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1. Introduction

Mathematical modeling of processes of different nature 
is known to lead to the need to explore non-linear equations 
and systems of varying complexity (mathematical models). 

In many cases, they are solved by the introduction of certain 
simplifications in statements, transition, in particular, to 
difference analogues (discrete variant) and eventually to the 
systems of linear algebraic equations (SLAE) of different 
dimension, often with a square matrix of restrictions. The 
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Розвинуто застосування алгоритмів методу 
базисних матриць, які оснащені технологією довгої 
арифметики для покращення точності виконання 
основних операцій при дослідженні погано обумовле-
них лінійних систем, зокрема систем лінійних алге-
браїчних рівнянь (СЛАР). Встановлення факту пога-
ної обумовленості системи є досить трудомісткою 
обчислювальною процедурою. Закладено проведення 
контролю входження обчислень в стан некоректно-
сті та унеможливлення накопичення похибок обчис-
лень, що є бажаною властивістю методів та алго-
ритмів розв’язання практичних задач. 

В сучасних ЕОМ, як правило, використовуються 
стандарті типи цілих чисел, розмір яких не переви-
щує 64 байта. Було подолано це апаратне обмежен-
ня програмним шляхом, а саме, розробкою власного 
типу даних у вигляді спеціальної бібліотеки Longnum 
мовою С++ з використанням стандартної бібліотеки 
шаблонів STL(Standard Template Library). Програмна 
реалізація була розвинута на проведення обчислень 
за методами базисних матриць (МБМ) та Гауса, 
тобто використано довгу арифметику для моделей 
з раціональними елементами. Запропоновано алго-
ритми та комп'ютерну реалізацію методів типу 
Гауса та штучних базисних матриць (варіант мето-
ду базисних матриць) в середовищах Мatlab та Visual 
С++ з використанням технології точних обчислень 
елементів методів, в першу чергу, для погано обумов-
лених систем різної розмірності. Розроблено бібліо-
теку Longnum з типами довгих цілих чисел (longint3) 
та раціональних чисел (longrat3) із чисельником та 
знаменником типу longint3. Арифметичні операції 
над довгими цілими числами реалізовано на основі 
сучасних методів: зокрема, методу Штрасена мно-
ження. Наведено результати обчислювального екс-
перименту за згаданими методами, в якому тесто-
ві моделі систем генерувались, зокрема, на основі 
матриць Гільберта різної розмірності, які характе-
ризуються як "незручні"
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methods and algorithms of SLAE (as the basic ones) have be-
come the subject-matter of research of many scientists. This, 
in turn, caused the development of (currently) many dozens 
of exact methods and, perhaps, hundreds of iterative methods. 
An exceptional position in the chain of the solution of an 
initial problem of modeling caused exceptional requirements 
for computing properties of the methods and algorithms for 
the solution of the SLAE. Natural complexity of solving such 
problems is manifested in incorrectness and ill-conditionality. 
The efforts of calculators are aimed to overcome (or weaken) 
the manifestation of ill-conditionality and incorrectness in the 
course of solving a problem and (accumulation of calculation 
errors). There appear new approaches to solving the known 
problems. According to the authors, one of the promising ap-
proaches is the development of the known methods (including 
the algorithms of the method of basic matrices), equipment 
with the technology of long arithmetic during studying 
ill-conditioned linear systems. Of course, the latest technolo-
gy (of long arithmetic) involves the use of other technologies, 
which will be mentioned below, specifically, the introduction 
of a new data class. It is the successful combination of a series 
of new technologies of computation algorithms organization 
that can provide new positive possibilities.

The problem of modeling the processes of different na-
ture is often described by a class of optimal problems (for 
extremum), in particularly, the SLAE. Precise methods for 
the solution of the SLAE in the number of the above prob-
lems are fundamental, since research into the initial more 
complex mathematical models “is reduced” (after some sim-
plifications) to the analysis of such linear systems. 

It is known that:
– most mathematical problem statements (in the first 

place, on studying the properties of processes) are inherently 
non-linear, that is they do not have any adequate represen-
tation in the class of linear models (matrix structures) – the 
systems of linear algebraic equations, inequalities, linear 
programming problems, etc.;

– important parameters of the process (in the process of 
simulation and simplifications) are mapped (“transfer”) to 
separate elements, rows, columns and blocks (“sub-matri-
ces”) of the restriction matrix, etc., that is, undergo changes 
and clarifications. Therefore, taking into consideration the 
impact of the changes in a model as a result of specifications 
(without re-solving) is a desirable characteristic of the meth-
ods of modeling.

The existing property of ill-conditionality and incorrect-
ness in the problem is at all stages of the simulation. Specifi-
cally, at the stage of a computer representation of a model –  
rounding, truncation, the limited length of the mantissa 
causes the accumulation of mistakes, errors, inaccuracies of 
the model representation, etc. This gives rise to inadequacy 
of the studied process and the model. It should be noted that 
in such situations, even minor quantitative inaccuracy in the 
representation of a model can often lead to significant devia-
tion (error) of the solution. Equipment of algorithms with the 
technology that prevents the accumulation of errors at the 
stages of modeling, specifically, during the iterations of the 
algorithm of the method is the relevant direction of research.

