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exposed to the action of friction and contact forces, the forces 
of inertia from a washing fluid, etc. The listed phenomena exert 
a negative impact on the elements of a drill string, bits, down-
hole motors, and in general lead to a loss of energy and reduce 
the techno-economic indicators of drilling [1–4].

To refine the parameters of loading and the stressed-de-
formed state of a drill string, it is necessary to have a well-de-
fined procedure for determining the moments of inertia of 
its curved sections. Therefore, it is a relevant task for the 
theory of dynamic stability of elastic systems to investigate 
the inertial properties of a curvilinear string of pipes at ro-
tation. The solution to this problem is necessary in order to 
properly conduct a dynamic analysis of drill strings at rotor 
and rotor-turbine drilling techniques.
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1. Introduction

The commonly adopted world-wide practice that continues 
to develop at present is the directed drilling of deep oil and gas 
wells at which the axis of a bore often happens to be a spatial 
curve. In this case, a string of drill pipes is a rather complex 
spatial system with distributed parameters. Depending on the 
magnitude of external and volumetric loads, as well as the con-
ditions of contact interaction with the wall of the well, a string 
or its individual sections may experience phenomena that 
are characteristic of classic elastic rods. Specifically, a string 
can acquire a spiral-like shape, undergo local loss of stability, 
execute longitudinal, twisting or transverse oscillations. In 
addition, in the void of a curvilinear borehole a drill string is 
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Запропоновано пiдходи щодо аналiтичних оцiнок момен-
ту iнерцiї зiгнутих дiлянок бурильної колони при її обертан-
нi. Дослiдження обертання криволiнiйних дiлянок буриль-
ної колони на даний час пов’язанi з певними труднощами, 
якi виникають через вiдсутнiсть точних виразiв для оцiнки 
моментiв iнерцiї зiгнутої труби за параметрами її дефор-
мацiї. Вирiшення таких завдань є важливими для аналi-
зу динамiчної стiйкостi бурильних колон при роторному i 
роторно-турбiнному способах бурiння при дослiдженнях 
напружено-деформованого стану її елементiв, уточнення 
енергетичних затрат на процес обертання зiгнутих дiлянок 
у свердловинi, а також аналiзу критичних частот обертан-
ня. Проведено дослiдження моменту iнерцiї зiгнутої дiлянки 
бурильної колони на моделях iз зосередженими та розподiле-
ними масами. На основi цього встановлено точнi та асимп-
тотичнi аналiтичнi залежностi для визначення iнерцiйних 
характеристик криволiнiйних дiлянок бурильної колони та 
подано рекомендацiї щодо застосування цих залежностей.

Сучасною тенденцiєю розвитку i модернiзацiї бурового 
обладнання є застосування бурильних труб, виготовлених 
iз нетрадицiйних матерiалiв. Враховуючи науковий i прак-
тичний iнтерес до застосування цих матерiалiв, проведено 
розрахунки моментiв iнерцiї для зiгнутих дiлянок бурильних 
колон, що можуть комплектуватися сталевими, алюмiнiє-
вими, титановими чи склопластиковими бурильними тру-
бами. Аналiтичне оцiнювання моменту iнерцiї зiгнутих дiля-
нок вiдноситься до рiзного масштабу деформованого стану 
бурильної колони. Формула моменту iнерцiї, встановлена на 
простих моделях, є коректною у тих випадках, коли криво-
лiнiйна дiлянка бурильної колони зазнає великих перемiщень. 
У випадку малих перемiщень слiд застосовувати аналiтич-
ний результат, здобутий на моделi iз розподiленими пара-
метрами. Встановленi закономiрностi є важливими для 
аналiзу динамiки бурильної колони в глибоких умовно верти-
кальних, похило-скерованих чи горизонтальних свердлови-
нах iз складним гiрничо-геологiчним профiлем

Ключовi слова: бурильна колона, бурильна труба, зiгну-
тий стержень, зосереджена маса, розподiлена маса, момент 
iнерцiї

