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1. Introduction

Automated analysis of operating parameters implement-
ed within a computer diagnostic system is one of the ways 
to reduce workload on experts and improve quality and 
efficiency of diagnosing gas turbine engines (GTE) and gas 
pumping units (GPU). One of the promising methods for 

determining technical state (TS) of an object implies its 
diagnosing by neural networks [1, 2].

The neural network diagnostic analysis of operational 
information can result in:

– assigning the controlled object to one of the classes of 
technical states (for example, operable engines or engines 
having troubles in their compressor or turbine units);
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Одним з перспективних шляхiв пiдвищення ефек-
тивностi дiагностування авiацiйних газотурбiнних 
двигунiв i газоперекачувальних агрегатiв є вико-
ристання нейронних мереж. Для того, щоб така 
мережа почала працювати, її необхiдно попередньо 
навчити, використовуючи заздалегiдь пiдготовленi 
навчальнi приклади. Цi данi повиннi повно харак-
теризувати роботу об'єкта в широкому дiапазонi 
режимiв роботи та при рiзному технiчному станi 
вузлiв, що дiагностуються. Крiм того, необхiдно 
мати аналогiчний набiр даних для контролю якостi 
навчання нейронної мережi.

Для якiсного навчання мережi розпiзнанню одно-
го типу несправностей необхiдно мати набiр, що 
мiстить 20–200 i бiльш навчальних прикладiв. 
Одержання такої iнформацiї в експлуатацiї або при 
стендових випробуваннях є досить тривалим або 
дорогим процесом. 

Розроблено метод одержання навчального i кон-
трольного наборiв даних. Набори призначенi для 
навчання статичної нейронної мережi розпiзнаван-
ню одиночних i множинних несправностей елементiв 
проточної частини газотурбiнного двигуна й газо-
перекачувального агрегату. Метод дозволяє одер-
жувати набори параметрiв робочого процесу, що 
характеризують роботу об'єкта з рiзним технiчним 
станом проточної частини, вплив помилок вимiру 
та функцiонування об'єкта в широкому дiапазонi 
режимiв i зовнiшнiх умов. Для газоперекачувально-
го агрегату додатково враховується склад газу, що 
перекачується. 

Для одержання необхiдних параметрiв вико-
ристовується математична модель робочого проце-
су об'єкта другого рiвня складностi. 

Набори характеризують роботу справних об'єк-
тiв i об'єктiв, що мають значнi несправностi каска-
дiв компресорiв, турбiн i камери згоряння, а у випад-
ку газоперекачувального агрегату, i його нагнiтача. 

Розглянуто два варiанти формування наборiв: 
з використанням вимiрюваних параметрiв робочо-
го процесу; з використанням вiдхилень вимiрюваних 
параметрiв вiд еталонних значень та параметрiв, якi 
використано як режимнi у математичнiй моделi робо-
чого процесу. Для другого варiанту проведено перевiр-
ку доцiльностi включення режимних параметрiв до 
складу наборiв. Показано, що в рядi випадкiв режимнi 
параметри можуть бути виключенi з наборiв даних

Ключовi слова: дiагностування, нейронна мере-
жа, навчальна множина, контрольна множина, 
газотурбiнний, газоперекачувальний
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– determining parameters characterizing the object TS 
(for example, change of compressor efficiency factor relative 
to the standard value).

In terms of diagnosing using a neural network, in order 
for the network to start working, it must be trained first us-
ing preliminarily prepared examples. Neural networks have 
the tendency to retrain. When retraining, the network pre-
cisely describes the training set of data but poorly describes 
data not included in this set. To solve this problem, a method 
of two [3–5] or three [2] sets of data can be used. 

In the more general three-set method, network training 
is conducted using the first (training) set. Upon reaching the 
required accuracy of TS recognition, training is stopped and 
the second (control) set is input to the trained network and 
correctness of its recognition is evaluated. If the accuracy 
estimate obtained for this set is much worse than the one 
obtained for the training set, one can talk about the network 
retraining. The network structure should be changed and the 
network re-trained. Thus, the control set is actually included 
in the training loop. Therefore, when required accuracy of 
the network operation with the control set is achieved, the 
network operation must be checked again with the third 
(test) set. This set should not be used more than once.

Information contained in the sets should sufficiently ful-
ly represent all types of technical states of the objects under 
consideration (an operable object or an object having the 
malfunction types in question) and, if necessary, conditions 
and modes of the object operation.

Operational information or mathematical modeling re-
sults are used as a source for such data sets.