2. Literature review and problem statement

Up to now, quite a lot of precise and iterative methods 
for solving systems of linear algebraic equations have been 

developed. Specifically, some of them are listed in papers 
[3, 4] and there exist many others. It may be stated that the 
problem of the development of a universal high-precision 
method for solving a wide class of linear problems has not 
been solved so far. This can be explained by the objective 
complexities of problems that arise, especially when model-
ing the processes of different nature. Mathematical models 
are quite often represented as great dimensionalities, are in-
correct (sensitive to inaccuracies), ill-conditioned, etc. [1, 2]. 
Technological advances of today, such as increasing the dig-
its of processors up to 64 and the volumes of different mem-
ory types, together with the increasing rate of performing 
operations, provide additional opportunities for representing 
long numbers. However, they do not solve the problem of the 
representation of numbers and implementation of operations 
for the numbers with more than 64 digits and it remains 
open. In this regard, for various kinds of ill-conditionality 
or the structure of the restriction matrix, there is a need to 
adapt the solution algorithm to ensure the computational 
quality [3–5].

Of course, among them, a special place is taken by algo-
rithmic schemes that are based on the Gaussian method. It is 
known that the SLAE models can often be incorrect by their 
structural properties (natural complexity). One of the man-
ifestations of incorrectness is the property of ill-condition-
ality (conditionality number 1

AM A A−= ×  takes large 
values that affect the errors of performing basic operations) 
[1–5]. It is possible to make sure that the information on the 
significance of the conditionality number (or its assessment) 
as a factor of control of calculation correctness currently 
remains in the scope of further research [3–5]. Specifically, 
the existence of the system conditionality control, accumu-
lation of calculation errors when solving such inconvenient 
problems is a necessary and integral component of the 
computation process. From the point of view of the classical 
methods of the Gaussian type, for example, the procedure of 
construction the estimator of conditionality number can be 
added somehow “from the outside”. In the scheme of these 
methods, there are no components of finding or assessment 
of conditionality 1

AM A A−= ×  (since the inverse matrix is 
unknown) and in itself is a computationally time-consuming 
procedure. It is a specific task to “embed” organically such 
procedure into the algorithm. The problem of evaluation of 
the conditionality number became especially acute during 
accumulation of considerable experience of solving practi-
cal problems. The existence of estimation of conditionality 
during the computation is an important component, because 
it “gives the signal” (points out) of correctness of calcula-
tions. As an additional measure in solving the conditionality 
problem (conditionality improvement), it can be represented 
in the form of directed conversion of the original problem 
(preconditioning), for example, by multiplication of SLAE 
on the left and on the right by special matrices [5, 6].

To check and control the properties of the solution al-
gorithms (testing this class of tasks), a series of algorithms, 
programs and modeling problems with ill-conditioned re-
striction matrices, such as BLAS (Basic Linear Algebra 
Subroutines) were developed [6]. It is known that such test 
matrices include the Gilbert matrix. It is actively applied 
in this work for testing the algorithms. The research into 
the influence of disturbances (such as calculation errors) 
on the properties of a system remains the “corner stone” 
during modeling. This problem is explored in a series of 
scientific studies, specifically, [1, 2, 6, 7]. One of the areas 
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that has been actively developing lately, is associated with 
the development of mathematical methods, algorithms and 
software for performing the basic operations, specifically, 
by the introduction of new data types (for actions with ra-
tional numbers), which prevents the accumulation of errors. 
These approaches are discussed in papers [8–11]. One of 
the drawbacks of this approach is an additional computa-
tional load in the algorithm, which causes a slowdown of 
computation and imposes restrictions on dimensionality of 
the solved problems.

But the mentioned approaches do not cover the problem, 
so it is advisable to develop the performance of calculations 
using the technology of long arithmetic on the model of ra-
tional elements, one of the variants of which was implement-
ed in the form of the Longnum library in the C++ language 
[23]. The application of rational arithmetic for direct meth-
ods of solution of SLAE eliminates a computational error 
and makes it possible to concentrate on the properties of a 
model itself, for example, in [7].

Modern computers usually use the standard types 
of integers, dimensionality of whose does not exceed 
64 bites. Overcoming such hardware limitations can be 
addressed via programs, specifically, the development of 
the own data type. The known examples of the imple-
mentation of such approach are the GMP [8], MPI [9], 
LIP [10], OpenSSL [11], and LibTomMath libraries [12]. 
The GMP and LIP libraries are time-consuming and not 
convenient enough to use; OpenSSL and LibTomMath 
have cryptographic purposes; MPI library is not currently 
developing [9]. It is important to develop a library that 
does not depend on outside developments, in addition to 
the standard C++ libraries and can flexibly change and 
adapt to specific research.

Of course, the above-mentioned methods for intensifi-
cation of calculation procedures have their strengths and 
weaknesses. They are often used separately. It seems expe-
dient to develop the original calculation technology, which 
would rationally use the strengths of these approaches. 

