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При розв’язаннi задач механiки композитiв зручно 
використовувати модель композита у виглядi суцiль-
ного однорiдного середовища з ефективними стали-
ми, що адекватно вiдображають його найбiльш суттє-
вi характеристики. У сучасному машинобудуваннi та 
будiвництвi широке застосування знаходять композити, 
армованi порожнистими волокнами. На сьогоднi невiдо-
мими є аналiтичнi залежностi для ефективних пружних 
сталих таких композитних матерiалiв з транстропни-
ми складовими. Задача отримання таких залежностей 
розв’язується у данiй публiкацiї.

Отримано аналiтичнi залежностi для ефектив-
ного поздовжнього модуля пружностi та коефiцiєн-
та Пуассона односпрямованого волокнистого компози-
та, що мiстить транстропнi матрицю та порожнисте 
волокно. Композит моделюється суцiльним однорiдним 
транстропним матерiалом. На мiжфазних поверхнях 
виконуються умови iдеального з’єднання. Для отриман-
ня аналiтичних залежностей розв’язано двi крайовi зада-
чi: про поздовжнє розтягування складеного цилiндра, 
компонентами якого є транстропнi матриця та порож-
нисте волокно, та суцiльного однорiдного цилiндра, що 
моделює транстропний композит. Використання умов 
узгодження перемiщень та напружень, отриманих при 
розв’язаннi цих задач, забезпечило можливiсть отри-
мання формул ефективного поздовжнього модуля пруж-
ностi та коефiцiєнта Пуассона. Цi формули вiдобра-
жають залежностi ефективних сталих вiд пружних 
характеристик матрицi, волокна й об’ємних часток 
волокна та порожнини в ньому.

Проведено порiвняння результатiв розрахункiв за 
отриманими формулами з результатами обчислень за 
ранiше вiдомими спiввiдношеннями для iзотропних скла-
дових. Це порiвняння показало, що їх вiдносне вiдхилення 
не перевищує одного вiдсотка. Застосування отриманих 
залежностей дозволяє проектувати конструкцiї з еле-
ментами, виготовленими з композицiйних матерiалiв

Ключовi слова: односпрямований волокнистий ком-
позит, поздовжнє розтягнення, порожнисте волокно, 
ефективнi пружнi сталi
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1. Introduction

Fibrous composites are widely used as structural mate
rials in engineering, construction, and other sectors of indus-
trial activities. 

The application of such materials when designing various 
structures makes it possible to change the properties of struc-
tural elements by altering the composition of a composite, 
the concentration and arrangement of fibers. The properties 
of composites depend on the mechanical characteristics of 
constituent elements. Their combination creates a synergy 
that is manifested in the formation of new physical-mecha
nical properties in a composite, not inherent to its individual 
phase elements. When designing structures from composite 
materials, it is necessary to calculate the stressed-strained 

state, which requires data on the effective elastic constants 
in a composite. That predetermines the relevance of the task 
on defining these indicators.

It is possible to significantly extend the range of tech-
nical characteristics of composite materials by using hollow 
fibers for the reinforcement. In this regard, an important 
problem is the homogenization of a composite. Solving this 
problem implies obtaining the analytical dependences of 
effective elastic constants of a composite on the values of 
corresponding constants for its constituents, as well as the 
volumetric share of the content of fiber and the cavity inside 
it in a composite. Adequate evaluation of the mechanical 
characteristics of a composite material is not possible with-
out taking into consideration the transtropic properties of 
components.

APPLIED MECHANICS
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2. Literature review and problem statement

Determining the physical-mechanical properties of com-
posites based on the properties of their structural elements is 
one of the most important tasks for modern mechanics of com-
posite materials, solving which employs the analytical, nu-
merical and experimental methods. There is a growing body 
of scientific research into the construction of effective me-
chanical characteristics for fibrous composites consisting of 
the matrix and fiber of different types. Specifically addressed 
are the anisotropic, plastic, viscous-elastic components of  
a composite, as well as the existence of thermal expansion, etc.

Paper [1] proposed, based on the precise theory of rein-
forcement, ratios for determining the effective elastic charac-
teristics of unidirected composites on the basis of isotropic 
plastics, reinforced, in line with the hexagonal scheme, by 
long transtropic fibers. Study [2] proposed ratios for de-
termining the longitudinal elastic modulus and a Poisson’s 
coefficient for a bi-phase fibrous composite with transtropic 
components. 

