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1. Introduction

Automated analysis of operating parameters implement-
ed within a computer diagnostic system is one of the ways
to reduce workload on experts and improve quality and
efficiency of diagnosing gas turbine engines (GTE) and gas
pumping units (GPU). One of the promising methods for

determining technical state (TS) of an object implies its
diagnosing by neural networks [1, 2].

The neural network diagnostic analysis of operational
information can result in:

— assigning the controlled object to one of the classes of
technical states (for example, operable engines or engines
having troubles in their compressor or turbine units);




— determining parameters characterizing the object TS
(for example, change of compressor efficiency factor relative
to the standard value).

In terms of diagnosing using a neural network, in order
for the network to start working, it must be trained first us-
ing preliminarily prepared examples. Neural networks have
the tendency to retrain. When retraining, the network pre-
cisely describes the training set of data but poorly describes
data not included in this set. To solve this problem, a method
of two [3—5] or three [2] sets of data can be used.

In the more general three-set method, network training
is conducted using the first (training) set. Upon reaching the
required accuracy of TS recognition, training is stopped and
the second (control) set is input to the trained network and
correctness of its recognition is evaluated. If the accuracy
estimate obtained for this set is much worse than the one
obtained for the training set, one can talk about the network
retraining. The network structure should be changed and the
network re-trained. Thus, the control set is actually included
in the training loop. Therefore, when required accuracy of
the network operation with the control set is achieved, the
network operation must be checked again with the third
(test) set. This set should not be used more than once.

Information contained in the sets should sufficiently ful-
ly represent all types of technical states of the objects under
consideration (an operable object or an object having the
malfunction types in question) and, if necessary, conditions
and modes of the object operation.

Operational information or mathematical modeling re-
sults are used as a source for such data sets.

It should be noted that in order to train the net recog-
nizing each TS class, it is necessary to have 20 to 200 or
more calculation points. Each such point includes diagnostic
information (measured operating parameters) for one of pos-
sible combinations of characteristics of the main GTE units
in their normal or malfunction state. Acquisition of such
information in operation, given the low frequency of serious
malfunctions and, moreover, their combinations, is a rather
long process. Acquisition of such information in full-scale
tests is rather costly.

The results of numerical experiments using a mathemat-
ical model of an operation process (MMOP) can be the only
real source of the main information content. Information on
operation of GTE/GPU with actual faults in the air-gas path
collected in full-scale modeling or information collected in
operation can only be used to form a test set.

2. Literature review and problem statement

Two approaches are used to form sets. The first of them
involves collecting information on operation of intact en-
gines and engines having serious faults in the air-gas path. In
a number of papers, to obtain such data, it is suggested that
experiments should be carried out using engine test rigs. At
the same time, malfunctions are introduced artificially in
the engine measurement system [6] or in its air-gas path [7].
Disadvantage of such an approach to formation of a training
set is the high cost of carrying out work, a need for engine
test rigs and the engine in which faults are introduced.

It was proposed in [8] to form neural networks based
on the data obtained at the beginning of the new GTE op-
eration. Subsequently, such a network is used as a standard
for the intact state. Disadvantage of this method is that the

result of the neural network operation will consist in just
establishing the fact of operability/malfunction of the object
as a whole.

Work [9] is devoted to the problems of creating neural
networks to predict gas temperature behind the aviation
GTE turbine. Information on operation of an operable en-
gine was used for training the network. This approach is
effective for identifying simple malfunctions, but, like in the
previous case, it does not provide diagnostics of complex
technical objects “to the assembly depth”.

The second approach involves application of mathemat-
ical modeling methods to obtain the required amount of
information.

A method for acquisition of training and control data sets
is considered in [10]. Disadvantage of this method consists if
the use a simplified linearized model which makes it possible
to calculate variation of the measured parameters depending
on variation of parameters of the object TS. At the same
time, changes in conditions and operating modes of the GTE
are not taken into account which leads to a significant nar-
rowing of the scope of diagnostic regimes.

In [3], methods of mathematical modeling are also used
to obtain necessary data. However, the method of conduct-
ing numerical experiments is practically not described.