The method proposed in [14] has a series of structural 
properties, specifically, the capability to analyze and address 
the problems of linear programming (PLP) along with the 
SLAE, it is applied to weakly non-linear problems, has in its 
elements the components for calculation and evaluation of 
conditionality of a system during iterations [15–18], it can 
be equipped with the technology of long numbers. The men-
tioned properties of the method and the algorithms of basic 
matrices in equipment with the technology of operation with 
long numbers gain the versatility features for using in solv-
ing a wide class of problems.

The analysis of literary sources and identification of the 
major problems in the organization of calculations indicate 
that it is possible to reach precision of performing basic 
operations by inclusion and successful combination of the 
additional procedures: preconditioning, finding evaluation 
and conditionality number, conducting high-precision basic 
operations. The efforts of researchers should be aimed at the 
development of the computation technology with such prop-
erties (with elements of universality).

The choice of MBM as the basic one in the development 
of the technology of long numbers was based on the presence 
of such unique property as control of calculations entering 
the incorrectness state, specifically, the information on di-
rect and inverse matrix as the components of the calculation 
of conditionality number. Construction of an estimator of 

conditionality number (and pre-conditioner) and its proper-
ties (with experiments) based of MBM are covered in [18]. 

This indicates the feasibility of application of MBM and 
its algorithms as those that were tested [14–18], for “add-in” 
with the procedures of high-precision conducting the basic 
operations (technology of long arithmetic) in the study of 
linear systems.

3. The aim and objectives of the study

The aim of the study is to develop the technology of long 
arithmetic, which increases the precision of performance 
of the basic operations of the algorithms for studying and 
solution of SLAE and minimizes the module of magnitude of 
errors at the stage of computer modeling.

To accomplish the aim, the following tasks have been set:
– to develop an algorithm for solving the SLAE (a linear 

system) with the elements of analysis and control of condi-
tionality and accumulation of errors in the course of itera-
tions (technology of long arithmetic) when implementing the 
technology of long arithmetic; 

– to implement the types of long integers and rational 
numbers with fast operations of multiplication, division, 
constructed on modern algorithms and to accelerate the 
operation of multiplication and division of operations with 
long numbers.

4. Technologies of long arithmetic of acceleration of 
performing major operations based on the algorithm for 

the method of basic matrices (MBM)

First of all, we would like to stress that the method of 
basic matrices (first mentioned in publications at the end of 
1980s) was developed in the article by the equipment with 
the technology of long arithmetic [14]. It is possible to find 
the detailed substantiation of the method, its properties, the 
results of the computational experiments, comparisons with 
other methods in papers [15–17]. 

Let us consider the SLAE in the form

Au=C, (1)

where matrix A  of dimensionality (m×m), T
1 2( , ,..., )mC c c c=  

is the vector column of dimensionality m, T
1 2( , ,..., )mu u u u=  

is the sought-for vector of dimensionality m, T  is the sign 
of transposition, aj=(aj1, aj2, … , ajm), 1,j m=  are the rows of 
matrix A. Equation (1) is supplemented with the additional 
SLAE of the form: 

Iu=K, (2)

where I is the unity-diagonal matrix of dimensionality 
(m×m) and (1,1,...,1)TK =  is the vector of dimensionality m. 
It should be noted that system (2) is usually trivial, with the 
known properties and performs only the auxiliary role of 
building the initial values of the MBM elements, specifically, 
of the inverse matrix and solution. 

That is the construction of the algorithm for solving the 
SLAE is based on the method of basic matrices, since accord-
ing to [14], it implies the ability:

– to find the magnitude of the rank of the matrix of the 
system restriction (1);
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– to find the solution to SLAE (1);
– to control the conditionality of a system;
– to analyze the influence of changes in the model (1) as 

a result of specifications (without re-calculations);
– to equip with the technology that prevents error ac-

cumulation;
– to construct initial solutions to problems based on the 

trivial basic matrices (2), which excludes time-consuming 
initial calculations;

– to apply the system of analysis to the problems that 
imply multi-step or multiple calculations on the models with 
insignificant changes. 

We will remind briefly [14] that the proposed method of 
artificial basic matrices (MABM) is based on the idea of the 
ordinal basic matrix. Basic matrices during the iterations are 
sequentially changed by the input-output of rows-normals of 
problem restrictions from them. 

Submatrix bA , composed of m linearly independent re-
striction of row-normals (i1, i2, …, im), will be called artificial 
base, and solution u0 to the corresponding to them equation 
system 

= 0,bA u C  

where 

1 2

0 T( , ,..., ) ,
mi i iC c c c=  

will be called artificial base.
Let us assume that: eri is the elements of matrix −1

bA ,  
inverse to bA ; u0=(u01, u02, …, u0m)T is the basic solution; 
αr=(αr1, αr2,…, αrm) is the vector of development of vec-
tor-normal of restriction aru≤cr by the rows of basic matrix 

bA ; Δr=aru0–cr is the mismatch of the r-th restriction (1) at 
the vertex. All the introduced elements in new basic matrix 

bA  different from Ab by one row will be designated by the 
overbar at the top. 

According to Theorem 1 [14], the corresponding ratios 
were established between the coefficients of expansion of 
normals of constraints, elements of inverse matrices, basic 
solutions, mismatches between restrictions in two adjacent 
basic matrices. 