It should be noted that in order to train the net recog-
nizing each TS class, it is necessary to have 20 to 200 or 
more calculation points. Each such point includes diagnostic 
information (measured operating parameters) for one of pos-
sible combinations of characteristics of the main GTE units 
in their normal or malfunction state. Acquisition of such 
information in operation, given the low frequency of serious 
malfunctions and, moreover, their combinations, is a rather 
long process. Acquisition of such information in full-scale 
tests is rather costly.

The results of numerical experiments using a mathemat-
ical model of an operation process (MMOP) can be the only 
real source of the main information content. Information on 
operation of GTE/GPU with actual faults in the air-gas path 
collected in full-scale modeling or information collected in 
operation can only be used to form a test set.

2. Literature review and problem statement

Two approaches are used to form sets. The first of them 
involves collecting information on operation of intact en-
gines and engines having serious faults in the air-gas path. In 
a number of papers, to obtain such data, it is suggested that 
experiments should be carried out using engine test rigs. At 
the same time, malfunctions are introduced artificially in 
the engine measurement system [6] or in its air-gas path [7]. 
Disadvantage of such an approach to formation of a training 
set is the high cost of carrying out work, a need for engine 
test rigs and the engine in which faults are introduced.

It was proposed in [8] to form neural networks based 
on the data obtained at the beginning of the new GTE op-
eration. Subsequently, such a network is used as a standard 
for the intact state. Disadvantage of this method is that the 

result of the neural network operation will consist in just 
establishing the fact of operability/malfunction of the object 
as a whole.

Work [9] is devoted to the problems of creating neural 
networks to predict gas temperature behind the aviation 
GTE turbine. Information on operation of an operable en-
gine was used for training the network. This approach is 
effective for identifying simple malfunctions, but, like in the 
previous case, it does not provide diagnostics of complex 
technical objects “to the assembly depth”.

The second approach involves application of mathemat-
ical modeling methods to obtain the required amount of 
information.

A method for acquisition of training and control data sets 
is considered in [10]. Disadvantage of this method consists if 
the use a simplified linearized model which makes it possible 
to calculate variation of the measured parameters depending 
on variation of parameters of the object TS. At the same 
time, changes in conditions and operating modes of the GTE 
are not taken into account which leads to a significant nar-
rowing of the scope of diagnostic regimes.

In [3], methods of mathematical modeling are also used 
to obtain necessary data. However, the method of conduct-
ing numerical experiments is practically not described.

Mathematical models considered in [4] can be used to 
evaluate the GTE TS and generate training data and a suf-
ficiently detailed description of a method for preparing the 
network using two sets is given in [5]. Issues of formation of 
training sets are considered in these studies in a very com-
pressed form.

In [11], mathematical models, which can be used to eval-
uate the GTE TS and generate training data, are also consid-
ered. The issues of formation of training sets are practically 
not touched in this study.

A review and detailed description of various MMOPs 
that can be used to obtain required data sets are given in 
[12]. However, the issues of organizing numerical experi-
ments are not considered there.

As can be seen from analysis of the studies, they contain 
an incomplete, fragmentary description of the method for 
acquisition of necessary data sets. Besides, significant sim-
plifications and assumptions are introduced in some studies 
concerning development of the method itself. At the same 
time, in most of the listed studies, the issues related to the 
influence of measurement errors are left unresolved. It can 
be noted that the main works in the field of artificial intel-
ligence relate to diagnostics of gas aviation GTE and steam 
turbines. The issues of GPU diagnostics are rarely consid-
ered. An option of solving these problems is acquisition of 
data necessary for preparation of the diagnostic neural net-
work using mathematical modeling methods. Availability of 
the appropriate method would make it possible to take into 
account changes in the object technical state, modes and 
conditions of its operation as well as the effect of errors of 
parameter measurement.

3. The aim and objectives of the study

The study objective was to develop a method for con-
ducting numerical experiments to obtain training and con-
trol data sets to be used in training static neural networks 
for diagnosing air-gas path of gas turbine engines and gas 
pumping units.
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In developing the method for conducting numerical ex-
periments, the following tasks had to be solved:

– develop an algorithm that takes into account changes 
of the object technical state in experiments;

– develop an algorithm that takes into account changes 
of operating modes and external conditions of GTE/GPU 
operation in experiments;

– develop an algorithm that takes into account influence 
of parameter measurement errors in experiments;

– develop an algorithm that takes into account arbitrary 
chemical composition of the working medium in the GPU 
supercharger and its fuel in experiments;

– combine the developed algorithms into a single method 
for conducting numerical experiments.