Mathematical models considered in [4] can be used to
evaluate the GTE TS and generate training data and a suf-
ficiently detailed description of a method for preparing the
network using two sets is given in [5]. Issues of formation of
training sets are considered in these studies in a very com-
pressed form.

In [11], mathematical models, which can be used to eval-
uate the GTE TS and generate training data, are also consid-
ered. The issues of formation of training sets are practically
not touched in this study.

A review and detailed description of various MMOPs
that can be used to obtain required data sets are given in
[12]. However, the issues of organizing numerical experi-
ments are not considered there.

As can be seen from analysis of the studies, they contain
an incomplete, fragmentary description of the method for
acquisition of necessary data sets. Besides, significant sim-
plifications and assumptions are introduced in some studies
concerning development of the method itself. At the same
time, in most of the listed studies, the issues related to the
influence of measurement errors are left unresolved. It can
be noted that the main works in the field of artificial intel-
ligence relate to diagnostics of gas aviation GTE and steam
turbines. The issues of GPU diagnostics are rarely consid-
ered. An option of solving these problems is acquisition of
data necessary for preparation of the diagnostic neural net-
work using mathematical modeling methods. Availability of
the appropriate method would make it possible to take into
account changes in the object technical state, modes and
conditions of its operation as well as the effect of errors of
parameter measurement.

3. The aim and objectives of the study

The study objective was to develop a method for con-
ducting numerical experiments to obtain training and con-
trol data sets to be used in training static neural networks
for diagnosing air-gas path of gas turbine engines and gas
pumping units.



In developing the method for conducting numerical ex-
periments, the following tasks had to be solved:

— develop an algorithm that takes into account changes
of the object technical state in experiments;

— develop an algorithm that takes into account changes
of operating modes and external conditions of GTE/GPU
operation in experiments;

— develop an algorithm that takes into account influence
of parameter measurement errors in experiments;

— develop an algorithm that takes into account arbitrary
chemical composition of the working medium in the GPU
supercharger and its fuel in experiments;

— combine the developed algorithms into a single method
for conducting numerical experiments.

4. Method for acquisition of a data set for training
the neural network to diagnose the GTE/GPU
air-gas channel

4. 1. General characteristics of the data set

All of the aforementioned sets are matrices. Each line
of such matrix (calculation point, training example) is a set
of data characterizing work of a particular object in a given
mode under given external conditions. The calculation point
includes two vectors:

—a vector input to the neural network (measured pa-
rameters of the work process or their deviations from the
standard values);

—a vector of expected outputs of the neural network
(markers indicating to which class/classes this point belongs
or parameters numerically characterizing the object TS).

When forming the datasets, it is advisable to use a non-
linear MMOP of the second level of sophistication [13, 14],
which uses formal description of characteristics of the main
elements of the GTE/GPU air-gas path (compressor, com-
bustion chamber, turbine, etc.).

In the course of the experiment, the vector of regime
parameters of the model, R, is applied to the input of the
engine MMOP with a predetermined TS of its assemblies.
The required parameters are recorded at the model output.
The measured parameters themselves and their relative, D,
or absolute, D, diagnostic deviations (DD) can be used as the
diagnostic parameters in the network training.

— P-P
Di:#, (1)
D,=P-P, @)

where P;, Pf are the values of the i-th parameter for the
diagnosed and standard GTE, respectively, in the same
mode and under the same operating conditions. The vec-
tors composed of these parameters are calculated using
MMOP

P=F(R,0), P®=F(R,Aa), 3)

where Aa is the set (vector) of the MMOP parameters de-
termining difference of characteristics of the air-gas path
elements of the simulated object from the standard ones;
F(*) is the object MMOP.

If DD is used, all or part of regime parameters, R, can
also be included in the set. The essential correlation of the

j-th regime parameter with the obtained DDs is the condi-
tion of its inclusion in the set.

When using parameter values themselves instead of the
DD, all recorded regime parameters, R, must be necessarily
included in the set.

