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1. Introduction

A consistent phenomenological description of the pro-
cesses of formation of powders and porous bodies of the elas-
tic-plastic medium as the most important element eliminates 
the choice of governing or rheological equations. For sinter-
ing and hot pressing, thanks to the works [1, 2], some clarity 
in understanding of this issue has been achieved, while for 

cold molding processes characterized by plastic flow, there 
is no consensus about the type of governing equations. In 
this regard, the formation of general restrictions imposed on 
such equations, based on the current concepts of irreversible 
thermodynamics and continuum mechanics, is relevant. In 
this case, an approach to constructing a theory of plasticity 
should be used, based on setting the properties of the dissi-
pative function [3–6].
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При розробцi технологiчних процесiв отримання холоднопресова-
них спечених деталей малої пористостi особлива увага придiляється 
механiзму змiни щiльностi. На практицi порошкової металургiї дуже 
часто використовують багатокомпонентнi шихти, що складають-
ся як з пластичних металiв, так з погано стискаємих включень i з'єд-
нань. До такої шихти в рiвнiй мiрi можна вiднести i шихту, що склада-
ється з порошку залiза, чавуну i скла. У цiй шихтi перший компонент 
(основа) – це пластичне залiзо, а два iнших – чавун i скло – пруж-
нi компоненти. Викликає певний iнтерес, яке ущiльнення може бути 
отримано в такому випадку i якi результуючi рiвняння можна засто-
сувати для оцiнки механiки ущiльнення такої порошкової шихти.

Пропонуються результуючi рiвняння ущiльнення пористих поро-
шкових тiл iз залiзо-чавун-скло. Наведено аналiз iзотропного, жор-
сткопластичного змiцнюючого матерiалу типу залiзо-чавун-скло. 
При ущiльненнi такого матерiалу швидкiсть дисипацiї енергiї (тиск 
пресування) визначається швидкостями змiни обсягу тiла i його 
формозмiни. Показано, що вiдмiннiсть стискаємих (чавун i скло) i 
пластичних (залiзо) матерiалiв, що ущiльнюються, формує особливi 
механiчнi властивостi матрицi. Отже, гiдростатичний тиск може 
впливати на формозмiну тiла, а дотичнi напруження – на змiну обся-
гу. Отриманi результати математичного пiдходу для отримання 
результуючих рiвнянь ущiльнення пружнопластичного середовища 
показали шлях побудови теорiї пластичностi тiла, що ущiльнюєть-
ся, при якому виключається необхiднiсть врахування виду поверх-
нi навантаження. При облiку поверхнi навантаження неможливо 
отримання унiверсальних рiвнянь з ущiльнення пористого пружноп-
ластичного середовища. Показано, що для застосування класичного 
формулювання моделi пружнопластичного тiла, що ущiльнюється, 
необхiдно вважати, що поверхня навантаження опукла-замкнута

Ключовi слова: поверхня навантаження, пористе тiло, результую-
чi рiвняння, залiзо-чавун-скло, швидкiсть деформацiї, iнварiант тен-
зора, iзотропний матерiал
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2. Literature review and problem statement

In [2, 3], physical justification is considered and math-
ematical evaluation of the elastic-plastic deformation of 
powder compressed materials is performed. In these works, it 
is shown that the solution of the boundary-value problem of 
the process of cold compaction of the elastic-plastic medium 
does not depend on the type of loading surface. It is deter-
mined by dependences of axial and lateral pressure on poros-
ity. However, the author does not consider the fact that each 
pressing scheme can correspond to a certain character of 
bending of layers parallel to the base plane prior to pressing.

The phenomenological approach to the processes of com-
paction of the powder medium proposed in [4] takes into 
account the case of forming blanks of bushing type. How-
ever, this is the simplest type of blank, on which analytical 
dependencies are obtained.

The question of building a mathematical model of blanks 
of a more complex shape remains open. In this case, it is nec-
essary to consider not only the mechanics of compaction of 
the plastic component, but also interaction and joint defor-
mation of both the plastic and elastic component, taking into 
account the peculiarities of the loading surface.

The solution of this problem in this context is consid-
ered in [7–9]. However, they do not take into account the 
participation of several elastic components (cast iron and 
glass), along with the plastic component of the medium, with 
different characteristics and behavior during deformation.

Therefore, there is the problem of form change during 
compaction of the isotropic, rigid-plastic hardening powder 
medium in which energy transfer rate (pressing pressure) 
depends on the rate of volume and form change.

3. The aim and objectives of the study

The aim of the work is to obtain the resulting equations 
describing the compaction of the porous powder body con-
sisting of the elastic-plastic medium.