UDC 622.24.058
DOI: 10.15587/1729-4061.2019.154827



Applied mechanics

7

2. Literature review and problem statement

Estimation approaches to the theory of rods have been 
developed quite well, however, when studying the processes 
of rotation of the curved sections of a drill string, there are 
certain difficulties related to the lack of precise expressions 
to evaluate the moment of inertia of a bent pipe based on the 
parameters of its deformation. Resolving such problems is 
required to evaluate the dynamic stability and pliability of a 
drill string under conditions of the non-stationary vibration 
load when drilling deep wells and, particularly, wells with 
difficult mining and geological conditions [4–6].

Most researchers tried to avoid taking into consider-
ation the influence of the curvilinearity at sections in a 
drill string on its inertial properties at rotation, neglecting 
this influence completely, or using a series of assumptions 
[2, 4]. That created the problem for a dynamic analysis of 
long strings at rotation because of a mismatch between 
real objects and mathematical models [7]. Excessive sche-
matization of the behavior of these mechanical systems 
simplifies the solutions to problems, but reduces the accu-
racy of results, and vice versa. In this case, each proposed 
engineering model, which is based on a series of hypotheses 
and assumptions, requires verification through numerical 
methods [8] or experiment [9].

The features of approaches to the dynamic analysis of a 
drill string depend on the shape of its elastic equilibrium, 
which, as a result of the diversity of technical- technological 
and mining-geological factors, can be both flat and spatial 
[10]. Paper [11] described an analogy between the phenom-
ena of loss of stability when long rods are compressed and 
when flexible shafts reach the critical frequency of rotation; 
it also outlined approaches to practices aimed at preventing 
these dangerous states. Based on the research results, the 
authors proposed techniques for creating critical-free rotors, 
resonance-free structures and rods that do not lose stability 
when compressed.

Some authors [5, 12] believe that reducing the vibrations 
of drilling equipment might be the key to maintaining the 
dynamic stability of a drill string in general. The relevant 
issues on designing vibration protection devices for long 
structures (drill strings, pump-and-compressor rods) were 
considered in papers [13–15]. Specifically, study [13] pre-
sented designs of inertial devices to control the dynamic 
mode of a drill string, which simultaneously act as collared 
drill pipes. They are executed in the form of a single-section 
or multi-section hollow body partially filled with a loose 
medium. Paper [14] addresses the development of shell elas-
tic elements for the strings of pump-and-compressor rods. 
A special feature of the proposed designs is the optimal 
combination of amortization and damping properties, which 
makes it possible to significantly reduce the dynamic loads 
on a string of rods. Authors of work [15] employed the ef-
fects that are based on the phenomenon of antiresonance to 
develop a broadband vibration damper for the long elements 
of structures.

Modeling of contact interaction in the shell-rod systems 
(the type of rod-rigid ferrule, elastic body-cylindrical shell) 
at monotonous loading in order to determine the strength, 
rigidity and damping capacity of these systems was per-
formed in papers [16–19]. Drilling shock absorbers with 
solid shells were considered in [16], hydro-elevators and ring 
compensators ‒ in papers [17, 18], authors of [19] examined 
the dampers that were designed based on the cut shells.

The phenomenon of contact interaction between the ele-
ments of a drill string and the wall of a well is a key factor that 
determines the energy intensity of drilling process at string 
rotation. For this area, it remains relevant to mathematically 
model the static and dynamics of rod systems regarding the 
tasks on eliminating the pinching of a drill string [20–22]. 
Refinement of models of interaction between the surface of a 
rod and the elastic or non-elastic environment is required for 
the safe operation of long objects. The use of such models is 
relevant for pipelines in the areas of soil displacement [23], in 
places where a damaged base is mobile [24], and where active 
fault is crossed [25, 26]. Similar models of contacting bodies 
are applicable to improve the durability of drill strings [27, 
28] and to provide quality centering of casing pipes [29].

