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IIpu po3po6ui mexnonoziunux npouecic OMpUManis X0a00HONpecosa-
HUX cnevenux demaJeti Man0i NOPUCMOCMI 0COOIUBA Y6aza NPUOLAAEMBCA
Mexanizmy 3minu winsnocmi. Ha npaxmuui nopowxosoi memanypeii oyoice
HACMO GUKOPUCTMOBYIONMb GA2AMOKOMNOHEHMHI WUXMU, W0 CKAAOAIOMb-
€A AK 3 NAACMUMHUX MEMATIi8, MAK 3 NO2AHO CMUCKAEMUX 6KTIIOUEHD i 3'€0-
Hanw. []o maxoi wuxmu 6 pieniti Mipi ModcHa eionecmu i wuxmy, wo ckaaoa-
EMBCS 3 NOPOWKY 3ai3a, 4A8YHY i CKAA. Y Uil WUXmi nepuuii KOMnoHeHm
(ocnosa) — ue naacmuune 3anizo, a 08a HWUX — HABYH i CKIO — NPYHC-
ni Komnonenmu. Buxaukxae neenuii inmepec, sxe yuwjiavHenns moice oymu
ompumMano 6 maxomy 6UnaoKy i AKi pesyavmyroni piHAHHI MONCHA 3ACMO-
cyeamu 0N OUIHKU MEXAHIKU YWINbHEHHSA MAKOT NOPOWK0B80T wuxmu.

IIpononyiomvcs pe3yavmyroui pi6HAHHA YWiTbHEHHA ROPUCMUX NOPO-
wKosux min iz 3anizo-uasyn-cxno. Hasedeno ananiz izomponnozo, xycop-
CMKONNIACMUMH020 3MIYHIOWU020 Mamepiany muny 3ai30-4asyH-CcKJo.
Ipu ywinvnenni maxozo mamepiany weuoxicmo oucunauii enepeii (muck
npecyeanns) 6UHAMAEMbCA WEUOKOCMAMU 3MIHU 00Cs2y mina i #o20
dopmozminu. Ioxasamno, wo 6iOMinHicmb cmuckaemux (4asym i cxao) i
naacmuvnux (3anizo) mamepianie, wo YwiasHI0OMvCa, Popmye 0codauUei
Mexaniuni enacmueocmi mampuui. Omoice, 2i0poCMAMUMHUT MUCK MOJiCe
enaueamu Ha Gopmozminy mina, a 0omurHi HaNPYHceHns — Ha IMiny 00ca-
2y. Ompumani pesyaomamu Mamemamuunoz0 nioxo0y OAsL OMPUMAHHS
Ppe3yaomytouux PieHAH> YUIAbHEHHA NPYICHONIAACMUMHO20 Cepedosutiya
noxasanu wasx nodyooeu meopii nAACMUMHOCMI MIAA, WO YWLTLHIOEMb-
C, NPU AKOMY BUKTIOUAEMBCA HEOO0XIOHICMb 8paxyeanns eudy noeepx-
Hi Hasanmascenns. Ilpu 007Ky no6epxHi HABAHMANCEHHA HEMONCTUBO
OMPUMAHHS YHIBEPCATLHUX PIBHAHD 3 YWITbHEHHS NOPUCHO20 NPYHCHON-
aacmuunozo cepedosuma. Iloxazano, wo 01 3acMOCY8aHH KAACUUHOZ0
popmymosants mooesi NPYICHONIACMUUHOZ0 MiAQ, WO YWITbHIOEMbC,
1e00Xi0Nno 8eajcamu, wo NOBePXHA HABAHMAINCEHH ONYKAA-3AMKHYMA

Knouosi crrosa: nogepxus nasanmaicenms, nopucme mijio, pe3yiomyio-
ui PieHANNA, 3A1130-14ABYH-CKI0, WEUOKicmb depopmauii, ineapianm men-
30pa, izomponnuil mamepian
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1. Introduction

A consistent phenomenological description of the pro-
cesses of formation of powders and porous bodies of the elas-
tic-plastic medium as the most important element eliminates
the choice of governing or rheological equations. For sinter-
ing and hot pressing, thanks to the works [1, 2], some clarity
in understanding of this issue has been achieved, while for

cold molding processes characterized by plastic flow, there
is no consensus about the type of governing equations. In
this regard, the formation of general restrictions imposed on
such equations, based on the current concepts of irreversible
thermodynamics and continuum mechanics, is relevant. In
this case, an approach to constructing a theory of plasticity
should be used, based on setting the properties of the dissi-
pative function [3-6].