To define the thermoelastic characteristics and characte
ristics of thermal conductivity of a composite with spherical 
and cylindrical inclusions, paper [3] applies a variational 
asymptotic method (VAMUCH). This same method is used 
to determine the elastic-plastic, electro-magnetoelastic and 
other properties of composites in [4].

Paper [5] considers asymptotic methods for the calcula-
tion of non-homogenous composite materials with respect 
to the micromechanical effects caused by the peculiarities of 
internal structure. 

A procedure for calculating the effective viscoelastic 
characteristics of composites under steady cyclic oscillations, 
based on the method for solving local problems on visco-
elasticity using a periodicity cell of composites, is described  
in [6]. The authors gave examples of the numerical simula-
tion of viscoelastic characteristics of unidirected-reinforced 
composites. Paper [7] addressed issues related to numerical 
determination of the effective thermo-viscoelastic charac-
teristics of unidirected composites with a polymeric matrix 
based on the properties of the components. Based on a me
thod that exploits the Volterra principle, the authors solve 
the problem on determining the viscoelastic mechanical 
characteristics of a composite applying known characteristics 
of their viscoelastic components [8].

Using a method of homogenization, paper [9] determined 
effective elastic properties of composites with different 
shapes and distributions of inclusions (with spherical and 
elliptical particles, fibers of cylindrical shape, including the 
semi-spherical ends). Authors of [10] developed two, relative-
ly new, approaches to the homogenization of multiphase com-
posites, namely the effective self-correcting scheme (ESCS) 
and the direct derivative from interaction (IDD) [10]. The 
effectiveness of these procedures is compared with classical 
approaches and with the relevant results acquired from mo
deling using a method of finite elements.

The influence of a heterogeneous transition layer that 
forms between the matrix and the fiber, on the stressed-
strained state of unidirected fibrous composites was investi-
gated in [11]. In this case, the Poisson ratio and a coefficient 
of thermal expansion of the inter-phase were considered to 
be constant, while the longitudinal modulus of elasticity such 
that changes according to the linear and power laws. 

In [12], authors constructed an improved model of the 
sliding lag in order to study the influence of surface rough-

ness on mechanical properties of the unidirected fibrous 
polymeric composites with a stage structure.

In [1–12], the object of research is the composite mate
rials, reinforced by solid fibers; however, the authors failed to 
take into consideration the existence of a cavity in the fibers, 
which, at homogenization, somewhat complicates mathe-
matical models and the derivation of analytical relations 
for effective mechanical characteristics. In many structures,  
a special role belongs not only to the resistance to deforma-
tions, but the weight and cost of applied materials as well, 
which is why it is a relevant task to study the hollow fibers. 

Paper [13] reports a comparative analysis of the applica-
tion of hollow and solid glass fibers in the design of composite 
materials.

At present, there are formulae for determining the elastic 
characteristics in the case of isotropy of components of a bi-
phase composite, reinforced by hollow fibers. These formulae 
define the longitudinal modulus of elasticity and a Poisson’s 
coefficient [14]:

E E V q E Vx f f m m= −( ) +1 2 , 	 (1)

µ µ
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where Еf, Еm, Ex is the longitudinal elasticity modulus of the 
fiber, matrix, and composite, respectively; µf, µm, µxy is the 
Poisson’s coefficient of the fiber, matrix, and composite, re-
spectively; Vf, Vm is the volumetric share of the fiber and ma-
trix, respectively; Gf, Gm is the shear modulus of the fiber and 
matrix, respectively; q is the ratio of the diameter of a cavity 
to the outer diameter of the fiber, c µf f= −3 4 , c µm m= −3 4 .

The effectiveness of the use of composite materials, re-
inforced by oriented hollow fibers, was also examined in pa-
per [15]. In [16], effective elastic components of the compo
site materials with hollow fibers are determined by a method 
of sequential regularization. Specifically, the authors derived 
the following formula to determine the longitudinal elas
ticity module:
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where Еа, Е, E1
0  is the longitudinal elasticity modulus of the 

fiber, matrix, and composite, respectively, νа, ν is the Poisson’s 
ratio of the fiber and matrix, respectively, Gа, G is the shear 
modulus of the fiber and matrix, respectively, q a2 2 2= e , a is 
the outer radius of the fiber, ε is the radius of the cavity inside 
the fiber, ξ is the volumetric share of the fiber, c na a= −3 4 , 
c n= −3 4 .

