
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/2 (97) 2019

6

one third of all software projects are successful, reliable and
worth spending.

Multitudes of errors creep into software at the initial
stages of its lifecycle. Vast majority of software-related ac-
cidents occur because of errors in specifications of require-
ments [2]. Software projects with requirement specifications
containing insufficiently accurate, incomplete and contra-
dictory information cannot be successful in realization [3].
In addition, the earlier the defect (error, violation, drawback,
malfunction) is revealed the cheaper its correction. There-

6

 T. Hovorushchenko, O. Pavlova, M. Bodnar, 2019

1. Introduction

Today’s mankind increasingly relies on software when
solving complex problems while the number of high-cost
software projects is growing rapidly. However, as statistics
[1] shows, the share of problem software projects (with over
expenditure of time or funds or with insufficient functional
[1]) is about half of all software projects. The share of unreal-
izable software projects (which are canceled and never used
[1]) is about 1/5 of all software projects. Consequently, only

INFORMATION TECHNOLOGY

DEVELOPMENT OF
AN INTELLIGENT

AGENT FOR
ANALYSIS OF

NONFUNCTIONAL
CHARACTERISTICS
IN SPECIFICATIONS

OF SOFTWARE
REQUIREMENTS

T . H o v o r u s h c h e n k o
Doctor of Technical Sciences, 	

Senior Researcher, Associate Professor,
Head of Department*

E-mail: tat_yana@ukr.net
O . P a v l o v a

Postgraduate Student*
E-mail: olya1607pavlova@gmail.com

M . B o d n a r
Postgraduate Student*

E-mail: nikas.bodnar@gmail.com
*Department of Computer Engineering &

System Programming
Khmelnytskyi National University

Instytutska str., 11, 	
Khmelnytskyi, Ukraine, 29016

Сьогоднi актуальною задачею є автоматизований аналiз
специфiкацiй вимог до програмного забезпечення (ПЗ) на
предмет достатностi iнформацiї щодо нефункцiйних харак-
теристик-складових якостi ПЗ. Проведений аналiз вiдомих
iнтелектуальних агентiв на основi онтологiчного пiдходу
показав, що вiдомi агенти не розв’язують задачу кiлькiсного
оцiнювання достатностi iнформацiї у специфiкацiї вимог до
ПЗ для визначення нефункцiйних характеристик ПЗ.

Задачею даного дослiдження є реалiзацiя iнтелекту-
ального агента на основi онтологiчного пiдходу для аналiзу
iнформацiї щодо нефункцiйних характеристик у специфiка-
цiях вимог до ПЗ.

Розроблено модель дiяльностi iнтелектуального аген-
та на основi онтологiчного пiдходу для оцiнювання специфi-
кацiй вимог до ПЗ. Вона вiдображає особливостi оцiнюван-
ня достатностi iнформацiї для визначення нефункцiйних
характеристик-складових якостi ПЗ. Розроблена модель є
теоретичним пiдґрунтям для реалiзацiї iнтелектуального
агента на основi онтологiчного пiдходу для оцiнювання спе-
цифiкацiй вимог до ПЗ.

Реалiзовано iнтелектуальний агент на основi онтологiч-
ного пiдходу для оцiнювання iнформацiї щодо нефункцiйних
характеристик у специфiкацiях вимог до ПЗ. Реалiзований
агент формує висновок про достатнiсть або недостат-
нiсть iнформацiї щодо нефункцiйних характеристик-скла-
дових якостi ПЗ у специфiкацiї вимог до реального ПЗ. Крiм
цього, вiн кiлькiсно оцiнює рiвень достатностi iнформацiї у
специфiкацiї вимог до реального ПЗ для визначення кожної
нефункцiйної характеристики ПЗ та для визначення всiх
нефункцiйних характеристик-складових якостi ПЗ разом.
Агентом надається список атрибутiв, якими варто допов-
нити специфiкацiю вимог для пiдвищення рiвня достатностi
її iнформацiї, а також вiзуалiзацiя прогалин у знаннях про
всi нефункцiйнi характеристики-складовi якостi ПЗ.

Результати функцiонування реалiзованого агента в
комплексi забезпечують пiдвищення рiвня достатностi
iнформацiї у специфiкацiї вимог до ПЗ. Розроблений iнте-
лектуальний агент дозволяє частково усунути людину з
процесiв опрацювання iнформацiї, уникнути втрат iстот-
ної iнформацiї i мiнiмiзувати виникнення помилок на раннiх
етапах життєвого циклу ПЗ

Ключовi слова: специфiкацiя вимог до програмного забез-
печення (ПЗ), нефункцiйнi характеристики ПЗ, iнтелекту-
альний агент на основi онтологiчного пiдходу

UDC 004.89:004.9
DOI: 10.15587/1729-4061.2019.154074

Information technology

7

fore, in order to provide required functionality and quality
of software, requirement specification study is obligatory.
This study objective consists in identifying and eliminating
drawbacks occurring at initial stages of software life cycle
and the facts of insufficient information relevant to theses
drawbacks. Although completeness of software requirements
is desirable, determination of completeness of the set of re-
quirements is not realistic as was proved in [4]. Consequent-
ly, the process of this study should include assessment of the
extent to which the specification reflects information about
the target software. Particular attention is required to the
requirements that characterize nonfunctional characteris-
tics of software [5].

Hence, the issue of the day consists in an automated
analysis of the specifications of requirements to software in-
formation sufficiency concerning nonfunctional component
characteristics of software quality. According to ISO 25010
[6], nonfunctional component characteristics of software
quality include Reliability, Functional Suitability, Perfor-
mance Efficiency, Compatibility, Maintainability, Portabili-
ty, Security, Usability.

2. Literature review and problem statement

Currently, when the era of semantic web evolves, on-
tology is a key technology. The notion of ontology in the
field of information technology was used for the first time
by Tom Gruber [7]. Ontologies are used for representation
of existing knowledge as well as acquisition, structuring of
this knowledge and formation of a new knowledge in the
subject field. Advantages of using ontologies include system
approach to studying the subject field, possibility of holistic
presentation of known information in the subject field, iden-
tification of knowledge duplications and gaps based on visu-
alization of missing logical links. In addition, it is ontologies
that provide the opportunity for automatic understanding
and analysis of information, elimination of human participa-
tion and minimization of information losses in the process of
its processing and gaining knowledge [7, 8].