2. Literature review and problem statement

In [2, 3], physical justification is considered and math-
ematical evaluation of the elastic-plastic deformation of
powder compressed materials is performed. In these works, it
is shown that the solution of the boundary-value problem of
the process of cold compaction of the elastic-plastic medium
does not depend on the type of loading surface. It is deter-
mined by dependences of axial and lateral pressure on poros-
ity. However, the author does not consider the fact that each
pressing scheme can correspond to a certain character of
bending of layers parallel to the base plane prior to pressing.

The phenomenological approach to the processes of com-
paction of the powder medium proposed in [4] takes into
account the case of forming blanks of bushing type. How-
ever, this is the simplest type of blank, on which analytical
dependencies are obtained.

The question of building a mathematical model of blanks
of a more complex shape remains open. In this case, it is nec-
essary to consider not only the mechanics of compaction of
the plastic component, but also interaction and joint defor-
mation of both the plastic and elastic component, taking into
account the peculiarities of the loading surface.

The solution of this problem in this context is consid-
ered in [7-9]. However, they do not take into account the
participation of several elastic components (cast iron and
glass), along with the plastic component of the medium, with
different characteristics and behavior during deformation.

Therefore, there is the problem of form change during
compaction of the isotropic, rigid-plastic hardening powder
medium in which energy transfer rate (pressing pressure)
depends on the rate of volume and form change.

3. The aim and objectives of the study

The aim of the work is to obtain the resulting equations
describing the compaction of the porous powder body con-
sisting of the elastic-plastic medium.

To achieve this aim, the following objectives are set:

— to formulate general restrictions on governing equa-
tions, based on current concepts of irreversible thermody-
namics and continuum mechanics;

—to choose an approach to the construction of the elas-
tic-plastic medium and justify the type of mathematical model
of the isotropic, rigidly plastic hardening material, taking into
account the rates of volume and form change of the body.

4. Obtaining the resulting equations on compaction of a
porous powder body

4. 1. Selection and justification of restrictions on gov-
erning equations

The isotropic, rigid-plastic hardening material such as
“iron-cast iron-glass”, the energy dissipation rate of which is
determined by the rates of volume and form change is intro-
duced into consideration.

The last two parameters are, respectively, the first in-
variant of the strain rate tensor ¢, and the second invariant
of its deviator, and, therefore, expressed through ¢ .
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In the future, hydrostatic pressure and shear stress inten-
sity, which are, respectively, the first invariant of the stress
tensor 6;and the second invariant of its deviator, will also play
an important role. They are connected with o;; by the relations

p:%GijSi/‘v = (cij —psij)(cij _pgl_j)_

4. 2. Choosing an approach to the construction of the
elastic-plastic medium based on setting the properties of
the dissipative function

We take the following definition of an elastic-plastic
body: the dissipative function D is homogeneous, of the first
degree by ¢,; the same function serves as a potential for the
stress tensor

dD
o= M
bodly

We consider materials for which the von Mises yield
criterion is valid in the following form

(P-P)t+(t-1,)y=0, 2

where P, T are the stresses corresponding to the kinematic
parameters ¢ and y; pi, T are any other stresses.

For isotropic material, the properties of which are speci-
fied above, the function D allows for ¢, vy, the current poros-
ity 0, as well as the parameters y;, characterizing the state of
the powder particle material or the porous body framework
as arguments.

By the Euler’s theorem on homogeneous functions, the
postulate on uniformity D by ¢ and vy is expressed by the
equation

y=D. 3)

Let us proceed to the analysis of the corollaries of the
postulate (1). From (1), taking into account what was said
about the arguments of the function D, the following equa-
tion can be obtained:

_4D dt dD dy
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the relation (4) can be given the following form
dD 1dD 1
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In this case, the tensor identity is used
o, = pd;+(0, - pS;).
We find a simple relationship between p, Tand ¢, y
dD dD
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From (7) and (8), the equation follows
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expressing the fact of similarity of deviators and the classi-
cal theory of plasticity similar to the Levy-Mises equation.
This equation characterizes tensor properties of compacted
materials that satisfy the above postulates. Along with it,
there should be equations characterizing scalar properties
of the medium.