4. 2. Accounting for technical state of the object

To obtain parameters of an engine with a changed air-
gas path, the object model, F(*), should allow one to correct
functional characteristics of this channel elements. One of
the methods of such correction consists in scaling charac-
teristics of the assemblies [13, 14]. For example, in order to
obtain an individual functional characteristic of a turbine,
the following dependences are used in this method:

e
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where A, is the turbine flow parameter; n,, m, is the effi-
ciency factor and the pressure ratio of stagnant pressure in
the turbine; Aris reduced circumferential velocity of the tur-
bine; A}, m; are functional characteristics of a standard
engine turbine (Fig. 1); (1+Aa)), (1+Aa,), (1+Aay), (1+Aay)
are scale factors at A, m,, A and n, respectively. For a stan-
dard engine, all elements of the Aa vector are zero.
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Fig. 1. Example of standard functional dependences of
capacity, A}, and efficiency factor, 1, on the pressure
ratio, m,, at different values of the reduced circumferential
velocity, A, for a turbine of an aviation gas turbine engine

To describe TS of each element of the air-gas path, two
corrective scale factors were selected: main and auxiliary.
Both factors are random numbers. The law of distribution of
the main factor, A, for the k-th class of TS depends on the
malfunction considered. For its simulation, it is proposed in
[1] to use normal and uniform distributions. It is indicated
in [4, 10] that the use of uniform distribution provides better
representation in the class of objects with varying degrees of
fault manifestation. In addition, this distribution provides
more data in the areas most difficult for classification at the
boundaries of classes. Taking into account this fact, it can
be assumed that the main factor has an uniform distribution
and may vary within the limits Aa;™", Aa;*. Then the value
of this factor for the k-th class is

Aay =f

uni

(Aap™, Aai™), &)

where f . is the random-number generator obeying the uni-

form law with parameters Aa™, Aa]"™.



As usual, in the case of a malfunction in the air-gas path,
the change in the values of the selected factor pair has a
significant correlation. Taking into account this fact, it was
assumed that the auxiliary scale has a statistical dependence
on the main one.

For a unidirectional variation of the main and auxiliary
scales (for example, the change of efficiency factor and flow
rate through the compressor when it is fouled), values of the
auxiliary scales may be given as

A =1, [Aa:,lmé% J ©)

where f_ . is the generator of random numbers obeying the
normal law (the first parameter is mathematical expectation,
the second is the standard deviation); K is a constant; Aa;’ is
the current value of the main scale.

In the case of opposite change of the main and auxil-
iary scales (for example, in burnout/melting f the turbine
blades, reduction of the efficiency factor is accompanied
by an increase in flow of the working medium through the
turbine), values of auxiliary scales are found according to
the dependence

Aat=f, [—AaZ,'Aa’T % J 7

The value of parameter K in dependences (6), (7) de-
pends on the TS class in question. For example, if the data
given in [15] are taken into account, then in the case of var-
ious flaws in the compressor (distorted blade or air-gas path
geometry, increased roughness), auxiliary to main scale ratio
is close to 1 but may vary depending on the acting damaging
factors in the range of 0.6 to 1.4. Proceeding from this, when
using normal distribution in dependences (6), (7), values in
arange of 4 to 8 can be recommended for the K parameter.

If it is necessary to train the network recognizing TS at
a simultaneous occurrence of two or more malfunctions, the
scale values are determined similarly, by taking into account
selected TS classes.

4. 3. Accounting for external conditions and operat-
ing mode

To adequately recognize TS, the neural network must be
trained using data obtained for the conditions and operating
modes at which diagnosis will be made. In this case, the ob-
ject operation in all diagnostic modes should be presented in
the same way. Then the value of the j-th regime parameter of
the model will be

R, =f, (R, R'™), ®)

where R}‘““, R™ are the minimum and maximum values of
the j-th regime parameter in diagnostic modes.

4. 4. Accounting for parameter measurement errors

Errors and gross errors of measurement are the last
factor that can be taken into account when forming sets for
training neural networks.

The following dependences can be used to obtain param-
eters P, PS included in formulas (1) and (2):

AR, =1, (0, AR 4 ] j=tn, ©)

R=R+AR, 10)
AI;:’ = Emrm (0’ A})im%)’ i= 1’ nP’ (11)
P=F(R,0)+AP, 12)
APS =F(R,Aa), 13)

where P, P® are the values of diagnosticated and standard
GTE parameters, respectively, containing the measurement
error; AR}“”", AP™ are the maximum errors of measure-
ment of the j-th regime and the i-th diagnostic parameter,
respectively; n,, n, are the numbers of regime and diagnostic
parameters, respectively. It was assumed in dependences (9),
(11) that the measurement errors do not have a systematic
component and are distributed according to the normal law.