To achieve this aim, the following objectives are set:
– to formulate general restrictions on governing equa-

tions, based on current concepts of irreversible thermody-
namics and continuum mechanics;

– to choose an approach to the construction of the elas-
tic-plastic medium and justify the type of mathematical model 
of the isotropic, rigidly plastic hardening material, taking into 
account the rates of volume and form change of the body.

4. Obtaining the resulting equations on compaction of a 
porous powder body

4. 1. Selection and justification of restrictions on gov-
erning equations

The isotropic, rigid-plastic hardening material such as 
“iron-cast iron-glass”, the energy dissipation rate of which is 
determined by the rates of volume and form change is intro-
duced into consideration.

The last two parameters are, respectively, the first in-
variant of the strain rate tensor � ij  and the second invariant 
of its deviator, and, therefore, expressed through � ij

   = ⋅δ g = − δ − δ      
� � � � � �

1 1
, .

3 3ij ij ij ij ij ij

In the future, hydrostatic pressure and shear stress inten-
sity, which are, respectively, the first invariant of the stress 
tensor sij and the second invariant of its deviator, will also play 
an important role. They are connected with sij by the relations

= s δ
1

,
3 ij ijp  ( )( )t = s − δ s − δ2 .ij ij ij ijp p

4. 2. Choosing an approach to the construction of the 
elastic-plastic medium based on setting the properties of 
the dissipative function

We take the following definition of an elastic-plastic 
body: the dissipative function D is homogeneous, of the first 
degree by � ;ij  the same function serves as a potential for the 
stress tensor

s =
�

.ij
ij

dD
d

  (1)

We consider materials for which the von Mises yield 
criterion is valid in the following form

( ) ( )− + t − t g =�1 1 0,P P   (2)

where P, t are the stresses corresponding to the kinematic 
parameters �  and g; p1, t1 are any other stresses.

For isotropic material, the properties of which are speci-
fied above, the function D allows for �, g ,  the current poros-
ity q, as well as the parameters ck, characterizing the state of 
the powder particle material or the porous body framework 
as arguments. 

By the Euler’s theorem on homogeneous functions, the 
postulate on uniformity D by � and g is expressed by the 
equation

⋅ + g =
g

�
�

.
dD dD

D
d d

  (3)

Let us proceed to the analysis of the corollaries of the 
postulate (1). From (1), taking into account what was said 
about the arguments of the function D, the following equa-
tion can be obtained:

g
s = ⋅ + ⋅

g
�

� � �
.ij

ij

dD d dD d
d d d d

  (4)

Since by definition

,= δ
�
� ij

ij

d
d
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,
3
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� ij ij
ij
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d
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the relation (4) can be given the following form

 s = ⋅δ + − δ  g g
� �

�
1 1

.
3ij ij ij ij

dD dD
d d

  (6)

In this case, the tensor identity is used

( )s = δ + s − δ .ij ij j ijp p

We find a simple relationship between p, t and �,  g

=
�

,
dD

p
d

 t =
g

.
dD
d

  (7)
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From (7) and (8), the equation follows 

( )g
− δ = s − δ

t
� �

1
,

3ij ij ij ijp   (8)

expressing the fact of similarity of deviators and the classi-
cal theory of plasticity similar to the Levy-Mises equation. 
This equation characterizes tensor properties of compacted 
materials that satisfy the above postulates. Along with it, 
there should be equations characterizing scalar properties 
of the medium.

In order to obtain them, on the basis of (7) and (3), we 
simplify the expression for

= + tg� .D p   (9)

Assuming throughout what follows that p and t are 
rather smooth functions �  and g, we differentiate both sides 
of the equation (9) first with respect to �, and then with 
respect to g. Then, using (3) and (7), we get

+ g =
g�

0;
dP dP
d d

 
t t

⋅ + g =
g

�
�

0.
d d
d d

 (10)

The last two expressions can be considered as a system 
of first-order partial differential equations with respect to p 
and t. Direct check shows that its general solution is

= q c( , , );kp p s  t = t q c( , , ),ks   (11)

where = g� / .s
The equations obtained characterize the scalar proper-

ties of compacted materials.
Equations (8) and (11) are a complete system of govern-

ing equations of the plastically compacted body. If its tensor 
properties do not differ from those for viscous and plasti-
cally incompressible materials, scalar properties possess a 
known originality. In order to emphasize it, we present the 
equations characterizing the scalar properties of a viscous 
porous body.

− q
= η

q
�0

4 (1 )
,

3
p  t = η − q g2

0(1 ) ,   (12)
 

these equations are uniquely solvable with respect to �  and 
g. At the same time, from equations (12) it is impossible to 
determine �  and g, p and t depend on their relationship.