4. Method for acquisition of a data set for training  
the neural network to diagnose the GTE/GPU  

air-gas channel

4. 1. General characteristics of the data set
All of the aforementioned sets are matrices. Each line 

of such matrix (calculation point, training example) is a set 
of data characterizing work of a particular object in a given 
mode under given external conditions. The calculation point 
includes two vectors:

– a vector input to the neural network (measured pa-
rameters of the work process or their deviations from the 
standard values);

– a vector of expected outputs of the neural network 
(markers indicating to which class/classes this point belongs 
or parameters numerically characterizing the object TS).

When forming the datasets, it is advisable to use a non-
linear MMOP of the second level of sophistication [13, 14], 
which uses formal description of characteristics of the main 
elements of the GTE/GPU air-gas path (compressor, com-
bustion chamber, turbine, etc.).

In the course of the experiment, the vector of regime 
parameters of the model, R, is applied to the input of the 
engine MMOP with a predetermined TS of its assemblies. 
The required parameters are recorded at the model output. 
The measured parameters themselves and their relative, ,D  
or absolute, D, diagnostic deviations (DD) can be used as the 
diagnostic parameters in the network training.

−
= ,

S
i i

i S
i

P P
D

P
		  (1)

= − ,S
i i iD P P 		  (2)

where Pi, 
S

iP  are the values of the i-th parameter for the 
diagnosed and standard GTE, respectively, in the same 
mode and under the same operating conditions. The vec-
tors composed of these parameters are calculated using 
MMOP

= F( , ),P R 0
 

= DF( , ),SP R a
	

	 (3)

where Δа is the set (vector) of the MMOP parameters de-
termining difference of characteristics of the air-gas path 
elements of the simulated object from the standard ones; 
F(*) is the object MMOP.

If DD is used, all or part of regime parameters, R, can 
also be included in the set. The essential correlation of the 

j-th regime parameter with the obtained DDs is the condi-
tion of its inclusion in the set.

When using parameter values themselves instead of the 
DD, all recorded regime parameters, R, must be necessarily 
included in the set.

4. 2. Accounting for technical state of the object
To obtain parameters of an engine with a changed air-

gas path, the object model, F(*), should allow one to correct 
functional characteristics of this channel elements. One of 
the methods of such correction consists in scaling charac-
teristics of the assemblies [13, 14]. For example, in order to 
obtain an individual functional characteristic of a turbine, 
the following dependences are used in this method:

l π
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where ΑТ  is the turbine flow parameter; h* ,T  π*
T  is the effi-

ciency factor and the pressure ratio of stagnant pressure in 
the turbine; lТ is reduced circumferential velocity of the tur-
bine; Α0 ,T  h*0

T  are functional characteristics of a standard 
engine turbine (Fig. 1); (1+Dаl), (1+Dаπ), (1+DаА), (1+Dаh) 
are scale factors at l π Α*, ,T TТ  and h*

T , respectively. For a stan-
dard engine, all elements of the Dа vector are zero.

Fig. 1. Example of standard functional dependences of 

capacity, Α0 ,T  and efficiency factor, h*0,T  on the pressure 

ratio, π* ,T  at different values of the reduced circumferential 
velocity, l ,T  for a turbine of an aviation gas turbine engine 

To describe TS of each element of the air-gas path, two 
corrective scale factors were selected: main and auxiliary. 
Both factors are random numbers. The law of distribution of 
the main factor, D ,m

ka  for the k-th class of TS depends on the 
malfunction considered. For its simulation, it is proposed in 
[1] to use normal and uniform distributions. It is indicated 
in [4, 10] that the use of uniform distribution provides better 
representation in the class of objects with varying degrees of 
fault manifestation. In addition, this distribution provides 
more data in the areas most difficult for classification at the 
boundaries of classes. Taking into account this fact, it can 
be assumed that the main factor has an uniform distribution 
and may vary within the limits D min ,ka  D max .ka  Then the value 
of this factor for the k-th class is

D = D D
�

min max
unif ( , ),m

k k ka a a
 	

	 (5)

where 
�

unif  is the random-number generator obeying the uni-
form law with parameters D min ,ka  D max .ka
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As usual, in the case of a malfunction in the air-gas path, 
the change in the values of the selected factor pair has a 
significant correlation. Taking into account this fact, it was 
assumed that the auxiliary scale has a statistical dependence 
on the main one.

For a unidirectional variation of the main and auxiliary 
scales (for example, the change of efficiency factor and flow 
rate through the compressor when it is fouled), values of the 
auxiliary scales may be given as

 D
D = D 

 

�
normf , ,

m
ka m

kk

a
a a K 		  (6)

where 
�
normf  is the generator of random numbers obeying the 

normal law (the first parameter is mathematical expectation, 
the second is the standard deviation); K is a constant; D m

ka  is 
the current value of the main scale.