If the goal is to train the network to detect gross mea-
surement errors, it is necessary to create two classes. All pos-
sible TS combinations, conditions and operating modes will
be presented in one class where gross errors are absent. Each
point of the second class will contain several randomly cho-
sen parameters with values in which a gross measurement er-
ror that exceeds the value of AR™ or AP™" is introduced:

AR =+, (kAR KTAR™), j=1n, (14)
R=R+AR, (15)
AP, =£f, (k" AP B)AP™), i=1n,, (16)
P=F(R,0)+AP, 17)
APS =F(R,Aa), 18)

where k,‘_“i“, kM, k;‘“‘, k;,“a" are coefficients. In this case,
min max min max
L<k™ <™, 1<k <k)™.

Concrete values of these coefficients and direction of
change of the parameter (the sign of the function f ; in (14),
(16)) depends on the characteristics of the measurement
system and the error in question.

4. 5. The scheme of numerical experiment

The scheme of carrying out the described numerical
experiment for obtaining one calculation point of a set be-
longing to the k-th class is given in Fig. 2.

Measurement Measurement
errors, (9)/(14) errors, (11)/(16)
o & "-‘O: MMOP of a standard ps
tize GTE, F(R0), (3) -
ESR
Qs S AP
m ‘15 St
{="l) ~
MMOP of a defective | P X P [Calculation of DD,
GTE,F(R,Aa),(3) [~ 1), (2)
@ Parameters of Aa™ - l b, D
B technical state . Point of the data
S of MMOP, Ag | set:
ki - R,P,D,D, Aa, k
o

i

Fig. 2. The diagram of numerical experiment




To obtain the required amount of data, it is necessary to
repeat the experiment multiply at a different initial value of
generators of (pseudo)random numbers.

For some combinations of the set values of regime param-
eters and parameters of the object’s TS, a situation is possible
when MMOP (function F(*) in dependence (3)) cannot
calculate the required mode because of leaving the operating
point of one of the blade spools of the object beyond its func-
tional characteristics embedded in the model. In this case, the
model stops working with an error message. The results of
such attempt must be discarded and new attempt made with
new initial values of generators of (pseudo)random numbers.

4. 6. Accounting for peculiarities of a gas pumping
unit diagnostics

A gas pumping unit consists of two main parts: a gas
turbine unit and a supercharger. The gas turbine unit is, in
fact, a conventional turboshaft drive. The supercharger is a
centrifugal compressor that compresses and pumps natural
gas which is also used as a fuel for the drive.

Natural gas is extracted from different gas fields and its com-
position can vary considerably. It varies in a wide range of the
lower calorific value of fuel, enthalpy, entropy, and the specific
heat of the working medium of the drive (combustion products)
and the supercharger (pumped gas) and, accordingly, the opera-
tion process of the GPU in general. Based on data given in [16],
a possible range of gas composition variation was determined
(Table 1). In the case of gas being purified from sulfur com-
pounds, percentage of hydrogen sulfide in it can be taken zero.

5. The example of implementation of the numerical
experiment and the results obtained

5. 1. Forming a dataset for an aviation GTE

For realization of the proposed approach, MMOP that
is close by its characteristics to the PS-90A engine [13, 17]
was used (bypass engine with 2 rotors, mixing of flows, the
bypass ratio: 5, thrust: 155 kN).

Diagnosis was made at take-off and initial climb. The
values of R of regime operating parameters of MMOP
were in the following ranges: barometric flight height H:
(-100)...2,500 m above sea level; Mach’s number M: 0...0.5;
total temperature at the inlet to the engine: 238...313 K; rel-
ative humidity of air ¢: 0.3...1; velocity of the fan rotor n;p:
3,280...4,220 rpm (nominal and take-off modes).

Data sets were formed from relative DD parameters (de-
pendence (1)) measured on the engine in operation: high-pres-
sure rotor speed, Anm,,; total pressure behind the fan,

AP;; total pressure, AT, and temperature, AP., behind

the compressor; fuel consumption, AG,; total temperature
behind the turbine, AT; ; ratio of total pressure behind the
turbine to atmospheric pressure, AP;.