In order to obtain them, on the basis of (7) and (3), we
simplify the expression for

D=pl+1y. C)]

Assuming throughout what follows that p and t are
rather smooth functions ¢ and v, we differentiate both sides
of the equation (9) first with respect to ¢, and then with
respect to v. Then, using (3) and (7), we get

dP dp dt , dt
el el (10)

The last two expressions can be considered as a system
of first-order partial differential equations with respect to p
and 7. Direct check shows that its general solution is

p=p(s,0, 1) T=1(s.6, 1), 1)
where s=¢/7.

The equations obtained characterize the scalar proper-
ties of compacted materials.

Equations (8) and (11) are a complete system of govern-
ing equations of the plastically compacted body. If its tensor
properties do not differ from those for viscous and plasti-
cally incompressible materials, scalar properties possess a
known originality. In order to emphasize it, we present the
equations characterizing the scalar properties of a viscous
porous body.

4 1-9)
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(12)

these equations are uniquely solvable with respect to ¢ and
v. At the same time, from equations (12) it is impossible to
determine ¢ and v, p and T depend on their relationship.

Thus, there is a cross-effect of various invariants of
stress and strain rates on each other. This phenomenon is
not characteristic of classical models of viscous and elastic
bodies, naturally inherent in the model of a plastically
compacted body.

The specified formal difference between viscous com-
pressed and plastically compacted materials predetermines
special mechanical properties of the latter: hydrostatic pres-
sure can affect the form change, and shear stresses — volume
change. This property should be associated with the dilatan-
cy effect [7], characteristic of compacted materials.

It turns out further that the functions entering the equa-
tion (11) are not arbitrary and must satisfy a certain relation.
Indeed, from (7) it follows that

dP _drt

= 13
dy dt 13

Given (11), we find

dp_dp ds__dp s

dy ds dy ds y
dt_dt ds dt 1

o ds dt ds y
Substituting the stresses found into equality (13), we
finally get

dp _, dr
ES+E_

0. (14)

Thus, whatever the governing equations (11), the func-
tions p and T entering them must satisfy (14).

Let us proceed to the analysis of the corollaries of the
postulate expressed by inequality (2). To do this, we consid-
er two different stress states, characterized by stresses py, ¢
and ps, .

Let the first statically admissible stress state correspond
to the kinematic field, characterized by the value of the pa-
rameter s=sq, and the second — to s=sy. Then, according to
(2), there is a pair of inequalities

(P = Dy)s; +(1,—1,) 20;
(P, —p)s, +(1,—1,) 20,

adding them up, we get

(P = py)(s,—35,)20.

The latter inequality holds for any value of s, therefore
the function p is a monotonically non-decreasing function.

Using this result, it is also possible to obtain additional
information regarding t. It follows from the monotony of p
that dp/ds®0. Therefore, on the basis of (14) and by virtue of
the assumption of smoothness of the function p and ©

dt dt dt
—20; s<0; —=0; s=0;, —<0; s=0.
ds s ds y ds g

The resulting inequalities show that with negative values
of s, T increases, and with s=0 it reaches a maximum, and
with positive s — decreases. Note, however, that T is non-neg-
ative by definition. Therefore, the graph is “bell-shaped”, and
with an unlimited increase |s|t asymmetrically tends to zero
(Fig. 1, a). The last of these circumstances imposes known
limitations on the form of the function p: its graph will have
two horizontal asymptotes (Fig. 1, b). The functions p and t
are bounded.

The tensor properties of this model are characterized by
the equation (8).

Note that such a formulation of the governing equa-
tions is close to the traditional models of a viscous and
elastic body, in which the scalar equations are formulated
as stress — strain rate or stress — strain ratios. It should be
noted that the special provision of the theory of plasticity
is justified by the fact that it was intensively developed
in relation to incompressible media. Related to this is the
importance of such specific concepts as yield stress, loading
surface, and others.




a b

Fig. 1. Dependence of the intensity of shear stresses and
average pressure on the ratio of rates of compaction and
form change of the elastic-plastic porous body:

a — shear stresses b — average pressure

5. Discussion of the results of constructing equations of
compaction of the porous powder body consisting of
the elastic-plastic medium

The result obtained in this work indicates the way to
construct a theory of plasticity of a compacted body, which
eliminates the need to formulate the type of loading surface.