The use of ontologies for software engineering makes it
possible to avoid repeated conceptualization of the subject
domain, reduce the use of resources at the early stages of
software life cycle and the number of conceptualization
errors [7–9].

Knowledge of the professionals already possessing such
experience is of significant value in improving reliability
of evaluation of nonfunctional component characteristics
of software quality. For example, knowledge of interaction
and correlation of nonfunctional attribute characteristics
is valuable since some of the attributes according to which
correlation takes place can be omitted at all. As a result,
accuracy and reliability of the estimates obtained, etc. can
be worsened. The effect of mutual correlation is mitigated by
identifying common attributes, ensuring their availability
in the specification of software requirements and improving
accuracy of their values. Consequently, information about
evaluation of nonfunctional component characteristics of
software quality (e. g., interrelation of nonfunctional char-
acteristics according to attributes) can conveniently be
presented in a form of ontologies that make it possible to
represent cause-and-effect relations between concepts.

Many studies are devoted to the idea of using ontologies
in software engineering. For example, methods and tools for

constructing software systems based on ontological models
of problems are proposed in [8, 9]. The authors of [8, 9]
suggest to use ontological models at all stages of software
life cycle through conceptualization of the subject field in
a context of the problems being solved. That is, necessary
essentials are distinguished in the subject field, their attri-
butes and constraints and dependences between them are
determined and ontology of the subject field which can fur-
ther be used by program writers is constructed. The authors
of [8, 9] have proved that the use of such an ontology of the
subject field simplifies the process of initial conceptualiza-
tion when developing software prevents conceptualization
errors at early stages of the software life cycle. However,
the use of such an approach is impossible if software is
developed for a subject field for which no ontology has yet
been developed. Besides, software development should take
into consideration requirements and standards not only in
the subject field but also software development standards
which in no way is taken into consideration in the approach
described in [8, 9]. Also, methods and tools for developing
software systems based on the ontological model of problems
do not allow to automate analysis of software requirement
specifications, in particular, sufficiency of their information
although automated processing of knowledge itself provides
minimization of information losses.

Approaches to tracing the software requirements based
on weighted ontologies were developed in [10, 11]. The au-
thors of [10] propose an ontological structure of traceability
of MUPRET multipurpose requirements for processing
heterogeneity of software requirements based on automatic
generation of traceability ratios. Accuracy of traceability
ratios generated by the MUPRET structure is verified
by comparing it with the set of ratios manually identified
by users. Weighted ontologies are used in [11] to process
natural language in the transition from the specification
of requirements written in a natural language to software
development. As the authors of [11] prove, namely ontologies
are capable of revealing non-compliance of requirements
presented in a natural language. The approaches presented
are aimed at elimination of heterogeneity or non-compliance
of existing requirements in specifications but do not verify
in any way whether all user’s needs and requirements have
been reflected in the specifications. Consequently, they are
not suitable for assessing sufficiency of information about
nonfunctional characteristics in the specifications of soft-
ware requirements.

An ontological model for describing and defining the
subject and operational knowledge on software quality was
developed in [12]. The authors of this study have proposed
an ontology that combines knowledge on the terminology
and semantic relations of SWEBOK, IEEE and ISO stan-
dards aimed at quality assurance. The developed ontology
simulates the process of the software life cycle and quality
assurance. However, quality assurance takes place only at
the end of the software life cycle for the finished program
code. Today, software quality is interpreted as its ability to
meet customer’s needs when used under certain conditions
[6]. Therefore, all necessary information about the custom-
er’s needs must already be laid down in the specification of
requirements to software, that is information sufficiency can
be already assessed based on the specification for further
achievement of software quality. The approach proposed in
[12] does not assure software quality at early stages of its life
cycle, in particular, does not assess information sufficiency

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/2 (97) 2019

8

concerning nonfunctional component characteristics of soft-
ware quality in the specifications of software requirements.

Ontologies and weighted ontologies of the Software En-
gineering subject field (Software Quality, Software Quality:
Metric Analysis, Specification of Software Requirements
sections) were developed in [13]. They are readable and
adaptable since they represent Standard ISO 25010:2011
widely used for various problems. These are ontological
reusable models that are relevant for solving the problem of
automated analysis of the specifications of software require-
ments as regards information sufficiency in order to improve
quality of software developed according to the specifications.
Therefore, these ontologies will be used for implementation
and operation of the intelligent agent being developed.

Ontologies provide possibility of access, understanding
and analysis of information by intelligent agents. In its op-
eration, the intelligent agent uses information obtained from
environment, analyzes it by comparison with the already
known facts and makes a decision on further actions based
on the results of this analysis [14]. The agent intelligence
consists in formation of new knowledge, in particular, cer-
tain conclusions and recommendations.

A number of studies are devoted to development of in-
telligent agents based on the ontological approach for the
software engineering field. For example, authors of [15] in-
vestigated the use of ontologies for agent-oriented software
engineering and experimentally confirmed benefits of using
ontological agents for software engineering. As a result of
this study, an agent proposed in [15] uses existing ontolog-
ical structures to write a program code based on specifica-
tions. Disadvantage of such an agent is that it does not verify
and validate correspondence of the requirements available in
the specifications to the needs of customers, does not assess
information sufficiency in the specification of requirements,
does not identify the needs that were not reflected in the re-
quirements (in particular, nonfunctional ones). Application
of the proposed agent may result in development of correct
software which, however, will be lacking quality because of
noncompliance with all customer needs.

Study [16] is dedicated to elimination of uncertainty
in software requirements and improvement of communica-
tion between the parties concerned through introduction
of intelligent agents based on the ontological approach.
Authors of [17] propose development of an ontology-based
intelligent agent to minimize existing semantic uncertainty
when developing a specification of software requirements
in a natural (Spanish) language. The proposed agent is also
used for automatic generation of main specification elements
and automatic plotting of objectives. The agents presented
in [16] and [17] are designed for elimination of uncertainty
in the existing requirement specifications but they do not
check whether all user requirements were represented or
whether these requirements are sufficient.

Ontological agent-oriented models are used in [18] to
formalize initial requirements to software in order to reduce
costs on the example of development of applications for Am-
bient Assisted Living system for patients with Parkinson’s
disease. The authors of [19] have proposed the basis of formal
presentation of requirements of resource-limited contextual
systems of critical application in a form of intelligent agents
based on the ontological approach. That is, the authors of
works [18, 19] provide just mechanisms based on the onto-
logical approach to formalize software requirements. Howev-
er, these approaches do not analyze requirements nor assess

sufficiency of requirements in the specification and do not
establish information losses in formation of requirements. To
say more, software projects with requirement specifications
containing insufficient or incomplete information cannot be
successful in realization.