Characteristics of TS classes for the considered GTE are
given in Table 2. The values of the vector components were
determined on the basis of data in studies [10, 11] and expert
estimates.

When determining the values of Aa; (de-
pendences (6), (7)), it was assumed that K=6
for all TS classes. At this value of K, the range

. . . Table 1 o variation of ratio of the auxiliary scale to the
Characteristics of chemical composition of natural gas main scale for the case of normal distribution
The pumped Weight (volume) composition of gas, % in dgpendences (6), (7) can be estimated ap-
gas constitu- proximately as 0.5-1.5.
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Fig. 3. Values of relative DDs in a set designed to train the
network for recognition of 6 classes of TS of an aviation
GTE (Table 2). Points 1-50 belong to the first class, points
51-100 belong to the second class and so on. Relative DD of
parameters are shown: rotational speed of the high-pressure

rotor An,,; full pressure behind the fan, AP;; full pressure,

APJ, and temperature, AT;, behind the compressor; fuel

consumption, AG,; temperature behind the turbine, ATT*;
ratio of the total pressure behind the turbine to atmospheric

pressure, AP,

5. 2. Forming the data set for the gas-pumping unit

In order to realize the proposed approach, the MMOP
close in its characteristics to the gas-pumping unit GPU-Ts-
6.3/56M-1.45 was used [16]. The unit consists of the drive
D-336 (low and high pressure rotors, a rotor of a power turbine
with a rated power of 6.3 MW and a supercharger N-196.

In addition to malfunctions of compressors, combustion
chambers and turbines described in Table 2, an additional
diagnosed fault was added: fouling of the supercharger. The
scale of the natural gas flow through the supercharger unit,
Aags, was taken as the main TS parameter of this assembly
in the MMOP (the range Aags=(—0.03)...0.017 was taken for
the intact supercharger and (—0.03)...(-=0.072) for the fouled
one. Scale of the efficiency factor of the supercharger unit,
Aays, was taken as an auxiliary parameter.

Eight main classes of TS were simulated: a faultless engine,
troubles in a low- or high-pressure compressor, a combustion
chamber, a high- or low-pressure turbine, a power turbine, and
a supercharger. Rotational speed of the power turbine, npp,
was selected as a regime parameter. Diagnosis was carried
out in high modes close to the nominal. Values of the regime
parameters of MMOP were in the following ranges:

— pressure at the gas turbine unit inlet: 73.3...110.6 kPa;

~T':223..323 K;

—rotational speed of the power turbine, npr:

Thus, the numerical experiment has resulted in two data
sets (Fig. 4). Each set point included the values of absolute
DD (dependence (2)) of the following parameters:

— rotation speeds of the low-pressure rotor, Anyp (%)

— the high-pressure rotor, AnHP (%);

— total pressure, AP, (kPa) behind the compressor;

— total temperature, AT, (K) behind the low-pressure
turbine;

— fuel consumption, AG, (kg/s);

— total pressure, AP;, (kPa) behind the supercharger;

— total temperature, AT;, (K) behind the supercharger.

6. Discussion of results: checking the possibility of
diagnosing the considered malfunctions and refining the
list of parameters used in diagnostics

6. 1. Discussion of the results obtained for the avia-
tion gas turbine engine

According to the data shown in Fig. 3, qualitative analysis
of the capability to recognize the selected TS classes has been
carried out. Direction and degree of DD deviation of classes 2—
6 (points 51-300) relative to deviations of class with no trou-
bles (points 1-50) were analyzed. The analysis results are given
in Table 3. Signs in Table 3 denote direction and degree of DD
deviation corresponding to each TS class relative to the intact
class. Signs 1, { denote upward or downward DD shift, accord-
ingly. Signs ™1, I indicate significant degree of DD shift and
signs 1, 4 are used for insignificant shift. As can be seen from
the data presented, all selected TS classes are well separated in
the multidimensional DD space and can be recognized.