In the case of opposite change of the main and auxil-
iary scales (for example, in burnout/melting f the turbine 
blades, reduction of the efficiency factor is accompanied 
by an increase in flow of the working medium through the 
turbine), values of auxiliary scales are found according to 
the dependence

 D
D = −D 

 

�
normf , .

m
ka m

kk

a
a a K 		  (7)

The value of parameter K in dependences (6), (7) de-
pends on the TS class in question. For example, if the data 
given in [15] are taken into account, then in the case of var-
ious flaws in the compressor (distorted blade or air-gas path 
geometry, increased roughness), auxiliary to main scale ratio 
is close to 1 but may vary depending on the acting damaging 
factors in the range of 0.6 to 1.4. Proceeding from this, when 
using normal distribution in dependences (6), (7), values in 
a range of 4 to 8 can be recommended for the K parameter.

If it is necessary to train the network recognizing TS at 
a simultaneous occurrence of two or more malfunctions, the 
scale values are determined similarly, by taking into account 
selected TS classes.

4. 3. Accounting for external conditions and operat-
ing mode

To adequately recognize TS, the neural network must be 
trained using data obtained for the conditions and operating 
modes at which diagnosis will be made. In this case, the ob-
ject operation in all diagnostic modes should be presented in 
the same way. Then the value of the j-th regime parameter of 
the model will be

=
�

min max
unif ( , ),j j jR R R 		  (8)

where min ,jR  max
jR  are the minimum and maximum values of 

the j-th regime parameter in diagnostic modes.

4. 4. Accounting for parameter measurement errors
Errors and gross errors of measurement are the last 

factor that can be taken into account when forming sets for 
training neural networks.

The following dependences can be used to obtain param-
eters P, PS included in formulas (1) and (2):

 DD =   

�� max

normf 0, ,3
j

j

R
R = 1, ,rj n 		  (9)

= + D
� �

,R R R 	 	 (10)

 DD =   
�� max

normf 0, ,3
i

i
PP = 1, ,pi n 		  (11)

= + D
� �

F( ,0) ,P R P
	

	 (12)

D = D
� �

F( , ),SP R a
	

	 (13)

where 
�
P,  
�

SP  are the values of diagnosticated and standard 
GTE parameters, respectively, containing the measurement 
error; D max ,jR  D max

iP  are the maximum errors of measure-
ment of the j-th regime and the i-th diagnostic parameter, 
respectively; nr, np are the numbers of regime and diagnostic 
parameters, respectively. It was assumed in dependences (9), 
(11) that the measurement errors do not have a systematic 
component and are distributed according to the normal law.

If the goal is to train the network to detect gross mea-
surement errors, it is necessary to create two classes. All pos-
sible TS combinations, conditions and operating modes will 
be presented in one class where gross errors are absent. Each 
point of the second class will contain several randomly cho-
sen parameters with values in which a gross measurement er-
ror that exceeds the value of D max

jR  or D max
iP  is introduced:

D = ± D D
��

min max max max
unif ( ),j r j j r j jR k R , k R  = 1, ,rj n 	 (14)

= + D
� �

,R R R 	 	 (15)

D = ± D D
�

min min max max
unif ( ),i p i j p i iP k P , k P  = 1, ,pi n

	
	 (16)

= + D
� �

F( ,0) ,P R P
	

	 (17)

D = D
� �

F( , ),SP R a 	 	 (18)

where min ,rk  max ,rk  min ,pk  max
pk  are coefficients. In this case, 

< <min max1 ,r rk k  < <min max1 .p pk k  

Concrete values of these coefficients and direction of 
change of the parameter (the sign of the function 

�
unif  in (14), 

(16)) depends on the characteristics of the measurement 
system and the error in question.

4. 5. The scheme of numerical experiment
The scheme of carrying out the described numerical 

experiment for obtaining one calculation point of a set be-
longing to the k-th class is given in Fig. 2.

Fig. 2. The diagram of numerical experiment
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To obtain the required amount of data, it is necessary to 
repeat the experiment multiply at a different initial value of 
generators of (pseudo)random numbers.

For some combinations of the set values of regime param-
eters and parameters of the object’s TS, a situation is possible 
when MMOP (function F(*) in dependence (3)) cannot 
calculate the required mode because of leaving the operating 
point of one of the blade spools of the object beyond its func-
tional characteristics embedded in the model. In this case, the 
model stops working with an error message. The results of 
such attempt must be discarded and new attempt made with 
new initial values of generators of (pseudo)random numbers.

