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Pozsunymo 3acmocyeanus anzopummie memooy
0asucnux mampuup, AKi OCHAULEHT MeXHON02iEI0 006201
apupmemuxu 01 NOKPAUWEHHS MOUHOCHI BUKOHAHHS
0CHOBHUX onepauill npu 00Ci0NCeHHT no2ano 0dymose-
HUX JUHIUHUX cucmeM, 30Kpema cucmem JUHIHUX anze-
opaiunux pienano (CJIAP). Bcmanosaenns paxmy noza-
HOi 00yMo8IeHOCMI cucmemu € 00CUNts MPYOOMICMKOI0
00MUCTII06ATBIOI0 NPOUEOYPOI0. 3aKA0EHO NPOGEOeHI
KOHMPOTIO 6X00)CEHHA 00MUCTIEHb 8 CIAH HEKOPEKMHO-
Cmi ma YHeMOINCTUBIIEHHS HAKONUMEHHS NOXUOOK 00MuUC-
JleHb, W0 € 0aXNCcanolo 6aAcCmMueicmio mMemooie ma anzo-
pummie po3e’I3anns npaxmudHux 3alax.

B cyuacnux EOM, sax npaeuno, 6UKOPUCMOBYIOMbCS
cmanodapmi munu yiux wuce, po3mip AKUX ne nepeeu-
wye 64 6aima. Byao nodonano ye anapamue odbmexncen-
HA NPOZPAMHUM WTAXOM, A Came, PO3POOKOI0 6IACHO20
muny oanux y euznsoi cneuianvioi 6ioiomexu Longnum
Moeoto C++ 3 suxopucmannam cmanoapmuoi 6Gioniomexu
waononie STL(Standard Template Library). Ilpozpamna
peanizauia Gyna pozeunyma na npoeedents 00HUCIeHb
3a memodamu oOazuchux mampuuyvp (MBM) ma Ilayca,
mo6mo euxopucmano 0062y apupmemury oas mooenet
3 pauioHanvHUMU enemeHmamu. 3anponoHo8ano anzo-
pummu ma Komn'iomepny peanizauiro memooie muny
Tayca ma wmyunux 6asucnux mampuup (éapianm memo-
0y 6azucrux mampuus) 6 cepedosumwax Matlab ma Visual
C++ 3 BUKOPUCMAHHAM MEXHON02Ii MOUHUX 0OGUUCIeHD
enlemenmie memodis, 6 nepuy uepey, 0Jis no2ano 0oymoes-
Jlenux cucmem pisnoi posmiprocmi. Pospooneno 6ionio-
mexy Longnum 3 munamu doezux uinux wucen (longint3)
ma pauionanvrux wucea (longrat3) i3 wuceavnuxom ma
3namennuxom muny longint3. Apudmemuuni onepauii
Ha0 0062uMU UIMUMU MUCIAMU PEAi306AHO HA OCHOBL
cyuacHux memoois: 30kpema, memooy Illmpacena mno-
srcennst. Hasedeno pesymomamu 004uUcI108a1vH020 €Kc-
nepumenmy 3a 32a0aHuUMU MeMOOamu, 8 AKOMY Mecmo-
61 MoOeni cucmem z2eHepyeanucs, 30Kpema, Ha OCHOBI
mampuup TNnvbepma piznoi posmipnocmi, sxi xapaxme-
pusyromocs aK "He3pyuni”

Kmouogi cnosa: memod 6asuchux mampuup, mouni
o00uucnenns, noeano o0YMosaena cucmema JIHIUHUX
PpieHAHb
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In many cases, they are solved by the introduction of certain

simplifications in statements, transition, in particular, to

Mathematical modeling of processes of different nature  difference analogues (discrete variant) and eventually to the
is known to lead to the need to explore non-linear equations  systems of linear algebraic equations (SLAE) of different
and systems of varying complexity (mathematical models).  dimension, often with a square matrix of restrictions. The