Based of them, the scheme of determining the rank of 
the system (1) and the solution of the system of equations, 
successive changes of basic matrices and corresponding arti-
ficial solutions are constructed. 

The preliminary results of application of the technol-
ogy of long arithmetic in conjunction with the method of 
basic matrices for analysis of the SLAE properties (with 
implementation) were examined in [22]. “Long arithmetic” 
of the representation of rational numbers when performing 
basic operations eliminates the accumulation of errors, 
which in combination with the conditionality control in the 
course of computing is effective, especially in the study of 
ill-conditioned systems. For the latter, even small errors in 
the representation of the model and the calculation have an 
essential impact.

In the subsequent versions, the technology repeatedly 
underwent improvements and both programmatically and 
algorithmically, the relevant calculation experiments were 
conducted. 

The subject of research will be the properties of the new 
algorithm and the computer implementation of the method 
of artificial basic matrices [14] for model (1) in the Visual 

C++ environment using rational arithmetic, in which multi-
plication of long numbers is made with the help of the Stras-
sen method based on the fast algorithm of discrete Fourier 
transform [19].

The concept of representation of integers. Modern com-
puters usually use the standard types of integers, the size of 
which does not exceed 64 bytes. Overcoming such hardware 
limitations can be addressed programmatically, specifically, 
by the development of its own data type [22]. In the Long-
num library developed in the language C++, the types of 
long integers longint3 and corresponding rational numbers 
and longrat3 with fast operations of multiplication, division, 
constructed on modern algorithms, were implemented. 

For the realization of long integers of arbitrary size and 
appropriate rational numbers in C++, the object-oriented 
approach (OOA) was used [21]. It involves the following: the 
real object of the domain is placed in line with the so-called 
object type or the class of objects, which is a generalization of 
a structural type. 

Let us use the definitions [21].
Definition 1. Class in C++ is a programming structure 

consisting of data (data elements or fields) and subroutines 
that operate on these fields and describe the properties of the 
corresponding object of the modeled subject area. 

The general concept of long or multiple precision arith-
metic, the notion of a long integer is described in [12]. But for 
clarity, we will introduce the concepts: 

A long integer or an integer of arbitrary size will be called 
an integer not limited to ranges of standard computer types. 
For example, in respect to the language C++, such num-
bers are fundamentally impossible to store in a variable of  
type _ _ int64 or unsigned_int64 that are limited to ranges 
from -263 to 263 and from 0 to 264-1, respectively.

Long or multiple precision arithmetic is the arithmetic of 
long integers. 

An integer of an arbitrary size is programmatically repre-
sented as class longint3. Rational number as a pair (numer-
ator of longint3 class, denominator of longint3 class) is pro-
grammed in the form of longrat3 class. An integer is stored 
in a dynamic array, the maximum length of which is 4096. 
The elements of the vector are 16-byte unsigned numbers of 
the standard C++ unsigned__int16 type and are, in fact, the 
“numbers” in the number system with base BASE=216. Thus, 
for example, an integer from the range from 232 to 264-1 will 
be stored in an array of size 3.

Arrays of “numbers”, the number sign and operations 
on numbers of such structure are organized in the form of 
longint3 class. Specifically, in the longint3 class, the following 
operations with integers are implemented: addition, subtrac-
tion, multiplication and division with residue, comparison, 
conversion into the character string of the char type. During 
the development of the Longnum library [22], the elements of 
the STL (Standard Template Library) were used [13].

Declaration of the longint3 class
class longint3
{
public:
unsigned __int16 *s;
unsigned int l;
longint3();
longint3(unsigned n);
longint3(unsigned __int16 *p,int n);
longint3(const char *s1);
longint3(const char *s1,int n);
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longint3(const longint3 &a);
longint3 operator=(const longint3 &a);
~longint3();
char* text(void);
friend longint3 operator+(longint3 &a,longint3 &b);
friend longint3 operator-(longint3 &a,longint3 &b);
friend longint3 operator*(longint3 &a,longint3 &b);
friend longint3 operator/(longint3 &a,longint3 &b);
friend ostream& operator<<(ostream &os,const longint3 

&a);
friend istream& operator>>(istream &is,longint &a);
friend longint3 karatsuba2(longint3 &u1,longint3 

&u2,unsigned int n);
friend longint3 tomakuka(longint3 &u1,longint3 &u2);
friend longint3 fastmul2(longint3 &A, longint3 &B);
friend __int8 divmod(longint3 &A, longint3 &B, longint3 

&Q, longint3 &R) ;
void mult2(int n);
void mult(int m);
void div(int m);
friend int longcmp2(longint3 &a,longint3 &b);
unsigned int toint();
void print();
void operator+=(longint3 &b);
void operator-=(longint3 &b);
void operator*=(longint3 &b);
friend void savebint2(FILE *f,longint3& a);
friend void loadbint2(FILE *f,longint3& a);
friend longint3 ncd(longint3 a,longint3 b);
};
Representation of rational numbers. A rational number is 

represented as a pair: the numerator and denominator of the 
longint3 type and is organized in the form of the longrat3 
class. This class is also equipped with the operations of ad-
dition, subtraction, multiplication, division, reducing, com-
parison, representation as a decimal number with specified 
precision, conversion in the type double, conversion into the 
character string of the char type. Operations ‘+’, ’-’, ’*’, ’/’ are 
constructed using the appropriate operations on numbers of 
the longint3 type. These classes were compiled as a dynamic 
library and tested for precise solution of the systems of linear 
algebraic equations.