At the same time, the ideas developed here do not con-
tradict the classical ones and moreover, confirm them. To see
this, we use monotonicity and smoothness of the function p
and the solution of the first of the equations (11) with respect
to S. Substituting the result into the second expression (11),
we obtain the equation

t=1(P,0,,)- 15)

Its characteristic difference is that it does not contain de-
formations. Since the values of p and 1 correspond to plastic
flow, we have the function

f(P,t,0,x,)=1-1(P,8,%,)=0. (16)

It can be identified with the loading function, and the
surface corresponding to it in the stress tensor space — with
the loading surface. The same name is saved for the graph of
the equation (15) in the coordinates of p, T. The properties of
this surface with fixed 6 and y, are defined using inequality
(2). Then, according to (15), this inequality can be written as

©(p)—Up,)+(p = Py)s; <0.

Given (14), we have the equality

dt_dtv dP _dt

=, 17
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As a result of substitutions (17) into the last inequality,
by means of obvious transformations we find

(BRI (2P

P=p,

The resulting inequality shows that the graph of the
function t(p) lies under the tangent. Consequently, the
loading surface is convex. Since the functions p and t are
bounded, we can conclude that this surface is also closed.

In order to determine the relationship between the sur-
face of loading and the strain rate tensor, we use the fact

that, due to the independence of the loading function f of s,
there is the inequality

df _df dp_dp dv_

ds _dP ds d’C ds

Given (14), as well as the definition S=/¢/7, we get

VY 18)
dp’ dt

This result allows for a simple geometric interpretation.
The pair of numbers ¢, y can be considered as vector com-
ponents in the p, T plane. Then equality (18) shows that
this vector is collinear to the normal K of the surface f or is
orthogonal to it.

Equality (18) acquires a more general meaning, if we use
its parametric representation

df df
r=p y=pZ
W TR

Then, using (8) by simple transformations, we obtain the
equation

(s

pt (19)

df df
TTd r(c Py, )) drij’
showing that in the stress tensor space, the strain rate tensor
is “orthogonal” to the loading surface, that is, the associated
law is true [3—6].

Thus, the classical formulation of the model of the elas-
tic-plastic compacted body is a consequence of the previously
developed representations. In this case, the loading surface
(16) must be closed, convex, and the function f must satisfy
the equation (18). Expressions (16) and (18) are the scalar
governing equations. Tensor properties remain the same.

Note, however, that the traditional form of the model,
associated with the known arbitrariness of the choice of
loading surface, leads to the equations (11) only with a
strictly convex surface. This can be seen on the example of
the Drucker-Prager model (the generalized Coulomb-Mohr
plasticity condition) [7], where p and 1 are bound by the
linear equation

T+op+c=0.

The law associated with such a condition of plasticity
leads to the corollary

ay—/=0.

This corollary, together with the previous relation, does
not allow one to uniquely determine p and 7.
The most common example of a strictly convex loading
surface is spheroid [8—11], whose equation in the p — T axes is
2 2
p + T — k2
v(®) ()
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where y(0), 0(0) are the porosity functions; £ is the value
associated with the yield stress of the base metal.

The flow rule associated with this surface (19) leads to
the equation
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The last two equations can be solved with respect to p
and 1
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Thus, the scalar governing equations of the models
[8—11] can be represented as (11), while the functions p and
T satisfy the equation (14) and have the properties stated
above.

The equation (14) can be used to specify models of plas-
tically compressed media. For example, if for some reason
the function p=p(S, 6, x) is known, the function T can be
determined from the relation, which is a corollary of (14).

o |<

(20)

S
1=1(0,6,%,) - sp+ | pdS, (21)
0

where 1(0,8,%,) is the value proportional to the frequent
shear yield stress.

All this suggests that during the deformation of the
elastic-plastic medium, two equations must be solved. The
first equation determines the influence of hydrostatic pres-
sure on the continuum mechanics, and the second considers
strict convexity of the surface of the flow rule of isotropic
rigid-plastic material.

However, the limitation of this study should be noted,
due to the fact that the results obtained do not take into ac-
count the properties of the components of the elastic-plastic
medium sufficiently. They are of a general nature, which can
be attributed to shortcomings at this stage of research. For
this reason further it is necessary to consider a model that
allows taking into account the properties of each compo-
nent (strength, ductility, rigidity, etc.) of the elastic-plastic
medium.

6. Conclusions

1.In the case of elastic-plastic deformation of com-
pacted materials, hydrostatic pressure can influence shear
deformations, and shear stresses can lead to a change in
volume.

2. Along with the previously mentioned form of loading,
there is a form of the governing equations expressed by the
equation of the loading surface

J(Pu8 1) =1-Up, 6, %,)=0

and the relation

aF  df
y=4
ap ' dan

In the case of a strictly convex loading surface, these two
forms are equivalent.
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