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Fig. 3. Dependence of elastic characteristics, calculated
from formulae (33) and (34), on volumetric share of the cavity
in a fiber at fixed share of fiber: @ — longitudinal elasticity
module £7; b — Poisson’s coefficient v

The dependences of longitudinal elasticity module on
volumetric share of the cavity at the fixed values for f are
descending in nature, close to the linear ones (Fig. 3, a).
The Poisson’s coefficient, in contrast, grows with an increase
in g (Fig. 3, b).

6. Discussion of results of applying the proposed formulae

The presence in the derived analytical formulae of cha-
racteristics for the hollow fiber makes it possible to assess
the impact of the existence of a cavity on values for the effec-
tive constants. That provides an opportunity to design the
optimal composite materials in terms of strength, stability,
thereby reducing the weight and cost of fabrication of such

materials. Such a design process is aimed at increasing the
elasticity modules, improving the resistance to deformation
without increasing the absolute mass of the respective struc-
tural material. The application of the proposed analytical
dependences for determining the effective characteristics
of composites is appropriate in terms of time cost compared
with the use of numerical and experimental methods.

Taking the transtropic properties of the components into
consideration makes it possible to refine the effective elastic
constants of the composite, which is rather important in
some cases. Thus, for some types of fibers the longitudinal
characteristics of the material differ from the transversal ones
by one to two orders of magnitude.

In contrast to the experimental and numerical studies,
the derived analytical ratios make it possible to perform their
qualitative analysis and obtain the optimal values for para-
meters (volumetric content of fiber, the type of components,
dimensions of the cavity).

The ratios derived are valid for the hexagonal arrange-
ment of fibers, which limits their application for a wide range
of composites.

The composite material that we considered is transtropic
and its elastic properties are characterized by five constants.
That is why the formulae for E; and vyy are not enough to
investigate the stressed-strained state of the structural ele-
ments made from it. In the future, it is planned to employ the
proposed procedure for determining the transversal module
of elasticity E,, the Poisson’s coefficient vo3, and the shear
module Gys.

7. Conclusions

1. The result of the study conducted is the derived for-
mulae for the effective longitudinal elasticity module Ej
and the effective Poisson’s coefficient vy for the composite
with transtropic components. They reflect the dependence
of these constants on elastic characteristics of the matrix,
fiber, and volumetric shares of the fiber and the cavity inside
a composite’s material.

2. We have compared values for the elastic constants, cal-
culated using the proposed procedure, with results obtained
by previously known ratios for the isotropic components. The
maximum relative error of calculating the module of elasticity
and the Poisson’s coefficient based on the proposed ratios,
when compared with known formulae, does not exceed 0.2 %.
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