methods and algorithms of SLAE (as the basic ones) have be-
come the subject-matter of research of many scientists. This,
in turn, caused the development of (currently) many dozens
of exact methods and, perhaps, hundreds of iterative methods.
An exceptional position in the chain of the solution of an
initial problem of modeling caused exceptional requirements
for computing properties of the methods and algorithms for
the solution of the SLAE. Natural complexity of solving such
problems is manifested in incorrectness and ill-conditionality.
The efforts of calculators are aimed to overcome (or weaken)
the manifestation of ill-conditionality and incorrectness in the
course of solving a problem and (accumulation of calculation
errors). There appear new approaches to solving the known
problems. According to the authors, one of the promising ap-
proaches is the development of the known methods (including
the algorithms of the method of basic matrices), equipment
with the technology of long arithmetic during studying
ill-conditioned linear systems. Of course, the latest technolo-
gy (of long arithmetic) involves the use of other technologies,
which will be mentioned below, specifically, the introduction
of a new data class. It is the successful combination of a series
of new technologies of computation algorithms organization
that can provide new positive possibilities.

The problem of modeling the processes of different na-
ture is often described by a class of optimal problems (for
extremum), in particularly, the SLAE. Precise methods for
the solution of the SLAE in the number of the above prob-
lems are fundamental, since research into the initial more
complex mathematical models “is reduced” (after some sim-
plifications) to the analysis of such linear systems.

It is known that:

— most mathematical problem statements (in the first
place, on studying the properties of processes) are inherently
non-linear, that is they do not have any adequate represen-
tation in the class of linear models (matrix structures) — the
systems of linear algebraic equations, inequalities, linear
programming problems, etc.;

— important parameters of the process (in the process of
simulation and simplifications) are mapped (“transfer”) to
separate elements, rows, columns and blocks (“sub-matri-
ces”) of the restriction matrix, etc., that is, undergo changes
and clarifications. Therefore, taking into consideration the
impact of the changes in a model as a result of specifications
(without re-solving) is a desirable characteristic of the meth-
ods of modeling.

The existing property of ill-conditionality and incorrect-
ness in the problem is at all stages of the simulation. Specifi-
cally, at the stage of a computer representation of a model —
rounding, truncation, the limited length of the mantissa
causes the accumulation of mistakes, errors, inaccuracies of
the model representation, etc. This gives rise to inadequacy
of the studied process and the model. It should be noted that
in such situations, even minor quantitative inaccuracy in the
representation of a model can often lead to significant devia-
tion (error) of the solution. Equipment of algorithms with the
technology that prevents the accumulation of errors at the
stages of modeling, specifically, during the iterations of the
algorithm of the method is the relevant direction of research.

2. Literature review and problem statement

Up to now, quite a lot of precise and iterative methods
for solving systems of linear algebraic equations have been

developed. Specifically, some of them are listed in papers
[3, 4] and there exist many others. It may be stated that the
problem of the development of a universal high-precision
method for solving a wide class of linear problems has not
been solved so far. This can be explained by the objective
complexities of problems that arise, especially when model-
ing the processes of different nature. Mathematical models
are quite often represented as great dimensionalities, are in-
correct (sensitive to inaccuracies), ill-conditioned, etc. [1, 2].
Technological advances of today, such as increasing the dig-
its of processors up to 64 and the volumes of different mem-
ory types, together with the increasing rate of performing
operations, provide additional opportunities for representing
long numbers. However, they do not solve the problem of the
representation of numbers and implementation of operations
for the numbers with more than 64 digits and it remains
open. In this regard, for various kinds of ill-conditionality
or the structure of the restriction matrix, there is a need to
adapt the solution algorithm to ensure the computational
quality [3-5].

Of course, among them, a special place is taken by algo-
rithmic schemes that are based on the Gaussian method. It is
known that the SLAE models can often be incorrect by their
structural properties (natural complexity). One of the man-
ifestations of incorrectness is the property of ill-condition-
ality (conditionality number M, =||A||><N,A'1" takes large
values that affect the errors of performing basic operations)
[1-5]. It is possible to make sure that the information on the
significance of the conditionality number (or its assessment)
as a factor of control of calculation correctness currently
remains in the scope of further research [3—5]. Specifically,
the existence of the system conditionality control, accumu-
lation of calculation errors when solving such inconvenient
problems is a necessary and integral component of the
computation process. From the point of view of the classical
methods of the Gaussian type, for example, the procedure of
construction the estimator of conditionality number can be
added somehow “from the outside”. In the scheme of these
methods, there are no components of finding or assessment
of conditionality M, =|A| ><||A’1|| (since the inverse matrix is
unknown) and in itself is a computationally time-consuming
procedure. It is a specific task to “embed” organically such
procedure into the algorithm. The problem of evaluation of
the conditionality number became especially acute during
accumulation of considerable experience of solving practi-
cal problems. The existence of estimation of conditionality
during the computation is an important component, because
it “gives the signal” (points out) of correctness of calcula-
tions. As an additional measure in solving the conditionality
problem (conditionality improvement), it can be represented
in the form of directed conversion of the original problem
(preconditioning), for example, by multiplication of SLAE
on the left and on the right by special matrices [5, 6].