Note that in [14–16] components of a composite are 
taken to be isotropic, but for many materials this assumption 
leads to inaccuracies in modeling. 

Paper [17] derived analytical expressions for the effective 
modules of volumetric compression in unidirected-reinforced 
materials, whose components are the transtropic matrix and 
the hollow or solid cylindrical fibers of various diameters. 
The authors failed to obtain formulae for the effective elastic 
constants of such materials.
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The application of hollow polyester fibers for the rein-
forcement of a composite compared with solid substances was 
investigated in [18]. The finite element method is used in the 
paper in order to model the behavior of composites and to 
study the mode of failure when tested for impact. The result 
is that the impact resistance of the composite with hollow 
fibers is higher than that with the solid ones. 

Paper [19] reviewed experimental studies into behavior 
of composites with the epoxy matrix, reinforced by the uni-
directional hollow, solid and mixed, polyester fibers, when 
tested for impact.

The results of experimental research into the influence of 
the reinforcement of composites by solid glass and hollow fi-
bers for the resistance to deformation at elongation, compres-
sion, bending, as well as the impact resistance of composites, 
are highlighted in [20]. 

Papers [18–20] provide numerical data acquired from 
numerical or physical experiments, which makes it im
possible to directly apply these data for new composite 
materials. 

One of the ways to obtain effective characteristics is to 
investigate the representation of the volumetric element of 
a composite material with the transtropic matrix and the 
hollow fiber.

3. The aim and objectives of the study

The aim of this study is to derive analytical ratios for 
the effective longitudinal elasticity modulus and a Poisson’s 
coefficient of the composite with the transtropic matrix and 
hollow fiber, by aligning the displacements components of  
a homogeneous composite and its components.

To accomplish the aim, the following tasks have been set:
– to determine the components of the stressed-strained 

state of the matrix, fibers, and a homogenous composite at 
longitudinal elongation of the elementary cell;

– to compare the results obtained based on the proposed 
analytical ratios with analogous results obtained based on 
known formulae for isotropic components.

4. Determining the effective elastic constants  
of a composite material with hollow fiber  

at longitudinal elongation

Principal assumptions:
– materials of the matrix and hollow fiber are transtropic, 

the planes of isotropy for the matrix and fibers coincide and 
are perpendicular to the axis of the fiber;

– a composite material will be considered as homoge-
neous and transtropic with the plane of isotropy that is per-
pendicular to the axis of the fiber;

– the relationship between stresses and deformations are 
described by the Hooke’s law;

– there is a perfect adhesion between the materials of the 
matrix and the fiber;

– we consider the hexagonal arrangement of fibers in  
a unidirectional composite.

We approximate the volume of an elementary hexagonal 
cell by the volume of a cylinder. The radius in this case is 
taken such that the volumetric content of fiber in the hexa
gonal cell and the volumetric content of fiber in the cylindri-
cal cell are the same (Fig. 1).

The representative element of the fibrous unidirectional 
composite material that has the transtropic properties is then 
represented in the form of a combination of two transtropic 
cylinders of infinite length, which model the matrix and hol-
low fiber, respectively.

Fig. 1. Hexagonal cell: a – radius of the fiber; b – radius  
of the matrix; c – radius of the cavity

Let f and g be, accordingly, the volumetric content of 
fiber and the cavity inside it a composite’s material. Consid-
ering that the area occupied by the matrix in the elementary 
cell and the area the fiber occupies inside it are of the same 
height, we the obtain the following ratios:

g
c
b
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b

= =
π
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2

2

2

2 ,  f
a c

b
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b
=

−
=

−π
π

( )
.