Authors of [20] offer a task-oriented architecture based
on an agent-oriented paradigm and ontological design for
decision support systems. The proposed architecture makes
it possible to iteratively transfer functional requirements to
architectural components. But this architecture in no way
works with nonfunctional requirements: it does not check
them for completeness and sufficiency nor does transfer them
to the architectural components of the software being devel-
oped. Consequently, the approach proposed in [20] is also
unsuitable for automated analysis of software requirement
specifications for sufficiency of information on nonfunction-
al component characteristics of software quality.

Analysis of known intelligent agents based on the on-
tological approach has shown that well-known agents are
aimed either at automated development of the program code
according to the specification, formalization of the existing
requirements or, as a maximum, eliminate uncertainty in
requirements. They do not solve the problem of assessment of
information sufficiency in requirements to software based on
automated analysis of software requirement specifications.

In terms of assessing sufficiency of information in re-
quirements to software, assessment of sufficiency of software
security requirements is known for today [4, 21]. Authors of
[4, 21] provide validation metrics that use hazard analysis
as well as derivative requirements to software to mitigate
identified hazards in order to assess sufficiency of software
security requirements at the start of the software develop-
ment process. In particular, studies [4, 21] propose a new
model for validating security requirements by focusing on
sufficiency of hazard identification, analysis of hazards and
traceability of security requirements. Besides, authors of
[4, 21] prove that any metrics that measure depth of the caus-
al-factor analysis of software should be adapted to the stan-
dards of sufficiency measurement. Several metrics have been
introduced in [4, 21], in particular, a security requirement
indicator as a ratio of the number of security requirements
to the total number of requirements. The authors suggest
to make comparison of this indicator with a similar indica-
tor for another, already implemented software on the basis
of which a conclusion on security requirement sufficiency
can be drawn. Obviously, only sufficiency of the number
of security requirements can be estimated based on such a
metric but not the sufficiency of their information since un-
scrupulous developers can artificially increase the number of
requirements, for example, by their duplication. Another dis-
advantage of this approach is impossibility of interpretation
by comparing the proposed indicator for fundamentally new
software. In addition, this approach is not automated as the
authors did not propose a tool for automatic identification
and calculation of security requirements in the specification
of software requirements.

Another approach to assessing sufficiency of information
in software development consists in assessment of testing
sufficiency as achievement of levels of test coverage recom-
mended or approved by safety standards and industry rec-
ommendations [22]. This study proposes an empirical assess-
ment of sufficiency of testing for onboard software systems
taking into consideration software verification according to
the requirements set forth. However, this approach is aimed

Information technology

9

only at verification of software and requirements and not at
validation of the developed software and customer needs. In
addition, this approach uses specifications of requirements
solely as an input for the developed tool but does not check
for sufficiency of requirements in the specification.

One of solutions in assessing sufficiency of information
in specifications of software requirements is presented in
studies [5, 13] in which theoretical and applied principles of
information technology for assessing sufficiency of quality
information contained in the specifications of software re-
quirements are proposed. The principles developed in [5, 13]
are aimed at determining sufficiency of information on
quality in the software requirements but automation of such
evaluation is not realized in these works. Therefore, it is the
approach proposed in [5, 13] that will be further developed
by solution of the problem of automated analysis of the
software requirements set forth in specifications as regards
sufficiency of information on nonfunctional component
characteristics of software quality.

3. The aim and objectives of the study

The study objective was to automate analysis of the soft-
ware requirement specification for sufficiency of information
and improve the level of sufficiency of information on the
nonfunctional component characteristics of software quality
in the specification of requirements. Achievement of this ob-
jective should make it possible to partially eliminate human
participation in information processing and knowledge gain,
avoid loss of essential information and minimize occurrence
of errors at early stages of the lifecycle.

To achieve this objective, the following tasks were ad-
dressed:

– develop a model of activity and implement an intel-
ligent agent based on the ontological approach for assess-
ing information about nonfunctional characteristics in the
specification of software requirements (the agent will be
intelligent as it will provide new knowledge, in particular,
conclusions about sufficiency of information and recommen-
dations for its improvement);

– analyze information about nonfunctional characteris-
tics in the specification of software requirements using an
intelligent agent based on the ontological approach.

4. The model of activity of the intelligent agent
for analysis of nonfunctional characteristics in the

specification of software requirements

The proposed intelligent agent based on the ontological
approach uses in its operation base ontologies of nonfunc-
tional component characteristics of software quality (which
were developed in [5, 13]) as the facts known to it. It is the
ontologies that reflect cause-and-effect relations between
notions that allow to identify the attributes missing in the
specification and determine which nonfunctional component
characteristics of the software quality cannot be determined
without such attributes. For example, a fragment of the base
ontology for Compatibility implemented in Protégé 4.2 is
presented in Fig. 1. The agent compares these base ontolo-
gies with the information obtained from the specification of
requirements to actual software presented as real ontologies
to enable comparison of basic and real ontologies. Based on

this comparison of ontologies performed in Protégé 4.2, the
intelligent agent obtains a list of attributes missing in the
specification since the actual ontologies differ from the base
ones by the attributes that are missing in the specification.
The intelligent agent analyzes the resulting list of missing
attributes and dependences of nonfunctional attributes on
the attributes (by the base ontologies) and determines which
nonfunctional component characteristics of the software
quality cannot be determined without the missing attri-
butes. In addition, the intelligent agent counts the number
of missing attributes and nonfunctional characteristics that
cannot be calculated without certain attributes to form a
numerical estimate of sufficiency of information in the spec-
ifications of software requirements. The intelligent agent
then evaluates information in the specification of software
requirements and decides on further actions, in particular,
provides conclusions about sufficiency of the information
and recommendations for its improvement.