To check and control the properties of the solution al-
gorithms (testing this class of tasks), a series of algorithms,
programs and modeling problems with ill-conditioned re-
striction matrices, such as BLAS (Basic Linear Algebra
Subroutines) were developed [6]. It is known that such test
matrices include the Gilbert matrix. It is actively applied
in this work for testing the algorithms. The research into
the influence of disturbances (such as calculation errors)
on the properties of a system remains the “corner stone”
during modeling. This problem is explored in a series of
scientific studies, specifically, [1, 2, 6, 7]. One of the areas



that has been actively developing lately, is associated with
the development of mathematical methods, algorithms and
software for performing the basic operations, specifically,
by the introduction of new data types (for actions with ra-
tional numbers), which prevents the accumulation of errors.
These approaches are discussed in papers [8—11]. One of
the drawbacks of this approach is an additional computa-
tional load in the algorithm, which causes a slowdown of
computation and imposes restrictions on dimensionality of
the solved problems.

But the mentioned approaches do not cover the problem,
so it is advisable to develop the performance of calculations
using the technology of long arithmetic on the model of ra-
tional elements, one of the variants of which was implement-
ed in the form of the Longnum library in the C++ language
[23]. The application of rational arithmetic for direct meth-
ods of solution of SLAE eliminates a computational error
and makes it possible to concentrate on the properties of a
model itself, for example, in [7].

Modern computers usually use the standard types
of integers, dimensionality of whose does not exceed
64 bites. Overcoming such hardware limitations can be
addressed via programs, specifically, the development of
the own data type. The known examples of the imple-
mentation of such approach are the GMP [8], MPI [9],
LIP [10], OpenSSL [11], and LibTomMath libraries [12].
The GMP and LIP libraries are time-consuming and not
convenient enough to use; OpenSSL and LibTomMath
have cryptographic purposes; MPI library is not currently
developing [9]. It is important to develop a library that
does not depend on outside developments, in addition to
the standard C++ libraries and can flexibly change and
adapt to specific research.

Of course, the above-mentioned methods for intensifi-
cation of calculation procedures have their strengths and
weaknesses. They are often used separately. It seems expe-
dient to develop the original calculation technology, which
would rationally use the strengths of these approaches.

The method proposed in [14] has a series of structural
properties, specifically, the capability to analyze and address
the problems of linear programming (PLP) along with the
SLAE, it is applied to weakly non-linear problems, has in its
elements the components for calculation and evaluation of
conditionality of a system during iterations [15—-18], it can
be equipped with the technology of long numbers. The men-
tioned properties of the method and the algorithms of basic
matrices in equipment with the technology of operation with
long numbers gain the versatility features for using in solv-
ing a wide class of problems.

The analysis of literary sources and identification of the
major problems in the organization of calculations indicate
that it is possible to reach precision of performing basic
operations by inclusion and successful combination of the
additional procedures: preconditioning, finding evaluation
and conditionality number, conducting high-precision basic
operations. The efforts of researchers should be aimed at the
development of the computation technology with such prop-
erties (with elements of universality).

The choice of MBM as the basic one in the development
of the technology of long numbers was based on the presence
of such unique property as control of calculations entering
the incorrectness state, specifically, the information on di-
rect and inverse matrix as the components of the calculation
of conditionality number. Construction of an estimator of

conditionality number (and pre-conditioner) and its proper-
ties (with experiments) based of MBM are covered in [18].

This indicates the feasibility of application of MBM and
its algorithms as those that were tested [14—18], for “add-in”
with the procedures of high-precision conducting the basic
operations (technology of long arithmetic) in the study of
linear systems.