2 2

2

2 2

2 	 (4)

Consider the joint longitudinal elongation (Fig. 2, a)  
of the hollow cylinder (c≤r≤a) that simulates the fiber, and 
the hollow cylinder (a≤r≤b) that simulates the matrix. Pro-
ceed to the cylindrical coordinate system Ozrθ. The index 1  
then will correspond directly to the z axis direction, direc-
tion  2–r, direction 3–θ.

a

b

Fig. 2. Longitudinal elongation:  
a – joint deformation of the matrix and hollow fiber;  

b – deformation of the composite

We shall confine ourselves to the case when conditions 
for the perfect connection are satisfied at the interphase 
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surface of the composite. We believe that the following con-
ditions are met for stresses and displacements:

s srr rra a� ( ) = ( )* ,

u a u ar r
� ( ) = ( )* ,

u h u hz z
� ( ) = ( )* , 	 (5)

and the outer surface of the matrix and the inner surface of 
the hollow fiber are free from stresses:

srr b* ,( ) = 0  srr c� ( ) = 0. 	 (6)

Hereinafter symbol  denotes the magnitudes that are re-
lated to fiber, and symbol * – magnitudes related to the matrix.

Radial displacements of the transtropic fiber are de-
scribed by the following ratio:

u r C r
C
rr ( ) ,= +1

2 	 (7)

where C1 and C2 are the constants that are determined from 
the boundary conditions, ur(r) is the solution to equation:

∂
∂

+
∂
∂

− =
2

2 2

1
0

u
r r

u
r

u
r

r r r , 	 (8)

which we obtain from equation of equilibrium for the axial- 
symmetrical stressed-strained state. 

Axial displacements are described by ratio [21]:
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For the displacements and stresses of points in the trans-
tropic matrix, by changing C1 with A, and C2 with B, we find 
the ratio:

u r Ar
B
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∗ = +( ) , 	 (10)
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Similarly, we write the ratios describing the stressed-
strained state of the hollow transtropic fiber (change C1 with 
C, C2 with D):

u r Cr
D
rr

�( ) ,= + 	 (14)
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Based on the first two conditions (5) and boundary con-
ditions (6), we find the constants A, B, C, and D. We obtain:
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where
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We find ratios σ0
* and σ0 from the third equality (5). 

By denoting:

d
E

�
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+a bn
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12

1

, 	 (22)

d
E
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*

* ,=
+a bn
a

12

1

	 (23)

where

b n n= + − − +( )2 121 2 21 2( ) ( ) ,* *f g E f g E f� �

we obtain:

d d� �s s0 0= * * . 	 (24)

Next, consider a similar problem for a homogeneous 
transtropic material that simulates the behavior of a compos-
ite (Fig. 2, b).

In this case, the field of stresses will be determined by the 
following ratios:

s szz = 0,  srr = 0,  

sqq = 0,  s s sq qzr z r= = = 0. 	 (25)
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In order to match the conditions of equilibrium for both 
problems, it is required that the following condition should 
be satisfied:

π s π s π s( ) .*a c b a b2 2
0

2 2
0

2
0− + −( ) =� 	 (26)

Proceeding to the volumetric shares of the components of 
a composite, we obtain:

s s s0 0 01� f f g+ − −( ) =* . 	 (27)

We obtain with respect to (24):

s
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d
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Displacements are determined from formulae:

u r
E

r Cr ( ) = − +
n

s21

2
0 1;  u z

E
z Cz ( ) = +

1

1
0 2s . 	 (29)

The constants C1=C2=0, given that the conditions 
ur(0)=0 and uz(0)=0 are satisfied for this problem, which is 
why the expressions for displacements take the form:

u r
E

rr ( ) = −
n

s21

2
0 ;  u z

E
zz ( ) =

1

1
0s . 	 (30)

The effective constants will be obtained using the con-
ditions for displacements alignment, obtained as a result of 
solving the problems considered:

u b u br r( ) = ( )* ;  u h u h u hz z z( ) = ( ) = ( )� * . 	 (31)

Then the second ratio from ratios (31), with respect  
to (11) and (30), will be recorded in the form:
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Considering (18) and (28), following the transforms, we 
obtain a formula for determining the effective longitudinal 
elasticity modulus of the composite material with a trans-
tropic matrix and hollow fiber:

E E
d

d f d f g1 1 1=
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+ − −* *( ( )),
a

a g�
� 	 (33)
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From the first condition from conditions (31), taking into 
consideration (18), (19) and (28), we obtain a ratio for the 
Poisson’s coefficient ν12:

n
n n a g
n a g12

21 12

21

=
−

−

* *

* ( )
.

d
d

�

� 	 (34)

Thus, we have derived dependences for the effective 
elastic constants of a composite – longitudinal elasticity mo
dule  E1 and Poisson’s coefficient ν12 – on the characteristics 
of the transtropic matrix and transtropic hollow fiber.