Declaration of the longrat3 class
class longrat3
{
public: 
 __int8 sign;
 longint3 num;
 longint3 denom;
 longrat3():num(“0”),denom(“1”){sign=0;}
 longrat3(char *s);
 longrat3(double d);
 longrat3(char *s1,char *s2);
 longrat3(const longrat3 &l1):num(l1.num),de-

nom(l1.denom),sign(l1.sign){}
 longrat3& operator=(const longrat3 &a);
 friend ostream& operator<<(ostream &f,const lon-

grat3 &a);
 void text(char *s);//return s as ‘p/q’;
 friend void savebrat3(FILE *f,longrat3& a);
 friend void loadbrat3(FILE *f,longrat3& a);
 friend longrat3 operator+(longrat3 &a,longrat3 &b);
 friend longrat3 operator-(longrat3 &a,longrat3 &b);
 friend longrat3 operator*(longrat3 &a,longrat3 &b);

 friend longrat3 operator/(longrat3 &a,longrat3 &b);
 void operator+=(longrat3 &a);
 void operator-=(longrat3 &a);
 void operator*=(longrat3 &a);
 void operator/=(longrat3 &a);
 char* decimal(unsigned __int32 size);
 operator double();
 friend __int8 longrabscmp(longrat3 &a,longrat3 &b);
 ~longrat3(){};
 void reduce(void);
};

Operations ‘+’ and ’-’ are implemented by classic al-
gorithms of addition and subtraction; multiplication and 
division and significantly improved in comparison with the 
traditional algorithms for multiplication and division in a 
column and optimized both for time and for the use of com-
puter resources. 

Acceleration of operations of multiplication and division 
of long numbers.

Arithmetic operations with precise rational numbers are 
based on multiplication of long integers. To reduce rational 
fractions, division of a long integer by a long integer was 
implemented. 

Multiplication of long integers using the Strassen method 
based on the discrete Fourier transform. 

The product of integers

A=a0+a1BASE+…+an-1BASEn-1 

and 

B=b0+b1BASE+…+bm-1BASEm-1 

in a number system with BASE  can be interpreted as prod-
uct of polynomials

(a0+a1x+…+an-1xn-1)(b0+b1x+…+bm-1xm-1)=
=c0+c1x+…+cn+m-1xn+m-1, 

where ci is the components of the vector – convolutions of 
vectors (a0, a1, …, an-1) and (b0, b1, …, bm-1).

Let us use the definitions [18].
Definition 2. A cyclic convolution of vectors a and b is 

called vector c=a×b with coordinates 
 

(mod )

.i k l
k l i m

c a b
+ ≡

= ∑

Definition 3. Discrete Fourier transform (DFT) of vec-
tor (a0, a1,…, aN-1) is determined as a complex vector with 
coordinates (y0, y1, …, yN-1):

 
1

0

,
N

kj
k j

j

y a
−

=

= ω∑

where ω  is the main complex root of the N-th power of 
unity,

2 2
cos sin .i

N N
π π

ω = +

Comment: The inverse discrete Fourier transform (DFT-1) 
can be calculated from formula:
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N
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−
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= ω∑

The Strassen method [20] of multiplication of long num-
bers is based on.

Theorem of convolution [20]. Fourier transform from a 
cyclic convolution of two vectors is a scalar product of the 
Fourier-images of these vectors:

( ) ( )* ( ),c a b F c F a F b= × ⇔ =

And then 

c=F-1(F(a)*F(b)).

Here, * means component-wise multiplication of vectors.
Thus, to multiply long integers A and B, it is enough:
1. To calculate coefficients of convolution 

, 0, 1.ic i n m= + −

2. To make all transfers, for all coefficients to be smaller 
than BASE.

The theorem of convolution allows constructing the ef-
fective algorithm for calculation of convolution coefficients 
at step 1 with the help of DFT:

1. 1. Calculate F(a) and F(b).
1. 2. To multiply the resulting vectors component-wise.
1. 3. To calculate inverse DFT from scalar product.
Multiplication of polynomials is reduced to scalar prod-

uct of corresponding vectors. It is assumed that at every 
step the sizes of the vectors are the same and equal to N. The 
complexity of the multiplication algorithm has the order of 
O(NlogN). Moreover, the optimal performance is reached 
only by the options of FFT (fast algorithm of discrete Fou-
rier transform) that operate on vectors of the size of N=2k, 
so the vectors in these situations must be supplemented by 
zeros. The Strassen method is implemented in the longint3 
class of the Longnum library. 

Division of long integers. The operation of division of 
long numbers is used in the operation of reduction of ratio-
nal numbers. The “school” method of division “in column”, 
the complexity of which is O(nm), where n and m are the 
number of digits of a dividend and a divisor, respectively, is 
taken as a base.