3. The aim and objectives of the study

The aim of the study is to develop the technology of long
arithmetic, which increases the precision of performance
of the basic operations of the algorithms for studying and
solution of SLAE and minimizes the module of magnitude of
errors at the stage of computer modeling.

To accomplish the aim, the following tasks have been set:

— to develop an algorithm for solving the SLAE (a linear
system) with the elements of analysis and control of condi-
tionality and accumulation of errors in the course of itera-
tions (technology of long arithmetic) when implementing the
technology of long arithmetic;

—to implement the types of long integers and rational
numbers with fast operations of multiplication, division,
constructed on modern algorithms and to accelerate the
operation of multiplication and division of operations with
long numbers.

4. Technologies of long arithmetic of acceleration of
performing major operations based on the algorithm for
the method of basic matrices (MBM)

First of all, we would like to stress that the method of
basic matrices (first mentioned in publications at the end of
1980s) was developed in the article by the equipment with
the technology of long arithmetic [14]. It is possible to find
the detailed substantiation of the method, its properties, the
results of the computational experiments, comparisons with
other methods in papers [15-17].

Let us consider the SLAE in the form

Au=C, (1)

where matrix A of dimensionality (mxm), C=(c;,Cyy,C,)"
is the vector column of dimensionality m, u=(u,,u,,...,.u,)"
is the sought-for vector of dimensionality m, T is the sign
of transposition, aj=(aj1, ajs, ..., ajn), j=1,m are the rows of
matrix A. Equation (1) is supplemented with the additional
SLAE of the form:

Iu=K, )

where 1 is the unity-diagonal matrix of dimensionality
(mxm) and K =(1,1,..,1)" is the vector of dimensionality m.
It should be noted that system (2) is usually trivial, with the
known properties and performs only the auxiliary role of
building the initial values of the MBM elements, specifically,
of the inverse matrix and solution.

That is the construction of the algorithm for solving the
SLAE is based on the method of basic matrices, since accord-
ing to [14], it implies the ability:

— to find the magnitude of the rank of the matrix of the
system restriction (1);



— to find the solution to SLAE (1);

— to control the conditionality of a system;

— to analyze the influence of changes in the model (1) as
a result of specifications (without re-calculations);

—to equip with the technology that prevents error ac-
cumulation;

— to construct initial solutions to problems based on the
trivial basic matrices (2), which excludes time-consuming
initial calculations;

—to apply the system of analysis to the problems that
imply multi-step or multiple calculations on the models with
insignificant changes.

We will remind briefly [14] that the proposed method of
artificial basic matrices (MABM) is based on the idea of the
ordinal basic matrix. Basic matrices during the iterations are
sequentially changed by the input-output of rows-normals of
problem restrictions from them.

Submatrix A,, composed of m linearly independent re-
striction of row-normals (i1, iy, ..., i), will be called artificial
base, and solution g to the corresponding to them equation
system

0
Au=C",
where
0 _ T
C"=(c; ¢y )

will be called artificial base.

Let us assume that: e,; is the elements of matrix A",
inverse to A,; uo=(uo1, Up2, -, Uom)' is the basic solution;
o, =(01, 02,.., Uy) is the vector of development of vec-
tor-normal of restriction a,u<c, by the rows of basic matrix
A, Ar=a,ug—c, is the mismatch of the 7-th restriction (1) at
the vertex. All the introduced elements in new basic matrix
Ay different from Ay by one row will be designated by the
overbar at the top.

According to Theorem 1 [14], the corresponding ratios
were established between the coefficients of expansion of
normals of constraints, elements of inverse matrices, basic
solutions, mismatches between restrictions in two adjacent
basic matrices.

Based of them, the scheme of determining the rank of
the system (1) and the solution of the system of equations,
successive changes of basic matrices and corresponding arti-
ficial solutions are constructed.

The preliminary results of application of the technol-
ogy of long arithmetic in conjunction with the method of
basic matrices for analysis of the SLAE properties (with
implementation) were examined in [22]. “Long arithmetic”
of the representation of rational numbers when performing
basic operations eliminates the accumulation of errors,
which in combination with the conditionality control in the
course of computing is effective, especially in the study of
ill-conditioned systems. For the latter, even small errors in
the representation of the model and the calculation have an
essential impact.