5. Numerical calculation of the effective elastic constants 
of composite materials with hollow fibers

It should be noted that at g=0 the formulae obtained 
completely coincide with formulae [2] for determining the 
elastic constants of the composite material with a transtropic 
matrix and fiber.

Let us compare values for the longitudinal elasticity mo
dule E1 and the Poisson’s coefficient ν12, obtained from formu-
lae (33) and (34), respectively, and from formulae (1) to (3), 
by varying the volumetric content of the fiber and cavity. First, 
we calculate the composite with isotropic components, the  
epoxy matrix EDT-10 and the fiber made from alumoborosili-
cate glass, whose elastic characteristics are: E � = ⋅7 31 104. MPa,  
n� = 0 25. ,  E ∗ = 2900 MPa, n* .= 0 35 [22]. 

Results of the calculations are summarized in Table 1, 
assuming that f+g=0.4.

Table 1

Values for the longitudinal elasticity module E1  
and the Poisson’ coefficient ν12, calculated from formulae 

(33), (34), and (1) to (3)

Volumetric 
share

E1, MPa ν12

g f (33) (1) (3) (34) (2)

0 0.4 30,989.12 30,980.00 30,989.12 0.3040 0.3040

0.05 0.35 27,334.08 27,325.00 27,334.08 0.3042 0.3042

0.1 0.3 23,679.94 23,670.00 23,679.03 0.3045 0.3045

0.15 0.25 20,025.00 20,015.00 20,023.96 0.3048 0.3048

0.2 0.2 16,368.86 16,360.00 16,368.86 0.3053 0.3053

0.25 0.15 12,715.18 12,705.00 12,713.69 0.3062 0.3062

0.3 0.1 9,060.26 9,050.00 9,058.38 0.3078 0.3077

0.35 0.05 5,405.01 5,395.00 5,402.57 0.3119 0.3118

It should be noted that the results obtained by different 
methods are almost the same. Specifically, the maximum re
lative error of calculating E1 applying the proposed method, 
when compared with formula from [13], is 0.2 %; when com-
pared with formula from [15], 0.05 %. The maximum relative 
error of calculating the Poisson’s coefficient ν12, when com-
pared with method from [13], is equal to 0.03 %. 

The dependence of the longitudinal elasticity module E1 
on volumetric share of the cavity demonstrates a clearly pro-
nounced descending character, which is consistent with the 
physical meaning of these indicators. Values for the Poisson’s 
coefficient ν12 grow with an increase in the volumetric share 
of the cavity.

A similar calculation of the effective elasticity constants 
E1 and ν12 will be performed for the composite with an iso-
tropic matrix and the transtropic fiber. We employ data for 
the composite UD PFRP with the fiber made of the high 
density polyethylene VHDPE Tenfor SN1A (E1 60 4� = . GPa,  
E2 4 68� = . GPa, n12 0 38� = . , n23 0 55� = . , G12 1 65� = . GPa) and 
the matrix made from the epoxy resin Ciba-Geigy 913  
(E ∗ = 5 55. GPa, n* .= 0 37) [1]. We shall construct depen-
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dence graphs of elastic constants on the volumetric share 
of cavity g at fixed values for the volumetric share of  
fiber f (Fig. 3).
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b
Fig. 3. Dependence of elastic characteristics, calculated  

from formulae (33) and (34), on volumetric share of the cavity 
in a fiber at fixed share of fiber: a – longitudinal elasticity 

module E1; b – Poisson’s coefficient ν12

The dependences of longitudinal elasticity module on 
volumetric share of the cavity at the fixed values for f are 
descending in nature, close to the linear ones (Fig. 3, a).  
The Poisson’s coefficient, in contrast, grows with an increase 
in g (Fig. 3, b).