Fig. 1. Base ontology for Compatibility

Thus, the process of evaluating the requirements specifi-
cation by the intelligent agent consists of:

1) comparison of ontologies of nonfunctional component
characteristics of quality of actual software with base on-
tologies of nonfunctional component characteristics of soft-
ware quality in order to identify the attributes absent in the
specification of requirements to actual software according to
which real ontologies were built;

2) identification of sub-characteristics and nonfunc-
tional component characteristics of software quality which
cannot be calculated on the basis of the attributes in the
specification of requirements to actual software;

3) drawing up a conclusion on sufficiency or insufficien-
cy of information in the specification of requirements to
determine each nonfunctional characteristic of the software
separately and to determine all nonfunctional characteris-
tics of the software in general;

4) calculation of numerical estimates of the level of suf-
ficiency of the information available in the specification of
requirements for determining each nonfunctional character-
istic of the software by formula (1):

1
,

jk

i
j

i i

j
j

qm
k

qn
D

k

=

 
− 

 
=

∑
			 (1)

where kj is the number of sub-characteristics of the j-th non-
functional characteristics of the software (j=1...8 since the
Standard ISO 25010 [6] specifies exactly 8 nonfunctional
component characteristics of software quality), qmi is the

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/2 (97) 2019

10

number of requirements missing in the specification for real
software of attributes for the i-th sub-characteristic of the
j-th nonfunctional characteristic of the software, qni is the
number of required attributes for the i-th sub-characteris-
tic of the j-th nonfunctional characteristic of the software
(determined by the base ontologies for each nonfunctional
component characteristic of software quality);

5) calculation of a numerical estimate of the level of
sufficiency of the information available in the specification
of requirements for determination of all nonfunctional com-
ponent characteristics of software quality by formula (2):

1
,

k
j

j j

qmc
k

qnc
D

k
=

 
− 

 
=

∑
			 (2)

where k is the number of nonfunctional component charac-
teristics of software quality (k=8 according to ISO 25010
[6]), qmcj is the number of requirements to the actual
attribute software missing in the specification for the j-th
nonfunctional characteristic of software, qncj is the number
of attributes required for the j-th nonfunctional character-
istic of the software (determined by the base ontologies for
each nonfunctional component characteristic of software
quality);

6) visualization of gaps in knowledge of nonfunctional
component characteristic of software quality.

The proposed agent is intelligent as it automatically
processes available knowledge (requirements to nonfunc-
tional characteristics presented in a form of ontologies)
and forms new knowledge (conclusions on the level of in-
formation sufficiency and recommendations for improving
the level of information sufficiency in the specification of
requirements).

This intelligent agent does not work with fuzzy data
since the task of assessing information sufficiency does not
imply irregularity. The required attribute is either present in
the specification or absent in it and there is a drop in the level
of information sufficiency to a value that depends on how
many nonfunctional characteristics depend on this attribute
(correlate according to it).

Let:

_\ (),Fs Fs Fs Fs realSMM O O O= ∩

where SMMFs={fsa1,..., fsa(19-m)} is the set of attributes
of Functional Suitability characteristics absent in the
specification of requirements to actual software as well as
the number of Functional Suitability characteristics that
cannot be calculated on the basis of available attributes (re-
quired number of attributes is defined by ISO 25023:2016
[23]); OFs is the base ontology of Functional Suitability;
OFs_real is the ontology of Functional Suitability for actual
software;

_\ (),Pe Pe Pe Pe realSMM O O O= ∩

where SMMPe={pea1,..., pea(30-n)} is the set of attributes of
Performance Efficiency sub-characteristics absent in the
specification of requirements to actual software as well as
the number of Performance Efficiency sub-characteristics
that cannot be calculated based on the available attri-
butes; OPe is the base ontology of Performance Efficiency;

OPe_real is the ontology of Performance Efficiency for
actual software;

_\ (),Ub Ub Ub Ub realSMM O O O= ∩

where SMMUb={uba1,..., uba(56-k)} is a set of attributes of
sub-characteristics. Usability of the requirements absent in
the specification of requirements to actual software as well
as the number of sub-characteristics of Usability that cannot
be calculated based on available attributes; OUb is the base
ontology of Usability; OUb_real is the ontology of Usability
for actual software;

_\ (),Rb Rb Rb Rb realSMM O O O= ∩

where SMMRb={rba1,…, rba(35-o)} is the set of attributes of
the Reliability sub-characteristics absent in the specifica-
tion of requirements to the actual software as well as the
number of sub-characteristics of Reliability that cannot be
calculated based on the available attributes; ORb is the base
ontology of Reliability; ORb_real is the ontology of Reliability
for actual software;

_\ (),Cb Cb Cb Cb realSMM O O O= ∩

where SMMCb={cba1,…, cba(12-p)} is the set of attributes of
Compatibility sub-characteristics absent in the specification
of requirements to the actual software as well as the number
of Compatibility sub-characteristics that cannot be calculat-
ed based on available attributes; OCb is the base ontology of
Compatibility; OCb_real is the ontology of Compatibility for
actual software;

_\ (),Scr Scr Scr Scr realSMM O O O= ∩

where SMMScr={scra1,…, scra(29-q)} is the set of attributes of
the Security sub-characteristics absent in the specification
of requirements to actual software as well as the number of
Security sub-characteristics that cannot be calculated based
on available attributes; OScr is the base ontology of Security;
OScr_real is the ontology of Security for actual software;

_\ (),Mb Mb Mb Mb realSMM O O O= ∩

where SMMMb={mba1,…, mba(39-r)} is the set of attributes of
the Maintainability sub-characteristics absent in the spec-
ification of requirements to actual software as well as the
number of Maintainability sub-characteristics that cannot
be calculated based on the available attributes; OMb is the
base ontology of Maintainability; OMb_real is the ontology of
Maintainability for the actual software;

_\ (),Pb Pb Pb Pb realSMM O O O= ∩

where SMMPb={pba1,…, pba(22-l)} is the set of attributes of
Portability sub-characteristics absent in the specification of
requirements to the actual software as well as the number of
Portability sub-characteristics that cannot be calculated based
on available attributes; OPb is the base ontology of Portability;
OPb_real is the ontology of Portability for the actual software.