Thus, there is a cross-effect of various invariants of 
stress and strain rates on each other. This phenomenon is 
not characteristic of classical models of viscous and elastic 
bodies, naturally inherent in the model of a plastically 
compacted body.

The specified formal difference between viscous com-
pressed and plastically compacted materials predetermines 
special mechanical properties of the latter: hydrostatic pres-
sure can affect the form change, and shear stresses – volume 
change. This property should be associated with the dilatan-
cy effect [7], characteristic of compacted materials.

It turns out further that the functions entering the equa-
tion (11) are not arbitrary and must satisfy a certain relation. 
Indeed, from (7) it follows that

t
=

g �
.

dP d
d d

  (13)

Given (11), we find

= ⋅ = − ⋅
g g g

,
dP dP ds dP s
d ds d ds

 

t t t
= ⋅ = ⋅

g� �
1

.
d d ds d
d ds d ds

Substituting the stresses found into equality (13), we 
finally get

t
+ = 0.

dP d
S

ds ds
  (14)

Thus, whatever the governing equations (11), the func-
tions p and t entering them must satisfy (14).

Let us proceed to the analysis of the corollaries of the 
postulate expressed by inequality (2). To do this, we consid-
er two different stress states, characterized by stresses p1, t1 
and p2, t2.

Let the first statically admissible stress state correspond 
to the kinematic field, characterized by the value of the pa-
rameter s=s1, and the second – to s=s2. Then, according to 
(2), there is a pair of inequalities

− + t − t ³1 2 1 1 2( ) ( ) 0;p p s

− + t − t ³2 1 2 2 1( ) ( ) 0,p p s

adding them up, we get

− − ³1 2 1 2( )( ) 0.p p s s

The latter inequality holds for any value of s, therefore 
the function p is a monotonically non-decreasing function.

Using this result, it is also possible to obtain additional 
information regarding t. It follows from the monotony of p 
that dp/ds30. Therefore, on the basis of (14) and by virtue of 
the assumption of smoothness of the function p and t

t
³ 0;

d
ds

 
t

≤ =0; 0;
d

s
ds

 = 0;s  
t

≤ 0;
d
ds

 ³ 0.s

The resulting inequalities show that with negative values 
of s, t increases, and with s=0 it reaches a maximum, and 
with positive s – decreases. Note, however, that t is non-neg-
ative by definition. Therefore, the graph is “bell-shaped”, and 
with an unlimited increase |s|t asymmetrically tends to zero 
(Fig. 1, a). The last of these circumstances imposes known 
limitations on the form of the function p: its graph will have 
two horizontal asymptotes (Fig. 1, b). The functions p and t 
are bounded.

The tensor properties of this model are characterized by 
the equation (8).

Note that such a formulation of the governing equa-
tions is close to the traditional models of a viscous and 
elastic body, in which the scalar equations are formulated 
as stress – strain rate or stress – strain ratios. It should be 
noted that the special provision of the theory of plasticity 
is justified by the fact that it was intensively developed 
in relation to incompressible media. Related to this is the 
importance of such specific concepts as yield stress, loading 
surface, and others.
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a                                                   b 
 

Fig. 1. Dependence of the intensity of shear stresses and 
average pressure on the ratio of rates of compaction and 

form change of the elastic-plastic porous body:  
a – shear stresses b – average pressure

5. Discussion of the results of constructing equations of 
compaction of the porous powder body consisting of  

the elastic-plastic medium

The result obtained in this work indicates the way to 
construct a theory of plasticity of a compacted body, which 
eliminates the need to formulate the type of loading surface.

At the same time, the ideas developed here do not con-
tradict the classical ones and moreover, confirm them. To see 
this, we use monotonicity and smoothness of the function p 
and the solution of the first of the equations (11) with respect 
to S. Substituting the result into the second expression (11), 
we obtain the equation

t = t q c( , , ).kP   (15)

Its characteristic difference is that it does not contain de-
formations. Since the values of p and t correspond to plastic 
flow, we have the function

t q c ≅ t − t q c =( , , , ) ( , , ) 0.k kf P P  (16)

It can be identified with the loading function, and the 
surface corresponding to it in the stress tensor space – with 
the loading surface. The same name is saved for the graph of 
the equation (15) in the coordinates of p, t. The properties of 
this surface with fixed q and ck are defined using inequality 
(2). Then, according to (15), this inequality can be written as

t − t + − <1 2 1 2 1( ) ( ) ( ) 0.p p p p s

Given (14), we have the equality

t t
= ⋅ ,

d d dP
ds dp ds

 
t

= .
d

S
dP

  (17)

As a result of substitutions (17) into the last inequality, 
by means of obvious transformations we find

=

t
t ≤ t + ⋅ −

1

2 1 2 1( ) ( ) ( ).
P P

d
P P P P

dP

The resulting inequality shows that the graph of the 
function t(p) lies under the tangent. Consequently, the 
loading surface is convex. Since the functions p and t are 
bounded, we can conclude that this surface is also closed.