Table 3
Direction and degree of DD deviation in faulty GTE

DD Direction of DD deviation
Class, | A AP, | AP, | AT, | AT, | AP, | AG,
2 { N s 0 0 L
3 T T ™ ™ 0 T
4 0 0 0 T 0 0 ™
5 A 0 " J ™~ 0 ™
6 N T 0 T T 0 ™

Values of the factors of pairwise correlation between the
obtained DD values and the regime parameters were calcu-
lated for analysis of influence of conditions and operating
modes on the DD, Table 4. The values obtained for correla-
tion factors were less than 0.07. This indicates that when
using the DD to diagnose the engine, the regime parameters
can be excluded from the sets.

7,850... 8,300 rpm; Table 4

— total pressure at the inlet to the supercharger:  Factors of correlation between relative DDs of the GTE and regime
4,000... 8,000 kPa; parameters

—total temperature at the inlet to the super-
charger: 223... 333 K; DD o _

—gas flow rate through the supercharger, Q: |op. Any, | AP; AP, AT AT, AP, | AG,
7,000, 000... 15,000,000 Nm?/day. param.

Simulation was carried out for two cases: gas np | 0.0399 [0.00382]-0.0249 [-0.0366]0.0437]-0.0362]-0.0695
composition known and unknown. In the latter case,

. . T —0.0041 [-0.0073|-0.0274|-0.0150|—0.0011 | 0.0032 | 0.0153

when calculating standard values of the operating
parameters, PS, it was assumed that the gas consisted H 0.0006 |-0.0077| 0.0258 |-0.0099{~0.0260[-0.0068] -0.0062
of pure methane. M [-00370[0.0590[-0.0552[-0.0506] ~0.0151 | —0.058 [0.0321
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Fig. 4. Values of absolute DD in the set designed to train the network to recognize 8 classes of GPU TS. Points 1-50 belong
to the first class, 51-100 to the second class, etc. Gas composition is unknown (a), gas composition is unknown (b). DDs of
the following parameters are shown: rotation speeds of low-pressure rotor, An; p (%) and high-pressure rotor, Anyp (%);

total pressure behind the compressor, AP;, (kPa); temperature behind the low-pressure turbine, ATL*T (K); fuel consumption,
AGr (kg /s); total pressure, APS (kPa) and total temperature, AT; (K) behind the supercharger

6. 2. Discussion of the results obtained for GPU

As can be seen from the results obtained, when gas com-
position is known, the diagnostic deviations react well to the
change in the TS of spools (Fig. 4, b). When gas composition
is unknown (Fig. 4, a), this factor significantly increases
spread of the DD values and can significantly impede the
process of TS recognition.

According to the data shown in Fig. 4, b, qualitative
analysis of ability of recognition of selected TS classes was
performed. Direction and degree of DD shift of classes 2—-8
(points 51-400 relative to deviation of the intact class
(points 1-50)) were analyzed.

The analysis results are given in Table 5. As can be seen
from the data presented, all selected TS classes are well separat-
ed in the multidimensional space of DD and can be recognized.

Table 5
Direction and degree of DD deviation in faulty GPUs
DD DD deviation direction

Class b Angp | Angp | AP. | AT, | AGr | AP, | AT,
2 T ™~ d 0 0 0 0
3 0 d d T T 0 0
4 0 0 0 0 T 0 0
5 0 1l Ll T T T 0
6 T 2 0 0 T 0 0
7 W 0 d T T 0 0
8 ™ T T T ™ ™ ™

As shown above, parameters characterizing operating
conditions of the gas turbine drive had no significant effect
on the obtained DD values. However, the data sets for GPU
may also include lower heat of fuel combustion, Hu, flow of
the gas pumped through the supercharger, Q, and the operat-
ing parameter of the model (power turbine rotational speeds,
npr). To estimate influence of these factors on the DD, values
of the factors of correlation between these parameters and
the obtained DD values were calculated. The calculation
results are given in Table 6.

Table 6

Values of factors of correlation between the lower heat
of gas combustion, the flow of gas pumped through the
supercharger and the diagnostic deviations
(gas composition unknown)

Oper-

p:rt;?nge_ Angp | Angp | ARD | AT, | AGr | AP | AT

ters, R
Hu -0.419(-0.428| -0.43 | —0.3 |-0.462|-0.125|—0.377
Q -0.349 [-0.345]-0.309| -0.225]| -0.204 | -0.548 | -0.515
npr  |—0.034|-0.156 [-0.098| 0.074 | 0.097 |—0.111|-0.175

For a variant when the gas composition is known, all
correlation factors are less than 0.2.