Production rules for drawing conclusions on sufficiency
or insufficiency of information in the specification of require-
ments for determination of each nonfunctional component
characteristic of software quality:

Information technology

11

– for Functional Suitability:

"SRS information is sufficient for Functional Suitability"

"SRS information is insufficient for Functional Suitability";
Fsif SMM then

else

= ∅

– for Performance Efficiency:

"SRS information is sufficient for Performance Efficiency"

"SRS information is insufficient for Performance Efficiency";
Peif SMM then

else

= ∅

– for Usability:

"SRS information is sufficient for Usability"

"SRS information is insufficient for Usability";
Ubif SMM then

else

= ∅

– for Reliability:

"SRS information is sufficient for Reliability"

"SRS information is insufficient for Reliability";
Rbif SMM then

else

= ∅

– for Compatibility:

"SRS information is sufficient for Compatibility"

"SRS information is insufficient for Compatibility";
Cbif SMM then

else

= ∅

– for Security:

"SRS information is sufficient for Security"

"SRS information is insufficient for Security";
Scrif SMM then

else

= ∅

– for Maintainability:

"SRS information is sufficient for Maintainability"

"SRS information is insufficient for Maintainability";
Mbif SMM then

else

= ∅

– for Portability:

"SRS information is sufficient for Portability"

"SRS information is insufficient for Portability".
Pbif SMM then

else

= ∅

The production rule for drawing up a conclusion on suffi-
ciency or insufficiency of information in the specification of
requirements for determination of all nonfunctional compo-
nent characteristics of software quality:

(

)

"SRS information is sufficient"

"SRS information is insufficient".

Fs Pe Ub Rb

Cb Scr Mb Pb

if SMM SMM SMM SMM

SMM SMM SMM SMM

then

else

∪ ∪ ∪ ∪
∪ ∪ ∪ ∪ = ∅

The developed model of activity of the intelligent agent
based on the ontological approach for evaluation of infor-
mation about nonfunctional requirements in specifications
reflects peculiarities of estimation of information sufficiency
to determine nonfunctional component characteristics of
software quality. This model serves as a theoretical basis
for implementation of an intelligent agent based on the on-
tological approach for evaluating specifications of software
requirements.

The method of activity of an intelligent agent based on
the ontological approach for assessment of information about
nonfunctional requirements in specifications of software
requirements was developed in [24].

5. Analysis of nonfunctional
characteristics in specifications of

software requirements with the help of
the intelligent agent

Based on the proposed model and the
developed method, an intelligent agent based
on the ontological approach was implement-
ed to assess the specification of software re-
quirements in PHP language using the Pro-
tégé 4.2 system (for work with ontologies).

Analysis of the information in the Spe-
cific Requirements section (in accordance
with Standard ISO 29148:2011 [25]) (this
particular section of the specification has At-
tributes of the Software System subsection
which may contain values of all attributes
necessary to determine the nonfunctional
component characteristics of software quali-
ty of the specification of requirements to the
software of transport and logistics system of
Gilea Ltd., Ukraine) has provided the op-
portunity of building ontologies of nonfunc-
tional characteristics for actual software. In
accordance with the developed model and
the method of activity, the intelligent agent
based on the ontological approach performs
comparison of ontologies of nonfunctional
characteristics for actual software with the
base ontologies of nonfunctional component
characteristics of software quality.

As a result of this comparison, the
intelligent agent based on the ontological
approach has provided a set of attributes
missing in the specification of software
requirements for the Gilea transportation
and logistics system:

– for Usability: Number of IO Data
Items, Function Understandability,
Number of Tasks, Help Accessibility, Op-

eration Time, Number of Screens or Forms, Number of
Interface Elements, Number of Unsuccessfully Recovered
Situations, Number of Functions Implemented with the
User Error Tolerance, Number of Interface Graphical
Elements, Degree of Ergonomic Attractiveness, Freedom
from Risk for Users with Specified Disabilities;

– for Functional Suitability: Functional Adequacy,
Functional Implementation Completeness, Operation Time,
Number of Data Items;

– for Performance Efficiency: Operation Time, Number
of Tasks, Mean Amount of Throughput, Number of Failures,
IO Loading Limits, Maximum Memory Utilization, Size of
Database;

– for Reliability: Operation Time, Number of Failures,
Number of Resolved Failures, Number of Breakdowns;

– for Compatibility: Operation Time, Number of Fail-
ures, Number of Data Items, Data Exchangeability;

– for Security: Operation Time, Number of Data Items,
Access Controllability, Number of Access Types, Number of
Provided Authentication Methods, Number of Events Pro-
cessed using Digital Signature;

– for Maintainability: Operation Time, Number of Fail-
ures, Number of Resolved Failures, Number of Variables,
Number of Data Items;

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/2 (97) 2019

12

– for Portability: Operation Time, Number of Data
Items, Number of Data Structures.

The analysis of influence of each element of the set of
missing attributes on nonfunctional characteristics and
their sub-characteristics carried out by an implemented in-
telligent agent based on the ontological approach has made
it possible to calculate the number of missing attributes for
sub-characteristics of each nonfunctional characteristic. In
addition, this analysis has enabled drawing of a conclusion
that based on the requirements to real software of attributes
available in the specification, it is impossible to calculate
sub-characteristics of nonfunctional characteristics, such as:

– sub-characteristics of Usability: Appropriateness
Recognizability, Learnability, Operability, User Error Pro-
tection, User Interface Aesthetics, Accessibility, that is,
information in this specification is insufficient to determine
all 6 Usability sub-characteristics;

– sub-characteristics of Functional Suitability: Func-
tional Completeness, Functional Correctness, Functional
Appropriateness, that is, information in this specification
is insufficient to determine all 3 Functional Suitability
sub-characteristics;

– sub-characteristics of Performance Efficiency: Time
Behavior, Resource Utilization, Capacity, that is, the infor-
mation in this specification is insufficient to determine all
3 Performance Efficiency sub-characteristics;

– sub-characteristics of Reliability: Maturity, Availabil-
ity, Fault Tolerance, Recoverability, that is, information in
this specification is insufficient to determine all 4 Reliability
sub-characteristics;

– sub-characteristics of Compatibility: CoExistence, In-
teroperability, that is, information in this specification is insuf-
ficient to determine both sub-characteristics of Compatibility;

– sub-characteristics of Security: Confidentiality, In-
tegrity, NonRepudiation, Authenticity, that is, information
in this specification is insufficient to determine 4 (of 5)
sub-characteristics of Security;

– sub-characteristics of Maintainability: Modularity,
Analyzability, Modifiability, Testability, that is, information
in this specification is insufficient to determine 4 (of 5)
sub-characteristics of Maintainability;

– sub-characteristics of Portability: Adaptability, Re-
placeability, that is, information in this specification is insuf-
ficient to determine 2 (of 3) sub-characteristics of Portability.