6. Discussion of results of applying the proposed formulae

The presence in the derived analytical formulae of cha
racteristics for the hollow fiber makes it possible to assess 
the impact of the existence of a cavity on values for the effec-
tive constants. That provides an opportunity to design the 
optimal composite materials in terms of strength, stability, 
thereby reducing the weight and cost of fabrication of such 

materials. Such a design process is aimed at increasing the 
elasticity modules, improving the resistance to deformation 
without increasing the absolute mass of the respective struc-
tural material. The application of the proposed analytical 
dependences for determining the effective characteristics 
of composites is appropriate in terms of time cost compared 
with the use of numerical and experimental methods.

Taking the transtropic properties of the components into 
consideration makes it possible to refine the effective elastic 
constants of the composite, which is rather important in 
some cases. Thus, for some types of fibers the longitudinal 
characteristics of the material differ from the transversal ones 
by one to two orders of magnitude. 

In contrast to the experimental and numerical studies, 
the derived analytical ratios make it possible to perform their 
qualitative analysis and obtain the optimal values for para
meters (volumetric content of fiber, the type of components, 
dimensions of the cavity). 

The ratios derived are valid for the hexagonal arrange-
ment of fibers, which limits their application for a wide range 
of composites.

The composite material that we considered is transtropic 
and its elastic properties are characterized by five constants. 
That is why the formulae for E1 and ν12 are not enough to 
investigate the stressed-strained state of the structural ele-
ments made from it. In the future, it is planned to employ the 
proposed procedure for determining the transversal module 
of elasticity E2, the Poisson’s coefficient ν23, and the shear 
module G12.

7. Conclusions

1. The result of the study conducted is the derived for-
mulae for the effective longitudinal elasticity module E1 
and the effective Poisson’s coefficient ν12 for the composite 
with transtropic components. They reflect the dependence 
of these constants on elastic characteristics of the matrix, 
fiber, and volumetric shares of the fiber and the cavity inside 
a composite’s material.

2. We have compared values for the elastic constants, cal-
culated using the proposed procedure, with results obtained 
by previously known ratios for the isotropic components. The 
maximum relative error of calculating the module of elasticity 
and the Poisson’s coefficient based on the proposed ratios, 
when compared with known formulae, does not exceed 0.2 %.

References

1.	 Klastorny M., Konderla P., Piekarskiy R. An exact stiffness theory of unidirectional xFRP composites // Mekhanika kompozitnyh 

materialov. 2009. Vol. 45, Issue 1. P. 109–144.

2.	 Grebenyuk S. N. Elastic characteristics of composite material with transversaly isotropic matrix and fiber // Methods of solving 

applied problems of mechanics of a deformable solid. 2011. Issue 12. P. 62–68.

3.	 Tang T., Yu W. A variational asymptotic micromechanics model for predicting conductivities of composite materials // Journal of 

mechanics of materials and structures. 2007. Vol. 2, Issue 9. P. 1813–1830. doi: https://doi.org/10.2140/jomms.2007.2.1813 

4.	 Tang T. Variational Asymptotic Micromechanics Modeling of Composite Materials. Logan: Utah State University, 2008. 280 p.

5.	 Bol’shakov V. I., Andrianov I. V., Danishevskiy V. V. Asimptoticheskie metody rascheta kompozitnyh materialov s uchetom vnutren-

ney struktury: monografiya. Dnepropetrovsk: «Porogi», 2008. 196 p.

6.	 Dimitrienko Yu. I., Gubareva E. A., Sborshchikov S. V. Finite element modulation of effective viscoelastic properties of unilateral 

composite materials // Matematicheskoe modelirovanie i chislennye metody. 2014. Issue 2. P. 28–48. URL: http://www.mathnet.ru/ 

links/4986a9de2f7714798765784534f1cd23/mmcm12.pdf



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/7 ( 96 ) 2018

12

7.	 Kuimova E. V., Trufanov N. A. The numerical prediction of effective thermoviscoelastic properties of unidirectional fiber composite 

with the viscoelastic components // Vestnik Samarskogo gosudarstvennogo universiteta. 2009. Issue 4 (70). P. 129–148. URL: https://

cyberleninka.ru/article/v/chislennoe-prognozirovanie-effektivnyh-termovyazkouprugih-harakteristik-odnonapravlennogo- 

voloknistogo-kompozita-s-vyazkouprugimi

8.	 Kaminskii A. A., Selivanov M. F. A Method for Determining the Viscoelastic Characteristics of Composites // International Applied 

Mechanics. 2005. Vol. 41, Issue 5. P. 469–480. doi: https://doi.org/10.1007/s10778-005-0112-6 