4. 6. Accounting for peculiarities of a gas pumping 
unit diagnostics

A gas pumping unit consists of two main parts: a gas 
turbine unit and a supercharger. The gas turbine unit is, in 
fact, a conventional turboshaft drive. The supercharger is a 
centrifugal compressor that compresses and pumps natural 
gas which is also used as a fuel for the drive.

Natural gas is extracted from different gas fields and its com-
position can vary considerably. It varies in a wide range of the 
lower calorific value of fuel, enthalpy, entropy, and the specific 
heat of the working medium of the drive (combustion products) 
and the supercharger (pumped gas) and, accordingly, the opera-
tion process of the GPU in general. Based on data given in [16], 
a possible range of gas composition variation was determined  
(Table 1). In the case of gas being purified from sulfur com-
pounds, percentage of hydrogen sulfide in it can be taken zero.

When a dataset is formed, 
main components of the gas 
(methane, ethane, propane, 
carbon dioxide, nitrogen) are 
taken into account. Content 
of the l-th component (other 
than methane) is determined 
within the specified boundar-
ies (Table 1).

=
��

min max
unif ( , ).l lY Y Y

l    
(18)

Then the content of meth-
ane in the gas are:

4 2 6

3 8 2 2

5

CH C H
2

C H CO N

1 1

,

l
l

Y Y Y

Y Y Y

=

= − = − −

− − −

∑
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(19)

where 
�

4CH ,Y  
�

2 6C H ,Y  
�

3 8C H ,Y  
�

2CO ,Y  �
2NY  are weight or volume 

concentrations of the corre-
sponding gas constituents.

5. The example of implementation of the numerical 
experiment and the results obtained

5. 1. Forming a dataset for an aviation GTE
For realization of the proposed approach, MMOP that 

is close by its characteristics to the PS-90A engine [13, 17] 
was used (bypass engine with 2 rotors, mixing of flows, the 
bypass ratio: 5, thrust: 155 kN).

Diagnosis was made at take-off and initial climb. The 
values of R of regime operating parameters of MMOP 
were in the following ranges: barometric flight height H: 
(–100)...2,500 m above sea level; Mach’s number M: 0...0.5; 
total temperature at the inlet to the engine: 238...313 K; rel-
ative humidity of air f: 0.3...1; velocity of the fan rotor nLP: 
3,280...4,220 rpm (nominal and take-off modes).

Data sets were formed from relative DD parameters (de-
pendence (1)) measured on the engine in operation: high-pres-
sure rotor speed, D ;HPn  total pressure behind the fan, 
  
D *;FP  total pressure, D *

CT  and temperature, D *,CP  behind 

the compressor; fuel consumption, D ;FG  total temperature 
behind the turbine, D *;TT  ratio of total pressure behind the 
turbine to atmospheric pressure, D *.TP

Characteristics of TS classes for the considered GTE are 
given in Table 2. The values of the vector components were 
determined on the basis of data in studies [10, 11] and expert 
estimates.

When determining the values of D a
ka  (de-

pendences (6), (7)), it was assumed that K=6 
for all TS classes. At this value of K, the range 
of variation of ratio of the auxiliary scale to the 
main scale for the case of normal distribution 
in dependences (6), (7) can be estimated ap-
proximately as 0.5‒1.5.

An example of the training set is shown 
in Fig. 3. The control set can be obtained in a 
similar way at other initial states of generators 
of (pseudo)random numbers. Influence of mea-
surement errors was not taken into account in 
the numerical experiment.

Table 2

List and characteristics of classes of the engine technical state 

Class 
k

Defective 
assembly

Main scale of the GTE MMOP, 
min ,iaD

 
max
iaD Auxiliary scale Fault

1
Intact engine 

(no fault)

DaGF=–0.04…0.01, 
DаGHC =–0.04…0.01, 

Dаx=–0.04…0.01, 
DаAHT=–0.007…0.028, 
DaALT=–0.028…0.007

DahF, (6), 
DаhHC, (6), 
DаCС, (6), 
DаhHT, (7), 
DahLT, (6)

–

2 Fan
– air flow through the 

secondary duct of the fan 
DaGF=–0.1...–0.04

– efficiency factor of 
the secondary duct of 

the fan DahF, (6)

Fouling, growth of 
roughness, dents, blade 

fracturing, malfunc-
tion of the automatic 

control system 3
High pressure 

compressor 

– air flow through the 
high-pressure compressor 

DаGHC=–0.1...–0.04

– efficiency factor 
of the high-pressure 

compressor DаhHC, (6)