On the basis of the analysis, the implemented intelli-
gence agent has formed a conclusion about insufficiency of
information in the specification of requirements to software
of Gilea Ltd. transport and logistics system for determining
all nonfunctional characteristics. Numerical estimates of the
level of information sufficiency in the specification of soft-
ware requirements of the Gilea Ltd transport and logistics
system for determination of all nonfunctional component
characteristics of software quality are as follows:

– to determine Usability:

2 3 3 2 3 1
6

6 8 13 11 6 5
0,70;

6UbD

  − + + + + +    
= =

– to determine Functional Suitability:

2 3 3
3

4 5 6
0,47;

3FsD

  − + +    
= =

– to determine Performance Efficiency:

3 4 3
3

7 14 5
0,56;

3PeD

  − + +    
= =

– to determine Reliability:

3 1 2 2
4

14 4 5 7
0,71;

4RbD

  − + + +    
= =

– to determine Compatibility:

3 2
2

4 5
0,43;

2CbD

  − +    
= =

– to determine Security:

4 4 1 0 1
5

10 8 2 2 1
0,52;

5ScrD

  − + + + +    
= =

– to determine Maintainability:

4 0 2 2 2
5

7 6 6 8 6
0,70;

5MbD

  − + + + +    
= =

– to determine Portability:

3 0 1
3

11 4 3
0,80.

3PbD

  − + +    
= =

Numerical estimate of the level of sufficiency of infor-
mation for determination of all nonfunctional component
characteristics of software quality available in the specifi-
cation of software requirements of Gilea Ltd. transport and
logistics system is as follows:

14 8 10 8 5 10 10 4

8
49 15 26 30 9 23 33 18

0,63.
8

D

  − + + + + + + +    
= =

For example, the implemented intelligent agent has pro-
vided the following conclusion: “The available attributes in
the analyzed specification are insufficient to determine all
nonfunctional characteristics. Levels of information suf-
ficiency in the analyzed specification: 70 % for Usability;
47 % for Functional Suitability; 56 % for Performance Ef-
ficiency; 71 % for Reliability; 43 % for Compatibility; 52 %
for Security; 70 % for Maintainability; 80 % for Portability;
63 % for all nonfunctional characteristics in general. The
specification needs to be supplemented with attributes for all
nonfunctional characteristics”.

The intelligent agent has also provided visualization of
gaps in knowledge of all nonfunctional characteristics. This
visualization is presented in Fig. 2–9 where the missing
attributes are labeled as crossed out from the base ontology
implemented in Protégé 4.2 and the sub-characteristics
needing more attributes for their determination are encir-
cled in the corresponding base ontology.

Information technology

13

Fig. 2. Visualization of knowledge gaps in Usability

Fig. 3. Visualization of knowledge gaps in Functional Suitability

Fig. 4. Visualization of knowledge gaps in Performance Efficiency

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/2 (97) 2019

14

Fig. 5. Visualization of knowledge gaps in Reliability

Fig. 6. Visualization of knowledge gaps in Compatibility

Fig. 7. Visualization of knowledge gaps in Security

Fig. 8. Visualization of knowledge gaps in Maintainability

Information technology

15

To conduct another experiment, the specification of re-
quirements to the actual software of Deimos Ltd., Ukraine,
automatic control system of production processes was used.
Analysis of information in the Specific Requirements sec-
tion of this specification has made it possible to build ontol-
ogies of nonfunctional characteristics for actual software.
In accordance with the developed model and the method of
activity, the realized intelligent agent has performed com-
parison of real ontologies with the base ontologies of non-
functional component characteristics of software quality.
As a result of this comparison, the intelligent agent based
on the ontological approach has provided the following set
of missing attributes in the specification of requirements
to software of Deimos Ltd. automatic control system of
production processes:

– for Usability: Number of Functions, Number of IO
Data Items, Number of Tutorials, Number of Tasks, Com-
pleteness of User Documentation and/or Help Facility,
Number of Screens or Forms, Number of IO Related Errors,
Number of Interface Elements, Number of Easily Under-
stood Messages, Total Number of Error Conditions Tested,
Total Number of Incorrect Operation Patterns, Number of
Interface Graphical Elements, Degree of Ergonomic Attrac-
tiveness, Satisfaction of Users with Specified Disabilities;

– for Functional Suitability: Number of Functions,
Functional Adequacy, Number of Data Items, Computation-
al Accuracy;

– for Performance Efficiency: Number of Tasks, Number
of Evaluations, Number of Failures, Number of IO Related
Errors, Number of Data Items, Number of Memory Related
Errors, Maximum Memory Utilization, Size of Database;

– for Reliability: Number of Failures, Number of Test
Cases, Number of Resolved Failures, Failure Density Against
Test Cases, Number of Observed Breakdowns, Number of
Functions, Number of Breakdowns, Restartability;

– for Compatibility: Number of Failures, Number of
Functions, Number of Data Items, Number of Data Formats
To Be Exchanged, Number of Interface Protocols;

– for Security: Number of Test Cases, Number of Data
Items, Number of Access Types, Number of Data Items To
Be Required Encryption/Decryption, Number of Events
Processed Using Digital Signature, Number of Accesses to
System and Data Recorded in the System Log, Number of
Provided Authentication Methods;

– for Maintainability: Number of Failures, Number
of Resolved Failures, Number of Functions, Number of
Modules, Variability Richness, Component Replaceability,
Number of Data Items, Number of Diagnostic Functions
Required, Number of Test Cases, Number of Checkpoints;

– for Portability: Number of
Functions, Number of Data Items,
Number of Data Structures, Num-
ber of Setup Operations, Number
of Installation Steps.

The analysis of influence of each
element of the set of missing attri-
butes on nonfunctional character-
istics and their sub-characteristics
which was carried out by the imple-
mented intelligent agent based on
the ontological approach has made
it possible to calculate the number of
missing attributes for sub-character-
istics of each nonfunctional charac-

teristic. In addition, this analysis has made it possible to draw a
conclusion that it is impossible to calculate all sub-characteris-
tics of nonfunctional characteristics based on the requirements
to real software of attributes contained in the specification.

On the basis of the analysis, the implemented intelligence
agent has provided the following conclusion: “The attributes
available in the analyzed specification are insufficient to
determine all nonfunctional characteristics. Levels of in-
formation sufficiency in the analyzed specification: 64 % for
Usability; 59 % for Functional Suitability; 65 % for Perfor-
mance Efficiency; 60 % for Reliability; 43 % for Compati-
bility; 45 % for Security; 57 % for Maintainability; 52 % for
Portability; 59 % for all nonfunctional characteristics taken
together. There is a need to complement this specification
with attributes for all nonfunctional characteristics”.