In the subsequent versions, the technology repeatedly
underwent improvements and both programmatically and
algorithmically, the relevant calculation experiments were
conducted.

The subject of research will be the properties of the new
algorithm and the computer implementation of the method
of artificial basic matrices [14] for model (1) in the Visual

C++ environment using rational arithmetic, in which multi-
plication of long numbers is made with the help of the Stras-
sen method based on the fast algorithm of discrete Fourier
transform [19].

The concept of representation of integers. Modern com-
puters usually use the standard types of integers, the size of
which does not exceed 64 bytes. Overcoming such hardware
limitations can be addressed programmatically, specifically,
by the development of its own data type [22]. In the Long-
num library developed in the language C++, the types of
long integers longint3 and corresponding rational numbers
and longrat3 with fast operations of multiplication, division,
constructed on modern algorithms, were implemented.

For the realization of long integers of arbitrary size and
appropriate rational numbers in C++, the object-oriented
approach (OOA) was used [21]. It involves the following: the
real object of the domain is placed in line with the so-called
object type or the class of objects, which is a generalization of
a structural type.

Let us use the definitions [21].

Definition 1. Class in C++ is a programming structure
consisting of data (data elements or fields) and subroutines
that operate on these fields and describe the properties of the
corresponding object of the modeled subject area.

The general concept of long or multiple precision arith-
metic, the notion of a long integer is described in [12]. But for
clarity, we will introduce the concepts:

Along integer or an integer of arbitrary size will be called
an integer not limited to ranges of standard computer types.
For example, in respect to the language C++, such num-
bers are fundamentally impossible to store in a variable of
type _ int64 or unsigned int64 that are limited to ranges
from -26% to 263 and from 0 to 264-1, respectively.

Long or multiple precision arithmetic is the arithmetic of
long integers.

An integer of an arbitrary size is programmatically repre-
sented as class longint3. Rational number as a pair (numer-
ator of longint3 class, denominator of longint3 class) is pro-
grammed in the form of longrat3 class. An integer is stored
in a dynamic array, the maximum length of which is 4096.
The elements of the vector are 16-byte unsigned numbers of
the standard C++ unsigned _int16 type and are, in fact, the
“numbers” in the number system with base BASE=2'6. Thus,
for example, an integer from the range from 232 to 264-1 will
be stored in an array of size 3.

Arrays of “numbers”, the number sign and operations
on numbers of such structure are organized in the form of
longint3 class. Specifically, in the longint3 class, the following
operations with integers are implemented: addition, subtrac-
tion, multiplication and division with residue, comparison,
conversion into the character string of the char type. During
the development of the Longnum library [22], the elements of
the STL (Standard Template Library) were used [13].

Declaration of the longint3 class

class longint3

{

public:

unsigned __int16 *s;

unsigned int I;

longint3();

longint3(unsigned n);

longint3(unsigned _ int16 *p,int n);

longint3(const char *s1);

longint3(const char *s1,int n);