4
Combustion 

chamber
– fuel combustion efficiency 

Dаx=–0.1...–0.04
–

Chamber warping, foul-
ing or nozzle burn-out 

5
High pressure 

turbine 
– high-pressure turbine flow 

parameter DаAHT=0.028...0.07

– efficiency factor of 
high-pressure turbine 

DаhHT, (7)

Burn-out, melting, par-
tial fracture of blades

6
Low pressure 

turbine 
– low-pressure turbine flow pa-
rameter DaALT=–0.07...–0.028

 – efficiency factor 
of the low-pressure 
turbine DahLT, (6)

Coking, caking of 
blades

Table 1
Characteristics of chemical composition of natural gas

The pumped 
gas constitu-

ents

Weight (volume) composition of gas, %

Meth-
ane

Eth-
ane

Pro-
pane

Bu-
tane

Pen-
tane

Hydrogen 
sulfide

Carbon 
dioxide

Nitrogen

Minimum 
content, Ymin

40 
(63.7)

0.1 
(0.07)

0 0
0.2 

(0.01)
0

0 
(0)

1.1 
(0.5)

Maximum 
content, Ymax

97.9 
(99.2)

13.2 
(8.8)

22.1 
(12.6)

6.2 
(2)

4.1 
(3.4)

12.4 
(3.2)

8.9 
(5)

46 
(26)
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Fig. 3. Values of relative DDs in a set designed to train the 
network for recognition of 6 classes of TS of an aviation 

GTE (Table 2). Points 1‒50 belong to the first class, points 
51‒100 belong to the second class and so on. Relative DD of 
parameters are shown: rotational speed of the high-pressure 

rotor D ;HPn  full pressure behind the fan, D *;FP  full pressure, 

D *,CP  and temperature, D *,CT  behind the compressor; fuel 

consumption, D ;FG  temperature behind the turbine, D *;TT  
ratio of the total pressure behind the turbine to atmospheric 

pressure, D *
тP

5. 2. Forming the data set for the gas-pumping unit
In order to realize the proposed approach, the MMOP 

close in its characteristics to the gas-pumping unit GPU-Ts-
6.3/56M-1.45 was used [16]. The unit consists of the drive 
D-336 (low and high pressure rotors, a rotor of a power turbine 
with a rated power of 6.3 MW) and a supercharger N-196.

In addition to malfunctions of compressors, combustion 
chambers and turbines described in Table 2, an additional 
diagnosed fault was added: fouling of the supercharger. The 
scale of the natural gas flow through the supercharger unit, 
DaGS, was taken as the main TS parameter of this assembly 
in the MMOP (the range DaGS=(–0.03)...0.017 was taken for 
the intact supercharger and (–0.03)...(–0.072) for the fouled 
one. Scale of the efficiency factor of the supercharger unit, 
DahS, was taken as an auxiliary parameter.

Eight main classes of TS were simulated: a faultless engine, 
troubles in a low- or high-pressure compressor, a combustion 
chamber, a high- or low-pressure turbine, a power turbine, and 
a supercharger. Rotational speed of the power turbine, nPT, 
was selected as a regime parameter. Diagnosis was carried 
out in high modes close to the nominal. Values of the regime 
parameters of MMOP were in the following ranges: 

– pressure at the gas turbine unit inlet: 73.3...110.6 kPa; 
–  *

inT : 223... 323 K; 
– rotational speed of the power turbine, nPT : 

7,850... 8,300 rpm; 
– total pressure at the inlet to the supercharger: 

4,000... 8,000 kPa; 
– total temperature at the inlet to the super-

charger: 223... 333 K; 
– gas flow rate through the supercharger, Q: 

7,000, 000... 15,000,000 Nm3/day.
Simulation was carried out for two cases: gas 

composition known and unknown. In the latter case, 
when calculating standard values of the operating 
parameters, SP , it was assumed that the gas consisted 
of pure methane.

Thus, the numerical experiment has resulted in two data 
sets (Fig. 4). Each set point included the values of absolute 
DD (dependence (2)) of the following parameters: 

– rotation speeds of the low-pressure rotor, ΔnLP (%)
– the high-pressure rotor, ΔnHP (%); 
– total pressure, D *,CP  (kPa) behind the compressor;
– total temperature, D * ,LTT  (K) behind the low-pressure 

turbine;
– fuel consumption, DGF, (kg/s);
– total pressure, D *,SP  (kPa) behind the supercharger; 
– total temperature, D *,ST  (K) behind the supercharger.