The intelligent agent has also provided for visualization
of gaps in knowledge of all nonfunctional characteristics.
This visualization is similar to visualization in the first ex-
periment presented in Fig. 2–9. This visualization provides
the user with a list of attributes missing in the specification
of requirements to determine the nonfunctional component
characteristics of software quality. In addition, it is this vi-
sualization that reflects what sub-characteristics are affect-
ed by this or that attribute and how much. After analyzing
the visualization of knowledge gaps provided by the agent,
developers can determine which attributes should be given
priority to be entered to the specification of requirements in
order to increase level of information sufficiency.

6. Discussion of results obtained in functioning of the
developed intelligent agent based on the ontological

approach

The developed model of activity and the implemented
intelligent agent based on the ontological approach have
provided an opportunity to automate analysis of specifi-
cations of requirements to software for sufficiency of their
information. Automation of analysis of specifications of
requirements to software has become possible due to the
use of ontologies in functioning of the developed agent. It is
ontologies that have provided detection of duplications and
gaps in knowledge based on representation of missing logical
links through visualization of cause-and-effect relations be-
tween notions and domain conceptualization by fixation of
essences and relations. Such visualization of missing logical
links reflects which attributes are not enough in the speci-
fication, which nonfunctional component characteristics of
software quality are influenced by the lack of certain attri-

Fig. 9. Visualization of knowledge gaps in Portability

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/2 (97) 2019

16

butes and the level of information sufficiency in a particular
specification.

Unlike the agents developed in [15‒20], the implement-
ed intelligence agent was specially aimed at automation of
evaluation of information sufficiency as regards the non-
functional component characteristics of software quality in
the specifications of requirements. Thus, it represents devel-
opment of the concept of assessing information sufficiency
given in [5, 13].

Intelligence of the implemented intelligent agent lies not
only in drawing conclusions about sufficiency or lack of in-
formation and providing numerical estimates of the level of
information sufficiency in the specification of requirements.
It also recommends supplementing this specification with
attributes necessary to determine the nonfunctional com-
ponent characteristics of software quality (with providing
a list and visualization of missing attributes) as analysis has
shown in Section 5. If the specification writers pay attention
to the agent’s recommendations and supplement the specifi-
cation with the necessary attributes, the level of information
sufficiency in the specification of requirements necessary to
determine the nonfunctional component characteristics of
software quality increases.

For example, let the developers add the following
attributes for Security in the specification of software
requirements of Gilea Ltd. transport and logistics system:
Access Controllability, Number of Access Types, Number
of Provided Authentification Methods, Number of Events
Processed Using Digital Signature. Then, the numerical
estimate of the level of information sufficiency in this spec-
ification to determine Security will be as follows upon this
addition:

2 2 0 0 0
5

10 8 2 2 1
0,91.

5ScrD

  − + + + +    
= =

Thus, completing the requirements specification with
four attributes for Security will increase the level of infor-
mation sufficiency to define Security by 39 % (from 52 %
to 91 %). Accordingly, increase in the level of information
sufficiency for one of the nonfunctional characteristics
will result in an increase in the level of information
sufficiency to determine all nonfunctional component
characteristics of software quality. In addition, increase
in the level of information sufficiency for one of the non-
functional characteristics can also have a positive effect
on the level of information sufficiency for other non-
functional characteristics. After all, the used ontologies
just show a correlation of nonfunctional attributes, that
is, they instruct the user: which attributes need to be
included in the specification as a matter of priority for a
more rapid growth of information sufficiency. The raised
level of information sufficiency for several nonfunctional
characteristics will result in an even greater increase in
information sufficiency to determine all nonfunctional
component characteristics of software quality.

Consequently, the developed intelligent agent based on
the ontological approach has provided an increase in the level
of information sufficiency in the specification of software
requirements to determine eight nonfunctional component
characteristics of software quality. This is what distinguishes
it from the known approaches described in [4, 21] which enable

evaluation of information sufficiency just for one nonfunc-
tional characteristic of software (Security) and the approach
described in [22] is aimed at determining sufficiency of testing
taking into consideration verification of software correspon-
dence to the assigned requirements.

The developed ontology-based intelligent agent can be
used for any software. Availability of a specification of soft-
ware requirements is its only restriction.

Disadvantage of the proposed solution consists in the
fact that information on the nonfunctional characteristics
necessary for formation of real ontologies is selected currently
from the specification of requirements to actual software in a
manual way. To do this, the user opens base ontology of Soft-
ware Engineering subject field (Software Quality section) and
revises the relevant section of the specification for presence of
the attributes specified in the base ontology. It is planned to
automate this stage in the future: another agent will be devel-
oped that will conduct semantic analysis of the specification
written in a natural language in a search for the attributes
necessary to determine the nonfunctional component charac-
teristics of software quality.

7. Conclusions

A model of activity of the intelligent agent based on the
ontological approach for evaluation of the specification of
software requirements has been developed. It is based on
a comparative analysis of ontologies and is a theoretical
basis for implementation of the intelligent agent based on
the ontological approach. The intelligent agent has been
implemented. It operates on the basis of the developed model
and assesses sufficiency of information in the specification
of requirements to determine all nonfunctional component
characteristics of software quality. The implemented intelli-
gent agent provides a conclusion about sufficiency or lack of
information in the specification. In addition, it provides nu-
merical estimates of information sufficiency to determine all
nonfunctional characteristics of the software and determine
all nonfunctional component characteristics of software
quality. The agent also forms a list of attributes which should
be added to the specification of requirements to raise level
of sufficiency of its information and provides visualization
of gaps in the knowledge of all nonfunctional component
characteristics of software quality. Consequently, the imple-
mented intelligent agent ensures automation of analysis of
specifications of requirements to software for sufficiency of
their information concerning the nonfunctional component
characteristics of software quality. Thus, the represented
agent enables partial elimination of human participation in
processing information and gaining knowledge.