longint3(const longint3 &a);
longint3 operator=(const longint3 &a);
~longint3();
char* text(void);
friend longint3 operator+(longint3 &a,longint3 &b);
friend longint3 operator-(longint3 &a,longint3 &b);
friend longint3 operator*(longint3 &a,longint3 &b);
friend longint3 operator/(longint3 &a,longint3 &b);
friend ostream& operator<<(ostream &os,const longint3
&a);
friend istream& operator>>(istream &is,longint &a);
friend longint3 karatsuba2(longint3 &ul,longint3
&u2,unsigned int n);
friend longint3 tomakuka(longint3 &ut,longint3 &u2);
friend longint3 fastmul2(longint3 & A, longint3 &B);
friend _ int8 divmod(longint3 &A, longint3 &B, longint3
&Q, longint3 &R) ;
void mult2(int n);
void mult(int m);
void div(int m);
friend int longemp2(longint3 &a,longint3 &b);
unsigned int toint();
void print();
void operator+=(longint3 &b);
void operator-=(longint3 &b);
void operator*=(longint3 &b);
friend void savebint2(FILE *flongint3& a);
friend void loadbint2(FILE *flongint3& a);
friend longint3 ncd(longint3 a,longint3 b);
b
Representation of rational numbers. A rational number is
represented as a pair: the numerator and denominator of the
longint3 type and is organized in the form of the longrat3
class. This class is also equipped with the operations of ad-
dition, subtraction, multiplication, division, reducing, com-
parison, representation as a decimal number with specified
precision, conversion in the type double, conversion into the
character string of the char type. Operations ‘+’,’-",’*’,’/” are
constructed using the appropriate operations on numbers of
the longint3 type. These classes were compiled as a dynamic
library and tested for precise solution of the systems of linear
algebraic equations.
Declaration of the longrat3 class
class longrat3
{
public:
__int8sign;
longint3 num;
longint3 denom;
longrat3():num(“0”),denom(“1”){sign=0;}
longrat3(char *s);
longrat3(double d);
longrat3(char *s1,char *s2);
longrat3(const longrat3 &l1):num(l1.num),de-
nom(I1.denom),sign(l1.sign){}
longrat3& operator=(const longrat3 &a);
friend ostream& operator<<(ostream &f,const lon-
grat3 &a);
void text(char *s);//return s as ‘p/q;
friend void savebrat3(FILE *flongrat3& a);
friend void loadbrat3(FILE *flongrat3& a);
friend longrat3 operator+(longrat3 &a,longrat3 &b);
friend longrat3 operator-(longrat3 &a,longrat3 &b);
friend longrat3 operator*(longrat3 &a,longrat3 &b);

friend longrat3 operator/(longrat3 &a,longrat3 &b);
void operator+=(longrat3 &a);

void operator-=(longrat3 &a);

void operator*=(longrat3 &a);

void operator/=(longrat3 &a);

char* decimal(unsigned  int32 size);

operator double();

friend  int8 longrabscmp(longrat3 &a,longrat3 &b);
~longrat3(){};

void reduce(void);
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Operations ‘+’ and -’ are implemented by classic al-
gorithms of addition and subtraction; multiplication and
division and significantly improved in comparison with the
traditional algorithms for multiplication and division in a
column and optimized both for time and for the use of com-
puter resources.

Acceleration of operations of multiplication and division
of long numbers.

Arithmetic operations with precise rational numbers are
based on multiplication of long integers. To reduce rational
fractions, division of a long integer by a long integer was
implemented.

Multiplication of long integers using the Strassen method
based on the discrete Fourier transform.

The product of integers

A=ay+aiBASE+..+a,BASE"!
and
B=by+byBASE+...+b,, BASE™!

in a number system with BASE can be interpreted as prod-
uct of polynomials

(agrarx+..+a, 12" ) (bo+bix+.. 4, (x" )=
=cotcixt...FCprpmg XL,

where ¢; is the components of the vector — convolutions of
vectors (ag, ay, ..., ap-1) and (by, by, ..., by1).

Let us use the definitions [18].

Definition 2. A cyclic convolution of vectors a and b is
called vector c=axb with coordinates

¢= Y apb.
k+l=i(modm)

Definition 3. Discrete Fourier transform (DFT) of vec-

tor (ag, ai,..., ay1) is determined as a complex vector with
coordinates (Yo, Y1, - Yn-1):

N-1
B
y=,a,0",
=

where ® is the main complex root of the N-th power of
unity,

2n .. 2n
®=CcoS——+isin—.
N N

Comment: The inverse discrete Fourier transform (DFT)
can be calculated from formula:



The Strassen method [20] of multiplication of long num-
bers is based on.

Theorem of convolution [20]. Fourier transform from a
cyclic convolution of two vectors is a scalar product of the
Fourier-images of these vectors:

c=axb < F(c)=F(a)*F(b),
And then
c=F'(F(a)*F(D)).

Here, * means component-wise multiplication of vectors.
Thus, to multiply long integers A and B, it is enough:
1. To calculate coefficients of convolution

c,i=0n+m-1.

2. To make all transfers, for all coefficients to be smaller
than BASE.

The theorem of convolution allows constructing the ef-
fective algorithm for calculation of convolution coefficients
at step 1 with the help of DFT:

1. 1. Calculate F(a) and F(b).

1. 2. To multiply the resulting vectors component-wise.

1. 3. To calculate inverse DFT from scalar product.