Here are the main stages of the algorithmic scheme 
for finding the magnitude of rank, the initial basic ma-
trix and solution of the non-degenerated system (1) with 
the rational elements, based on the technology of precise 
calculations. The algorithm can be applied in the conver-
sion of an inverse matrix during the iteration process. It 
is advisable to use such conversion at the accumulation of 
significant errors when finding the elements of the method. 
Based on the results of the given algorithm, it is possible to 
construct the analytical representation of general solution 
of the corresponding system of linear algebraic inequalities 
(SLAE) [14].

Algorithms MABM
At the input: matrix of coefficients of A of dimension-

ality m×m, vector of right parts of SLAE C of dimension-
ality m and unity basic matrix I of dimensionality m×m, 
representing dynamically created arrays of the elements of 
the longrat3 type. The following steps will be subsequent-

ly performed with using the operations of comparison, 
addition, subtraction, multiplication and division of the 
longrat3 class.

Step 1. We perform simplex iterations on substitution of 
the rows of basic matrix I  of system (2) with the normals 
of restrictions of system (1), according to the ratios of theo- 
rem 1 [14].

We find the corresponding elements of the method: 
vectors of expansion by the rows of the basic restriction 
matrices (2), inverse basic matrix, artificial basic solutions 

( )
0

ku , where k is the number of iterations.
Step 2. Check the number of iterations r of the substitu-

tion of the rows of the additional system with the rows of 
the main system, which meet the conditions of non-degener-
ation, i. e. ( ) 0i

lkα ≠  number determines the rank of the main 
system, (Consequence 2–3 of theorem 1 [14]). 

Step 3. If the number of iterations, for which ( ) 0,i
lkα ≠  is 

equal to m, proceed to the next step. Otherwise, to the last 
but one step.

Step 4. Find the only solution (consequence 1 of theo- 
rem 1 [14]). According to the ratio: 1 0 0

б .A c u− =
Step 5. Meeting condition r<m means violation of condi-

tion of a single solution by the scheme of the method, i. e., the 
models requires refinement and further analysis of solvabili-
ty (consequence 1 of theorem 1 [14]).

Last step. Generation of original information according 
to the results of analysis (1) in the form of an array of ele-
ments of the longrat3 type.

The algorithm can be applied in re-calculation of the 
inverse matrix during the iteration process of finding an 
optimal solution. It is advisable to perform such conversion 
at the accumulation of significant errors when finding the 
elements of the method. Based on the results of the presented 
algorithm it is possible to construct the analytical represen-
tation of the general solution of SLAE.

5. Results of research into computational properties of 
software implementation of the methods and algorithms

We explored two SLAE with ill-conditioned matrices, 
specifically, the Gilbert matrix A1 with elements

(1) 1 ( 1),ija i j= + −  1, ;i m=  1,j m=

and matrix A2 with elements 

(2)

1, at ,

, at ,

1, at .
ij

m i i j

a m i i j

m j i j

− + >
= − =
 − + <

Matrix A1 was explored with such variations of vector c1 
of the right parts:

1) (1) 1,ic =  1, ;i m=
2) (1) 1( 1) ,i

ic −= −  1, ;i m=
3) (1) 1(1 ( 1) ) / 2,i

ic −= + −  1, .i m=
Vector of the right parts c2 for matrix A2 is determined 

from ratio:

(2) , at 2,

1, at 2.i

m i i
c

m i i

− ≤
=  − + >

 

Solution of SLAE using the Longnum library. In the 
process of solving the SLAE of dimensionality of m=50 with 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/4 ( 97 ) 2019

20

the Gilbert matrix and unity right part, using precise com-
putations, we obtained the precise solution (Table 1).

Table 1

Precise solution of SLAE by the method of basic matrices 
with Gilbert matrix, m=50

Components of solution in precise form
Components of 
solution with 
floating point