Information on nonfunctional characteristics in the
specification of software requirements was analyzed with
the help of the developed intelligent agent based on the on-
tological approach. The analysis has shown that all results of
operation of the realized intelligent agent based on the onto-
logical approach ensure in aggregate an increase in the level
of information sufficiency in the specification of require-
ments to software to determine nonfunctional component
characteristics of software quality. In addition, the results of
operation of the implemented intelligent agent are aimed at
avoiding loss of essential information and minimizing error
occurrence at the early stages of the software life cycle.

Information technology

17

References

1.	 Hastie S., Wojewoda S. Standish Group 2015 Chaos Report – Q&A with Jennifer Lynch. URL: http://www.infoq.com/articles/

standish-chaos-2015

2.	 McConnell S. Code complete. Redmond, 2013. 896 p.

3.	 Levenson N. G. Engineering a safer world: systems thinking applied to safety. Cambridge, 2012. 560 p.

4.	 Cruickshank K. J. A validation metrics framework for safety-critical software-intensive systems. Monterey, 2009. 144 p.

5.	 Hovorushchenko T., Pomorova O. Information technology of evaluating the sufficiency of information on quality in the software

requirements specifications // CEUR-WS. 2018. Vol. 2104. P. 555–570. URL: http://ceur-ws.org/Vol-2104/paper_228.pdf

6.	 ISO/IEC 25010:2011. Systems and Software Engineering. Systems and Software Quality Requirements and Evaluation (SQuaRE).

System and Software Quality Models. Geneva, 2011. 34 p.

7.	 Gruber T. R. A translation approach to portable ontology specifications // Knowledge Acquisition. 1993. Vol. 5, Issue 2. P. 199–220.

doi: https://doi.org/10.1006/knac.1993.1008

8.	 Burov E. Complex ontology management using task models // International Journal of Knowledge-Based and Intelligent Engineer-

ing Systems. 2014. Vol. 18, Issue 2. P. 111–120. doi: https://doi.org/10.3233/KES-140291

9.	 Burov E., Pasitchnyk V., Gritsyk V. Modeling software testing processes with task ontologies // British Journal of Education and

Science. 2014. Vol. 2, Issue 6. P. 256–263.

10.	 Assawamekin N., Sunetnanta T., Pluempitiwiriyawej C. Ontology-based multiperspective requirements traceability framework //

Knowledge and Information Systems. 2009. Vol. 25, Issue 3. P. 493–522. doi: https://doi.org/10.1007/s10115-009-0259-2

11.	 Ontology and Model Alignment as a Means for Requirements Validation / Kof L., Gacitua R., Rouncefield M., Sawyer P. //

2010 IEEE Fourth International Conference on Semantic Computing. 2010. doi: https://doi.org/10.1109/icsc.2010.95

12.	 An ontological approach to model software quality assurance knowledge domain / Bajnaid N. O., Benlamri R., Pakstas A., Salek-

zamankhani Sh. // Lecture Notes on Software Engineering. 2016. Vol. 4, Issue 3. P. 193–198.

13.	 Hovorushchenko T., Pomorova O. Ontological approach to the assessment of information sufficiency for software quality determi-

nation // CEUR-WS. 2016. Vol. 1614. P. 332–348.

14.	 Wooldridge M., Jennings N. R. Intelligent agents: theory and practice // The Knowledge Engineering Review. 1995. Vol. 10,

Issue 2. P. 115–152. doi: https://doi.org/10.1017/s0269888900008122

15.	 Freitas A., Bordini R. H., Vieira R. Model-driven engineering of multi-agent systems based on ontologies // Applied Ontology. 2017.

Vol. 12, Issue 2. P. 157–188. doi: https://doi.org/10.3233/ao-170182

16.	 Exploring an Ontological Approach for User Requirements Elicitation in the Design of Online Virtual Agents / Ossowska K.,

Szewc L., Weichbroth P., Garnik I., Sikorski M. // Lecture Notes in Business Information Processing. 2016. P. 40–55. doi: https://

doi.org/10.1007/978-3-319-46642-2_3

17.	 Lezcano-Rodriguez L. A., Guzman-Luna J. A. Ontological characterization of basics of KAOS chart from natural language //

ITECKNE. 2016. Vol. 13, Issue 2. P. 157–168. doi: https://doi.org/10.15332/iteckne.v13i2.1482

18.	 García-Magariño I., Gómez-Sanz J. J. An Ontological and Agent-Oriented Modeling Approach for the Specification of Intelligent

Ambient Assisted Living Systems for Parkinson Patients // Lecture Notes in Computer Science. 2013. P. 11–20. doi: https://

doi.org/10.1007/978-3-642-40846-5_2

19.	 Rakib A., Faruqui R. U. A Formal Approach to Modelling and Verifying Resource-Bounded Context-Aware Agents // Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. 2013. P. 86–96. doi: https://

doi.org/10.1007/978-3-642-36642-0_9

20.	 A Task-based Support Architecture for Developing Point-of-care Clinical Decision Support Systems for the Emergency Department /

Michalowski W., O’Sullivan D., Farion K., Sayyad-Shirabad J., Kuziemsky C., Kukawka B., Wilk S. // Methods of Information in

Medicine. 2013. Vol. 52, Issue 01. P. 18–32. doi: https://doi.org/10.3414/me11-01-0099

21.	 Hazard Analysis and Validation Metrics Framework for System of Systems Software Safety / Michael J. B., Shing M.-T., Cruick-

shank K. J., Redmond P. J. // IEEE Systems Journal. 2010. Vol. 4, Issue 2. P. 186–197. doi: https://doi.org/10.1109/jsyst.2010.

2050159

22.	 Baker R., Habli I. An Empirical Evaluation of Mutation Testing for Improving the Test Quality of Safety-Critical Software //

IEEE Transactions on Software Engineering. 2013. Vol. 39, Issue 6. P. 787–805. doi: https://doi.org/10.1109/tse.2012.56

23.	 ISO 25023:2016. Systems and Software Engineering. Systems and Software Quality Requirements and Evaluation (SQuaRE).

Measurement of System and Software Product Quality. Geneva, 2016. 45 p.

24.	 Hovorushchenko T., Pavlova O. Method of Activity of Ontology-Based Intelligent Agent for Evaluating Initial Stages of the

Software Lifecycle // Advances in Intelligent Systems and Computing. 2019. P. 169–178. doi: https://doi.org/10.1007/978-3-319-

97885-7_17

25.	 ISO/IEC/IEEE 29148:2011. Systems and Software Engineering. Life Cycle Processes. Requirements Engineering. Geneva,

2011. 28 p.