Multiplication of polynomials is reduced to scalar prod-
uct of corresponding vectors. It is assumed that at every
step the sizes of the vectors are the same and equal to N. The
complexity of the multiplication algorithm has the order of
O(NlogN). Moreover, the optimal performance is reached
only by the options of FFT (fast algorithm of discrete Fou-
rier transform) that operate on vectors of the size of N=2%,
so the vectors in these situations must be supplemented by
zeros. The Strassen method is implemented in the longint3
class of the Longnum library.

Division of long integers. The operation of division of
long numbers is used in the operation of reduction of ratio-
nal numbers. The “school” method of division “in column”,
the complexity of which is O(nm), where n and m are the
number of digits of a dividend and a divisor, respectively, is
taken as a base.

Here are the main stages of the algorithmic scheme
for finding the magnitude of rank, the initial basic ma-
trix and solution of the non-degenerated system (1) with
the rational elements, based on the technology of precise
calculations. The algorithm can be applied in the conver-
sion of an inverse matrix during the iteration process. It
is advisable to use such conversion at the accumulation of
significant errors when finding the elements of the method.
Based on the results of the given algorithm, it is possible to
construct the analytical representation of general solution
of the corresponding system of linear algebraic inequalities
(SLAE) [14].

Algorithms MABM

At the input: matrix of coefficients of A of dimension-
ality mxm, vector of right parts of SLAE C of dimension-
ality m and unity basic matrix I of dimensionality mxm,
representing dynamically created arrays of the elements of
the longrat3 type. The following steps will be subsequent-

ly performed with using the operations of comparison,
addition, subtraction, multiplication and division of the
longrat3 class.

Step 1. We perform simplex iterations on substitution of
the rows of basic matrix I of system (2) with the normals
of restrictions of system (1), according to the ratios of theo-
rem 1 [14].

We find the corresponding elements of the method:
vectors of expansion by the rows of the basic restriction
matrices (2), inverse basic matrix, artificial basic solutions
uP, where & is the number of iterations.

Step 2. Check the number of iterations 7 of the substitu-
tion of the rows of the additional system with the rows of
the main system, which meet the conditions of non-degener-
ation, i.e. o #0 number determines the rank of the main
system, (Consequence 2—3 of theorem 1 [14]).

Step 3. 1f the number of iterations, for which o #0, is
equal to m, proceed to the next step. Otherwise, to the last
but one step.

Step 4. Find the only solution (consequence 1 of theo-
rem 1 [14]). According to the ratio: A;'c”=u".

Step 5. Meeting condition 7<m means violation of condi-
tion of a single solution by the scheme of the method, i. e., the
models requires refinement and further analysis of solvabili-
ty (consequence 1 of theorem 1 [14]).

Last step. Generation of original information according
to the results of analysis (1) in the form of an array of ele-
ments of the longrat3 type.

The algorithm can be applied in re-calculation of the
inverse matrix during the iteration process of finding an
optimal solution. It is advisable to perform such conversion
at the accumulation of significant errors when finding the
elements of the method. Based on the results of the presented
algorithm it is possible to construct the analytical represen-
tation of the general solution of SLAE.

5. Results of research into computational properties of
software implementation of the methods and algorithms

We explored two SLAE with ill-conditioned matrices,
specifically, the Gilbert matrix Ay with elements

@ /i T i
a’ =1/(i+j-1), i=lm; j=1m
and matrix A, with elements

m—i+1, at i>},
aP=im—i, at i=}j,

m—j+1, at i<j.

Matrix A; was explored with such variations of vector ¢,
of the right parts:

1) V=1, i=1,m;

2) V==, i=1m;

3) ¢V =1+ (=1)") /2, i=Lm.

Vector of the right parts ¢y for matrix A, is determined
from ratio:

i<
c® m—i, at 1<2,
! m—i+1, at i>2.

Solution of SLAE using the Longnum library. In the
process of solving the SLAE of dimensionality of m=50 with



the Gilbert matrix and unity right part, using precise com-
putations, we obtained the precise solution (Table 1).

Table 1

Precise solution of SLAE by the method of basic matrices
with Gilbert matrix, m=50

Components of
solution with
floating point

Components of solution in precise form

The SLAE were solved using the Gaussian methods and
the MABM with the Gilbert matrix of dimensionality of
m=100, the reference to precise solution was published in [22].