9.	 Analysis of particles loaded fiber composites for the evaluation of effective material properties with the variation of shape and size /  

Srivastava V. K., Gabbert U., Berger H., Singh S. // International Journal of Engineering, Science and Technology. 2011. Vol. 3, 

Issue 1. P. 52–68. doi: https://doi.org/10.4314/ijest.v3i1.67638 

10.	 Klusemann B., Svendsen В. Homogenization methods for multi-phase elastic composites: Comparisons and benchmarks // Tech-

nische mechanic. 2010. Vol. 30, Issue 4. P. 374–386. URL: http://www.ovgu.de/ifme/zeitschrift_tm/2010_Heft4/07_Klusemann.pdf

11.	 Yao Y., Chen S., Chen P. The effect of a graded interphase on the mechanism of stress transfer in a fiber-reinforced composite // 

Mechanics of Materials. 2013. Vol. 58. P. 35–54. doi: https://doi.org/10.1016/j.mechmat.2012.11.008 

12.	 Yao Y., Chen S. The effects of fiber’s surface roughness on the mechanical properties of fiber-reinforced polymer composites // Jour-

nal of Composite Materials. 2012. Vol. 47 (23). P. 2909–2923. doi: https://doi.org/10.1177/0021998312459871 

13.	 Kling S., Czigany T. A comparative analysis of hollow and solid glass fibers // Textile Research Journal. 2013. Vol. 83, Issue 16.  

P. 1764–1772. doi: https://doi.org/10.1177/0040517513478455 

14.	 Kompozicionnye materialy voloknistogo stroeniya / I. N. Francevich, D. M. Karpinos (Eds.). Kyiv, 1970. 403 p.

15.	 Van Fo Fy G. A., Klyavlin V. V. Ob effektivnosti ispol’zovaniya kompozicionnyh materialov, orientirovanno armirovannyh polymi 

voloknami // Problemy prochnosti. 1972. Issue 4. P. 10–13.

16.	 Vanin G. A. Mikromekhanika kompozicionnyh materialov: monografiya. Kyiv: Naukova dumka, 1985. 304 p.

17.	 Zaitsev A. V., Sokolkin Yu. V., Fukalov A. A. Effective bulk moduli under plain strain to two-phase unidirectional composites 

reinforced by anisotropic hollow and solid fibers // Vestnik Permskogo nacional’nogo issledovatel’skogo politekhnicheskogo uni-

versiteta. 2011. P. 37–48. URL: https://cyberleninka.ru/article/n/effektivnye-moduli-obemnogo-szhatiya-pri-ploskoy-deformat-

sii-dvuhfaznyh-odnonapravlenno-armirovannyh-kompozitov-s-anizotropnymi

18.	 Experimental and theoretical investigation of hollow polyester fibers effect on impact behavior of composites / Nasr-Isfahani M., 

Tehran M. A., Latifi M., Halvaei M., Warnet L. // Journal of Industrial Textiles. 2017. Vol. 47, Issue 7. P. 1528–1542. doi: https://

doi.org/10.1177/1528083717699367 

19.	 Nasr-Isfahani M., Latifi M., Amani-Tehran M. Improvement of impact damage resistance of epoxy-matrix composites using ductile 

hollow fibers // Journal of engineered fibers and fabrics. 2013. Vol. 8, Issue 1. P. 69–74. URL: https://www.jeffjournal.org/papers/

Volume8/JEFF8-01-08.M.Latifi.pdf

20.	 Balaji R., Sasikumar M., Jeyanthi S. Characterisation of Hollow Glass Fibre Reinforced Vinyl-Ester Composites // Indian Journal 

of Science and Technology. 2016. Vol. 9, Issue 48. URL: http://www.indjst.org/index.php/indjst/article/viewFile/107921/76821

21.	 Grebenyuk S. M. Determination of the elastic constants of composite with transtropic matrix and fiber based on the kinematic 

consistency condition // Visnyk Zaporizkoho natsionalnoho universytetu. 2012. Issue 1. P. 62–76. 

22.	 Kompozicionnye materialy: spravochnik / V. V. Vasil’ev, Yu. M. Tarnopol’skiy (Eds.). Moscow: Mashinostroenie, 1990. 512 p.