-50 -50

124950 124950

-77968800 -7.79688e+007

21580031200 2.158e+010

-3350299843800 -3.3503e+012

331679684536200 3.3168e+014

-22701631741588800 -2.27016e+016

1135544885686411200 1.13554e+018

-43221677211439026300 -4.32217e+019

1290780705857666723700 1.29078e+021

-30978736940584001368800 -3.09787e+022

609077811418589580631200 6.09078e+023

-9965189747931923971993800 -9.96519e+024

137448859777688253128506200 1.37449e+026

-1615725372080580281673868800 -1.61573e+027

16336778762148089514702451200 1.63368e+028

-143202076336954347152313673800 -1.43202e+029

1095570210314899866968046826200 1.09557e+030

-7357903634707475649760709548800 -7.3579e+030

43597107685981413891518442451200 4.35971e+031

-228884815351402422930471822868800 -2.28885e+032

1068648151493282514317100869131200 1.06865e+033

-4451228664071193282775362297868800 -4.45123e+033

16584823623599852477032588070131200 1.65848e+034

-55397917798274507232310242095368800 -5.53979e+034

166193753394823521696930726286106400 1.66194e+035

-448428115668872934282842669742393600 -4.48428e+035

1089391211041939597551322864353606400 1.08939e+036

-2384432803760163710966926065345393600 -2.38443e+036

4703655197905007843631546185978606400 4.70366e+036

-8362053685164458388678304330628633600 -8.36205e+036

13391467868333092050131020150715366400 1.33915e+037

-19302545482089495962884165764117071100 -1.93025e+037

25010001538317978699384350682432678900 2.501e+037

-29077372030708791844266926744973633600 -2.90774e+037

30264203542166293552196189061095006400 3.02642e+037

-28115818722814982590157570701819743600 -2.81158e+037

23227896987219682475871594202891256400 2.32279e+037

-16986606106997219317534905455853993600 -1.69866e+037

10933522273997552736270001605050006400 1.09335e+037

-6150106279123623414151875902840628600 -6.15011e+036

2996393243665822472451151912210871400 2.99639e+036

-1250195820486420260614539573348753600 -1.2502e+036

440171703156657430859959579367246400 4.40172e+035

-128231839142745243287715497295003600 -1.28232e+035

30079073379162464474896227760556400 3.00791e+034

-5458584204914171246862075359193600 -5.45858e+033

719080128397475705222663616806400 7.1908e+032

-61171747033813037423455759068600 -6.11717e+031

2522283613639104833370312431400 2.52228e+030

The SLAE were solved using the Gaussian methods and 
the MABM with the Gilbert matrix of dimensionality of 
m=100, the reference to precise solution was published in [22]. 

As a result of the experiments for SLAE with the Gilbert 
matrix A1 of dimensionality of m=100 and the unity right 
part c1, we obtained precise solutions (Table 2) both by the 
Gaussian method, and by the method of the coinciding artifi-
cial basic matrices. Tables 2–4 show the time of performance 
of the procedure of precise solution computation using the 
computer with the processor AMD Athlon(tm) 64X2 Dual 
Core Processor 4200+, 2.21 GHz, 3 GB OSD. 

For SLAE with the matrix of coefficients A2, calculations 
with the use of the Gaussian method and the MABM were 
carried out. The results of the computational experiment are 
shown in Table 3.

Table 2 

Solution of SLAE with the Gilbert matrix A1 in exact numbers

Restriction 
vector 

Dimen-
sionality, 

m

Gaussian method 
with selection of 

maximum element

Method of artificial basic 
matrices

Minimal 
leading 
element 

Perfor-
mance 
time, 
sec

Minimal leading 
element 

Perfor-
mance 
time, 
sec

(1,1,…1)T 50 1.79177e-051 28.5 5.56135311E-59 31.6

(1,0,…1,0)T 50 6.7767e-054 29.3 5.56135311E-59 32.1

(1,-1,...1,-1)T 50 6.7767e-054 29.2 0.556135311E-58 31.8

(1,1,…1)T 60 1.66524e-065 63.3 0.1416498617E-70 68.3

(1,1,…1)T 100 6.35121e-109 666.2 0.708461361E-119 616.2

Table 3 

Solution of SLAE with matrix A2 in exact numbers

Dimen-
sionality 

m

Gaussian method with 
selection of maximum 

element

Method of artificial basic 
matrices

Leading  
element

Perfor-
mance 

time, sec
Leading element

Perfor-
mance 

time, sec

50 9.03917e-059 4.79 0.2040816326E-1 3.99

60 1.06745e+076 9.74 0.090909090E-1 6.52

61 6.18569e+077 9.41 0.030303030E-1 7.13

100 2.47997e+151 63.9 0.1010101010E-1 31.99

101 2.42961e+153 66.2 0.1E-1 31.79

As a result of the experiments for SLAE with the Gilbert 
matrix of dimensionality m=100 and unity right part c1 (us-
ing the Strassen method), we obtained precise solutions by 
both the Gaussian method, and by the method of artificial 
basic matrices that are consistent with [2].

Table 4 

Value of minimal leading element and time of performance of 
experiments for MABM with SLAE of varying dimensionality

Restriction 
method

Dimen-
sionality, 

m

Minimal leading 
element 

Performance time, sec

Previous 
version of 
Longnum

New 
version of 
Longnum

(1,1,…1)T 50 5.56135311E-59 494.36 31.6

(1,1,…1)T 60 0.1416498617E-70 538.92 68.3

(1,1,…1)T 100 0.708461361E-119 1498.48 616.2

(1,1,…1)T 120 0.8034028680E-143 3090.72 1397.4
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Thus, Table 4 shows that for the MABM with the SLAE 
with the Gilbert matrix, the minimal leading element de-
creases at an increase in dimensionality, which is associated 
with the property of ill-conditionality of the Gilbert matrix. 
In addition, the time of performance of calculations increas-
es, which is caused by both an increase in the number of 
arithmetic operations on rational numbers and an increase 
in mantissas of numerators and denominators of rational 
numbers. It should be noted that according to the data of 
comparison of Table 4, the time of computation experiments 
is significantly shorter for the new version of the Longnum 
library, which is an improvement of the longint3 class.