As a result of the experiments for SLAE with the Gilbert
matrix A; of dimensionality of m=100 and the unity right
part ¢4, we obtained precise solutions (Table 2) both by the
Gaussian method, and by the method of the coinciding artifi-
cial basic matrices. Tables 2—4 show the time of performance
of the procedure of precise solution computation using the
computer with the processor AMD Athlon(tm) 64X2 Dual
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Thus, Table 4 shows that for the MABM with the SLAE
with the Gilbert matrix, the minimal leading element de-
creases at an increase in dimensionality, which is associated
with the property of ill-conditionality of the Gilbert matrix.
In addition, the time of performance of calculations increas-
es, which is caused by both an increase in the number of
arithmetic operations on rational numbers and an increase
in mantissas of numerators and denominators of rational
numbers. It should be noted that according to the data of
comparison of Table 4, the time of computation experiments
is significantly shorter for the new version of the Longnum
library, which is an improvement of the longint3 class.

6. Discussion of results of the computational experiment

Application of a new class of longint3 makes it possible
(Table 4):

1) to accelerate precise computations by 2.5 times: the
SLAE with the Gilbert matrix of dimensionality of 100 was
solved with the MBM in exact numbers in 1397.4 sec, where-
as the time of performance with the old class of longint2 on
the same computer was 3731.94 seconds [22];

2) to solve ill-conditioned SLAE of large dimensionality.

Compared to the old version of the Longnum library of pre-
cise computations, the following was done in the new version:

— implementations of arithmetic operations with long in-
tegers were optimized taking onto account the new standard
programming language C++17;

— outdated functions (itoa, strcpy, sprintf, strcat) of
standard C++ libraries were replaced by the new, more ef-
fective and safe analogues.

Thus, the advantage of using the new version of Long-
num compared with the previous version [22] is the higher
computational effectiveness.

The disadvantage of using precise calculations, specifi-
cally, the Longnum library, when solving SLAE is that the
computation volume greatly depends not only on dimension-
ality of the SLAE, but also on the properties (conditionality)
of the matrix of SLAE itself (Tables 2—4).

The MABM in combination with the precise computa-
tion technology of the Longnum library can be particularly
useful in scientific research into the properties of SLAE and
SLAN, mathematical modeling, and applied research in sci-

ence and technology, which relate to the necessity of solution
of ill-conditioned SLAE.

The presented study is the development of approaches
to the organization and performance of the basic operations
(presented in papers [8, 14]. Specifically, the technology
of high-precision computation with rational numbers was
combined with the control of conditionality of the system ac-
cording to the scheme of the MBM algorithm, and software
implementation (data type organization) was improved.

7. Conclusions

The results of the computational experiment on realiza-
tion of the algorithms for conducting high-precision compu-
tations (the technology of long arithmetic) using the method
of artificial basic matrices provide grounds to argue that:

1. The algorithm of SLAE (linear system), which effec-
tively applies the value of the leading element of the method
and elements of inverse matrix in order to carry out control
of conditionality of the system (exceptional property of the
MBM elements) was developed and implemented.

2. We implemented: the types of long integers longint3 and
corresponding rational numbers and longrat3 with fast opera-
tions of multiplication, division, constructed on modern algo-
rithms, which prevents the accumulation of errors in the course
of iterations (additional equipment of the MBM algorithm).

The representation (for making computations) of ratio-
nal numbers as a pair: numerator and denominator of the
longint3 type was developed and organized in the form of
the longrat3 class (improved compared with the previous
version of the algorithm); the acceleration of the operations
of multiplication and division of long numbers (for the new
proposed version of the Longnum library in comparison with
the previous version) was achieved. It should be noted that
the additional capabilities of control of computations and
measures to increase the precision of operations of the long
arithmetic technology, in general, caused a slight slowdown
of the algorithm operation and imposed restrictions on di-
mensionality of the solved SLAE.

It was established that the developed algorithms can
serve as testing programs to verify the precision of carrying
out computations using other algorithms for the problems of
medium dimensionality.
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1. Introduction is formed according to the results of measuring the values
of a set of controllable parameters (features) of an object.

Let us state the general principles for solving the problem  Identification technologies provide linkage between these
of identification of the state of an object. Information base  values and the state of an object. To solve this problem, a