As can be seen from the data presented, effect of the npr
parameter is small and can be not taken into account in some
cases. It is expedient to include Hu and Q parameters in the
data sets when gas composition is unknown.

6. 3. Discussion: the method application problems and
prospects

The presented material provides a sufficiently complete
and exhaustive description of the method for obtaining
training and control data sets intended for training static
neural networks for diagnosticating GTE and GPU. The
described method makes it possible to form data sets that
simulate information obtained in the course of long-term
operation of a park of similar objects. At the same time,
although the paper deals only with training of neural net-
works, the information obtained can be used in development
of diagnostic methods based on other approaches.

The described method can be further improved by in-
troducing concrete malfunctions (e.g. blade fouling, wear
of labyrinth seals, improper adjustment of operation of the
compressor guides vanes, etc.) instead of generalized fail-
ures (malfunction of the compressor, turbine, etc.). In this
case, an opportunity appears to switch from diagnosing
“to the depth of assembly” to diagnosing “to the depth of



malfunction”. To do this, it is necessary to clarify the list of
malfunctions and values of parameters characterizing these
malfunctions (Table 1) as well as form and parameters of
dependences (4)—(7).

In conclusion, it is necessary to note that the main prob-
lem of using the proposed method consists in development and
identification of its basic element, the mathematical model of
the operation process of the second level of sophistication. To
create it, it is necessary to have, at minimum, two-dimension-
al functional characteristics of all blade spools of the object.
Besides, the process of developing such a model is laborious.
For example, the volume of the code of the GPU MMOP in
C++ language used in the study was about 2,000-2,300 lines
and its development and identification for the data of a real
GPU took about six months. But on the other hand, this work
has resulted in that developers have got a powerful, versatile,
and multi-purpose research tool.

7. Conclusions

1. An algorithm was developed that makes it possible to
generate data describing operation of an object with mal-
functions in the compressor and turbine spools, combustion
chamber and supercharger. Its special feature is the use of
scalable two-dimensional functional characteristics of the
object blade spools in the mathematical model of its operat-
ing process. This, in turn, enables obtaining of a continuous,
balanced description of the operation process of an object
with any technical state of spools of its air-gas path. It was
shown that all technical state classes obtained by simulation
are well separated in the multidimensional space of diagnos-
tic deviations and can be recognized.

2. An algorithm was developed that makes it possible to
vary regime parameters of the mathematical model of the

object working process. As a result of analysis of the data
obtained in the numerical experiment, it was shown that
when using deviations of the measured values of parameters
from the standard ones as diagnostic information, the regime
parameters practically do not affect the result of diagnosis of
the GTE and may be not included in the data sets for train-
ing of the neural network.

3. An algorithm was developed that enables modeling
the effect of errors and gross errors of measuring parameters
of the object operation process on the results obtained in a
numerical experiment. The use of the developed algorithm
provides the opportunity to acquire data for preparation of
diagnostic neural networks which work steadily even in the
presence of errors and gross errors occurred in measuring
parameters of the operation process.

4. An algorithm was developed that takes into account
arbitrary chemical composition of the working medium in
the GPU supercharger and the effect of this factor on the
diagnostic process has been studied. Diagnostic situations
were considered when chemical composition of the pumped
gas is known and unknown. It was shown that when gas
composition is unknown, it is necessary to include the lower
heat of combustion of the fuel gas and flow of the gas pumped
through the supercharger in composition of the sought sets.

5. A method for conducting a numerical experiment in
order to obtain training and control sets for training stat-
ic neural networks diagnosing the air-gas path of the gas
turbine engine and gas pumping units has been developed.
Application of the developed method makes it possible to
form data sets of required volumes that characterize classes
with both single and multiple faults of the air-gas path at dif-
ferent stages of their formation. Besides, these sets simulate
the results of measuring of the working process parameters
corresponding to different conditions and operating modes
as well as the parameters measurement errors.
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