In order to determine the relationship between the sur-
face of loading and the strain rate tensor, we use the fact 

that, due to the independence of the loading function f of s, 
there is the inequality

t
≅ ⋅ + ⋅ =

t
0.

df df dP dP d
ds dP ds d ds

Given (14), as well as the definition = g� / ,S  we get

g = ⋅
t
�.

df df
dP d

  (18)

This result allows for a simple geometric interpretation. 
The pair of numbers �,  γ can be considered as vector com-
ponents in the p, t plane. Then equality (18) shows that 
this vector is collinear to the normal K of the surface f or is 
orthogonal to it.

Equality (18) acquires a more general meaning, if we use 
its parametric representation

= µ� ,
df
dp

 g = µ
t

.
df
d

Then, using (8) by simple transformations, we obtain the 
equation

( ) 
= µ δ + s − δ ≡ µ  t t t

�
1

,ij ij ij ij
ij

df df df
p

dp d d
  (19)

showing that in the stress tensor space, the strain rate tensor 
is “orthogonal” to the loading surface, that is, the associated 
law is true [3–6].

Thus, the classical formulation of the model of the elas-
tic-plastic compacted body is a consequence of the previously 
developed representations. In this case, the loading surface 
(16) must be closed, convex, and the function f must satisfy 
the equation (18). Expressions (16) and (18) are the scalar 
governing equations. Tensor properties remain the same.

Note, however, that the traditional form of the model, 
associated with the known arbitrariness of the choice of 
loading surface, leads to the equations (11) only with a 
strictly convex surface. This can be seen on the example of 
the Drucker-Prager model (the generalized Coulomb-Mohr 
plasticity condition) [7], where p and t are bound by the 
linear equation

t + a + = 0.p c

The law associated with such a condition of plasticity 
leads to the corollary

ag − =� 0.

This corollary, together with the previous relation, does 
not allow one to uniquely determine p and t.

The most common example of a strictly convex loading 
surface is spheroid [8–11], whose equation in the р – t axes is

t
+ =

y q y q

2 2
2,

( ) ( )
p

k

where y q( ),  φ q( )  are the porosity functions; k is the value 
associated with the yield stress of the base metal.

The flow rule associated with this surface (19) leads to 
the equation
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t
g =

y φ
�.

p

The last two equations can be solved with respect to p 
and t

y ⋅
φ= φ

y+ ⋅
φ

2

,

1

S
p k

S

 t = φ
y+ ⋅
φ

2

1
.

1

k

S

  (20)

Thus, the scalar governing equations of the models 
[8–11] can be represented as (11), while the functions p and 
t satisfy the equation (14) and have the properties stated 
above.

The equation (14) can be used to specify models of plas-
tically compressed media. For example, if for some reason 
the function p=p(S, q, ck) is known, the function t can be 
determined from the relation, which is a corollary of (14).

t = t q c − + ∫
0

(0, , ) d ,
S

k sp p S   (21)

where t q c(0, , )k  is the value proportional to the frequent 
shear yield stress.

All this suggests that during the deformation of the 
elastic-plastic medium, two equations must be solved. The 
first equation determines the influence of hydrostatic pres-
sure on the continuum mechanics, and the second considers 
strict convexity of the surface of the flow rule of isotropic 
rigid-plastic material.

However, the limitation of this study should be noted, 
due to the fact that the results obtained do not take into ac-
count the properties of the components of the elastic-plastic 
medium sufficiently. They are of a general nature, which can 
be attributed to shortcomings at this stage of research. For 
this reason further it is necessary to consider a model that 
allows taking into account the properties of each compo-
nent (strength, ductility, rigidity, etc.) of the elastic-plastic 
medium.

6. Conclusions

1. In the case of elastic-plastic deformation of com-
pacted materials, hydrostatic pressure can influence shear 
deformations, and shear stresses can lead to a change in 
volume.

2. Along with the previously mentioned form of loading, 
there is a form of the governing equations expressed by the 
equation of the loading surface

t q c ≅ t − t q c =( , , , ) ( , , ) 0k kf p p
 

and the relation

⋅ g = ⋅
t
�.

dF df
dP d

In the case of a strictly convex loading surface, these two 
forms are equivalent.
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