6. Discussion of results: checking the possibility of 
diagnosing the considered malfunctions and refining the 

list of parameters used in diagnostics

6. 1. Discussion of the results obtained for the avia-
tion gas turbine engine

According to the data shown in Fig. 3, qualitative analysis 
of the capability to recognize the selected TS classes has been 
carried out. Direction and degree of DD deviation of classes 2‒ 
6 (points 51‒300) relative to deviations of class with no trou-
bles (points 1‒50) were analyzed. The analysis results are given 
in Table 3. Signs in Table 3 denote direction and degree of DD 
deviation corresponding to each TS class relative to the intact 
class. Signs , ¯ denote upward or downward DD shift, accord-
ingly. Signs , ¯¯ indicate significant degree of DD shift and 
signs , ¯ are used for insignificant shift. As can be seen from 
the data presented, all selected TS classes are well separated in 
the multidimensional DD space and can be recognized.

Table 3

Direction and degree of DD deviation in faulty GTE

DD

Class, k

Direction of DD deviation

D HPn D *
FP D *

CP D *
CT D *

TT D *
TP D FG

2 ¯ ¯¯ ¯¯ 0 0 ¯¯ ¯
3      0 

4 0 0 0  0 0 

5 ¯¯  ¯¯ ¯  0 ­­
6 ¯  0   0 

Values of the factors of pairwise correlation between the 
obtained DD values and the regime parameters were calcu-
lated for analysis of influence of conditions and operating 
modes on the DD, Table 4. The values obtained for correla-
tion factors were less than 0.07. This indicates that when 
using the DD to diagnose the engine, the regime parameters 
can be excluded from the sets.

 

Table 4

Factors of correlation between relative DDs of the GTE and regime 
parameters

DD

Op.  
param. R

HPnD *
FPD *

CPD *
CTD *

TTD *
TPD FGD

nLP 0.0399 0.00382 –0.0249 –0.0366 –0.0437 –0.0362 –0.0695

Т*
in –0.0041 –0.0073 –0.0274 –0.0150 –0.0011 0.0032 0.0153

Н 0.0006 –0.0077 0.0258 –0.0099 –0.0260 –0.0068 –0.0062

М –0.0370 –0.0590 –0.0552 –0.0506 –0.0151 –0.058 –0.0321
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6. 2. Discussion of the results obtained for GPU
As can be seen from the results obtained, when gas com-

position is known, the diagnostic deviations react well to the 
change in the TS of spools (Fig. 4, b). When gas composition 
is unknown (Fig. 4, a), this factor significantly increases 
spread of the DD values and can significantly impede the 
process of TS recognition.

According to the data shown in Fig. 4, b, qualitative 
analysis of ability of recognition of selected TS classes was 
performed. Direction and degree of DD shift of classes 2‒8 
(points 51‒400 relative to deviation of the intact class 
(points 1‒50)) were analyzed.

The analysis results are given in Table 5. As can be seen 
from the data presented, all selected TS classes are well separat-
ed in the multidimensional space of DD and can be recognized.

Table 5

Direction and degree of DD deviation in faulty GPUs

DD

Class k

DD deviation direction

DnLP DnHP D *
CP D *

LTT DGF D *
SP D *

ST

2  ­­ ¯  0 0 0

3 0 ¯ ¯  ­ 0 0

4 0 0 0 0 ­ 0 0

5 0 ¯¯ ¯¯  ­ ­­ ­­
6  ¯ 0 0 ­ 0 0

7 ¯¯ 0 ¯ ­ ­ 0 0

8       

As shown above, parameters characterizing operating 
conditions of the gas turbine drive had no significant effect 
on the obtained DD values. However, the data sets for GPU 
may also include lower heat of fuel combustion, Hu, flow of 
the gas pumped through the supercharger, Q, and the operat-
ing parameter of the model (power turbine rotational speeds, 
nPT). To estimate influence of these factors on the DD, values 
of the factors of correlation between these parameters and 
the obtained DD values were calculated. The calculation 
results are given in Table 6.

Table 6

Values of factors of correlation between the lower heat 
of gas combustion, the flow of gas pumped through the 

supercharger and the diagnostic deviations  
(gas composition unknown)

Oper-
ating 

parame-
ters, R

DnLP DnHP D *
CP D *

LTT DGF D *
SP D *

ST

Hu –0.419 –0.428 –0.43 –0.3 –0.462 –0.125 –0.377

Q –0.349 –0.345 –0.309 –0.225 –0.204 –0.548 –0.515

nPT –0.034 –0.156 –0.098 0.074 0.097 –0.111 –0.175

For a variant when the gas composition is known, all 
correlation factors are less than 0.2.

As can be seen from the data presented, effect of the nPT 
parameter is small and can be not taken into account in some 
cases. It is expedient to include Hu and Q parameters in the 
data sets when gas composition is unknown.