6. Discussion of results of the computational experiment

Application of a new class of longint3 makes it possible 
(Table 4): 

1) to accelerate precise computations by 2.5 times: the 
SLAE with the Gilbert matrix of dimensionality of 100 was 
solved with the MBM in exact numbers in 1397.4 sec, where-
as the time of performance with the old class of longint2 on 
the same computer was 3731.94 seconds [22];

2) to solve ill-conditioned SLAE of large dimensionality.
Compared to the old version of the Longnum library of pre-

cise computations, the following was done in the new version:
– implementations of arithmetic operations with long in-

tegers were optimized taking onto account the new standard 
programming language C++17; 

– outdated functions (itoa, strcpy, sprintf, strcat) of 
standard C++ libraries were replaced by the new, more ef-
fective and safe analogues.

Thus, the advantage of using the new version of Long-
num compared with the previous version [22] is the higher 
computational effectiveness. 

The disadvantage of using precise calculations, specifi-
cally, the Longnum library, when solving SLAE is that the 
computation volume greatly depends not only on dimension-
ality of the SLAE, but also on the properties (conditionality) 
of the matrix of SLAE itself (Tables 2–4).

The MABM in combination with the precise computa-
tion technology of the Longnum library can be particularly 
useful in scientific research into the properties of SLAE and 
SLAN, mathematical modeling, and applied research in sci-

ence and technology, which relate to the necessity of solution 
of ill-conditioned SLAE. 

The presented study is the development of approaches 
to the organization and performance of the basic operations 
(presented in papers [8, 14]. Specifically, the technology 
of high-precision computation with rational numbers was 
combined with the control of conditionality of the system ac-
cording to the scheme of the MBM algorithm, and software 
implementation (data type organization) was improved.

7. Conclusions

The results of the computational experiment on realiza-
tion of the algorithms for conducting high-precision compu-
tations (the technology of long arithmetic) using the method 
of artificial basic matrices provide grounds to argue that:

1. The algorithm of SLAE (linear system), which effec-
tively applies the value of the leading element of the method 
and elements of inverse matrix in order to carry out control 
of conditionality of the system (exceptional property of the 
MBM elements) was developed and implemented. 

2. We implemented: the types of long integers longint3 and 
corresponding rational numbers and longrat3 with fast opera-
tions of multiplication, division, constructed on modern algo-
rithms, which prevents the accumulation of errors in the course 
of iterations (additional equipment of the MBM algorithm).

The representation (for making computations) of ratio-
nal numbers as a pair: numerator and denominator of the 
longint3 type was developed and organized in the form of 
the longrat3 class (improved compared with the previous 
version of the algorithm); the acceleration of the operations 
of multiplication and division of long numbers (for the new 
proposed version of the Longnum library in comparison with 
the previous version) was achieved. It should be noted that 
the additional capabilities of control of computations and 
measures to increase the precision of operations of the long 
arithmetic technology, in general, caused a slight slowdown 
of the algorithm operation and imposed restrictions on di-
mensionality of the solved SLAE. 

It was established that the developed algorithms can 
serve as testing programs to verify the precision of carrying 
out computations using other algorithms for the problems of 
medium dimensionality.
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Проведена модернізація методів ідентифікації стану 
об'єктів в умовах нечітких вхідних даних, описаних своїми 
функціями належності. Обраний напрямок вдосконалення 
традиційних методів пов'язаний із принциповими особли-
востями вирішення цього завдання в реальних умовах малої 
вибірки вхідних даних. У цих умовах для розв’язання задачі 
ідентифікації стану доцільно перейти до менш вибагливої в 
інформаційному відношенні технології опису вихідних даних, 
заснованої на математичному апараті нечіткої математи-
ки. Цей перехід зажадав розробки нових формальних методів 
вирішення конкретних завдань. При цьому для багатовимір-
ного дискримінантного аналізу розроблено методику розв’я-
зання нечіткої системи лінійних алгебраїчних рівнянь. Для 
вирішення завдання кластеризації запропонована спеціаль-
на процедура порівняння нечітких відстаней між об'єкта-
ми кластеризації і центрами групування. Обраний напрямок 
вдосконалення традиційного методу регресійного аналізу 
визначено неможливістю використання класичного методу 
найменших квадратів в умовах, коли всі змінні описані нечіт-
ко. Ця обставина привела до необхідності побудови спеціаль-
ної двохкрокової процедури вирішення завдання. При цьому 
реалізується мінімізація лінійної комбінації міри видалення 
шуканого рішення від модального і міри компактності функ-
ції приналежності пояснювальної змінної. Технологія нечіт-
кого регресійного аналізу реалізована в важливому для прак-
тики випадку, коли вихідні нечіткі дані описані загальними 
функціями приналежності (L–R) типу. При цьому отри-
мано аналітичний розв'язок задачі у вигляді розрахункових 
формул. В результаті обговорення показано, що модерніза-
ція класичних методів рішення задачі ідентифікації стану з 
урахуванням нечіткого характеру представлення вихідних 
даних дозволила проводити ідентифікацію об'єктів в реаль-
них умовах малої вибірки нечітких вихідних даних

Ключові слова: нечіткі багатовимірний дискримінант-
ний, кластерний, регресійний аналізи, технології зведення 
нечітких задач до чітких
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