6. 3. Discussion: the method application problems and 
prospects

The presented material provides a sufficiently complete 
and exhaustive description of the method for obtaining 
training and control data sets intended for training static 
neural networks for diagnosticating GTE and GPU. The 
described method makes it possible to form data sets that 
simulate information obtained in the course of long-term 
operation of a park of similar objects. At the same time, 
although the paper deals only with training of neural net-
works, the information obtained can be used in development 
of diagnostic methods based on other approaches.

The described method can be further improved by in-
troducing concrete malfunctions (e.g. blade fouling, wear 
of labyrinth seals, improper adjustment of operation of the 
compressor guides vanes, etc.) instead of generalized fail-
ures (malfunction of the compressor, turbine, etc.). In this 
case, an opportunity appears to switch from diagnosing 
“to the depth of assembly” to diagnosing “to the depth of 

 

 

 

 

 

 

а                                                                                                             b 
 

Fig. 4. Values of absolute DD in the set designed to train the network to recognize 8 classes of GPU TS. Points 1‒50 belong 
to the first class, 51‒100 to the second class, etc. Gas composition is unknown (a), gas composition is unknown (b). DDs of 

the following parameters are shown: rotation speeds of low-pressure rotor, ΔnLP (%) and high-pressure rotor, ΔnHP (%); 

total pressure behind the compressor, D *,CP  (kPa); temperature behind the low-pressure turbine, D *
LTT  (K); fuel consumption, 

DGF (kg/s); total pressure, D *
SP  (kPa) and total temperature, D *

ST  (K) behind the supercharger 
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malfunction”. To do this, it is necessary to clarify the list of 
malfunctions and values of parameters characterizing these 
malfunctions (Table 1) as well as form and parameters of 
dependences (4)‒(7).

In conclusion, it is necessary to note that the main prob-
lem of using the proposed method consists in development and 
identification of its basic element, the mathematical model of 
the operation process of the second level of sophistication. To 
create it, it is necessary to have, at minimum, two-dimension-
al functional characteristics of all blade spools of the object. 
Besides, the process of developing such a model is laborious. 
For example, the volume of the code of the GPU MMOP in 
C++ language used in the study was about 2,000‒2,300 lines 
and its development and identification for the data of a real 
GPU took about six months. But on the other hand, this work 
has resulted in that developers have got a powerful, versatile, 
and multi-purpose research tool.

7. Conclusions

1. An algorithm was developed that makes it possible to 
generate data describing operation of an object with mal-
functions in the compressor and turbine spools, combustion 
chamber and supercharger. Its special feature is the use of 
scalable two-dimensional functional characteristics of the 
object blade spools in the mathematical model of its operat-
ing process. This, in turn, enables obtaining of a continuous, 
balanced description of the operation process of an object 
with any technical state of spools of its air-gas path. It was 
shown that all technical state classes obtained by simulation 
are well separated in the multidimensional space of diagnos-
tic deviations and can be recognized.

2. An algorithm was developed that makes it possible to 
vary regime parameters of the mathematical model of the 

object working process. As a result of analysis of the data 
obtained in the numerical experiment, it was shown that 
when using deviations of the measured values of parameters 
from the standard ones as diagnostic information, the regime 
parameters practically do not affect the result of diagnosis of 
the GTE and may be not included in the data sets for train-
ing of the neural network.

3. An algorithm was developed that enables modeling 
the effect of errors and gross errors of measuring parameters 
of the object operation process on the results obtained in a 
numerical experiment. The use of the developed algorithm 
provides the opportunity to acquire data for preparation of 
diagnostic neural networks which work steadily even in the 
presence of errors and gross errors occurred in measuring 
parameters of the operation process.

4. An algorithm was developed that takes into account 
arbitrary chemical composition of the working medium in 
the GPU supercharger and the effect of this factor on the 
diagnostic process has been studied. Diagnostic situations 
were considered when chemical composition of the pumped 
gas is known and unknown. It was shown that when gas 
composition is unknown, it is necessary to include the lower 
heat of combustion of the fuel gas and flow of the gas pumped 
through the supercharger in composition of the sought sets. 

5. A method for conducting a numerical experiment in 
order to obtain training and control sets for training stat-
ic neural networks diagnosing the air-gas path of the gas 
turbine engine and gas pumping units has been developed. 
Application of the developed method makes it possible to 
form data sets of required volumes that characterize classes 
with both single and multiple faults of the air-gas path at dif-
ferent stages of their formation. Besides, these sets simulate 
the results of measuring of the working process parameters 
corresponding to different conditions and operating modes 
as well as the parameters measurement errors.
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