Specifically, paper [30] analyzed the dynamic behavior of 
pipelines as a rod system, using the method of dynamic rigid-
ities. It is shown that for curved rods it is advisable to apply 
a model that consists of straight sections and inertia-free 
turning elements. 

Analytical and experimental research into the dynamics 
of a flexible shaft rotation in moving supports is reported in 
[31]. The shaft is modeled in the form of a flexible rod, whose 
mass is represented in the form of a cylinder located in the 
place of the largest deflection of the rod. The moment of iner-
tia of such a system is determined similar to a cylinder whose 
rotation axis is parallel to its central axis. Similar study is 
reported in [32].

At present, there are known models in which a drill string 
is represented as a standard rotational pendulum while the 
layout of the bottom of a string is regarded as a fly-wheel [4]. 
There are other models with concentrated masses that take 
into consideration the relationship between oscillations of 
different classes [2, 4]. There are well-developed models that 
take into consideration both the vibration of a drill string 
and the so-called delay effects [2]. The nonlinear models of a 
drill string [3] are applied in selected areas, as well as models 
that more or less accurately take into consideration the in-
teraction between a string and the walls of a well [4, 33, 34].

Despite the diversity of mechanical and mathematical 
solutions, all known models fail to account for changes in 
the inertial characteristics of a drill string that occur due 
to bending of pipes. Therefore, taking into consideration 
the specified characteristics is possible by establishing and 
investigating analytical dependences for determining the 
moments of inertia for the curved sections of a drill string 
at its rotation.

3. The aim and objectives of the study

The aim of this work is to derive and verify analytical de-
pendences to determine the moments of inertia of the curved 
sections in a drill string at its rotation.

To accomplish the aim, the following tasks have been set:
– to explore the inertial properties of the curved section 

in a drill string at rotation by using models with concentrat-
ed masses; 

– to explore the inertial properties of the curved section 
in a drill string at rotation by using a model with distributed 
masses; 

– to justify recommendations for the application of exact 
and asymptotic results of research; 

– to carry out numerical calculations and to perform a 
comparative analysis of the moments of inertia of curvilin-
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ear strings, equipped with drill pipes made from different 
materials.

4. Studying the inertial properties of the curved section 
in a drill string at its rotation by using models with 

concentrated masses

Let the mass of a tubular rod be evenly distributed along 
the curve S (Fig. 1, a), whose axis shape is described by an 
arbitrary function y(x). For example, it could be a sinusoi-
dal or a cosine function if drill pipes are in the compressed 
part of the string, a hyperbolic function if they are in the 
stretched one, etc. Curve S rotates around the x axis at an 
arbitrary angular speed. For certainty, we shall accept that 
outline of the axis of curve S is described by a sinusoidal 
function:

( ) sin ,
x

y x f
L

p
=   (1)

where L is the length of the deflection halfwave; f is the mag-
nitude of the maximum deflection. 

In further calculations, we represent this material curve 
in the form of a weightless curve with a focused mass  
(Fig. 1, b). The essence of the proposed model is as follows. 
The magnitude of concentrated mass M�  must be chosen so 
that the inertial properties of the model with a concentrated 
mass at rotation relative to the x axis are equivalent to the 
model with distributed parameters. 

First, determine the mass of arc S (Fig. 1, a):

[ ]2

0 0

2
2

0

( )d ( ) 1 ( ) d

1 cos d ,

S L

L

M m s s m x y x x

m f x x
L L

= = + =′

p p   = +       

∫ ∫

∫   (2)

where ( )m s  is the mass per unit of the rod’s length; 

[ ]2
1 ( )ds y x dx= + ′  

is the differential of the arc of curve y(x);

( )
( ) cos .

dy x
y x f x

dx L L
p p = =′   

The moment of inertia of arc S relative to the x axis:

[ ]22

0

2
2 2 2

0

( ) ( ) 1 ( ) d

sin 1 cos d .

L

x

L

J y x m x y x x

x
mf f x x

L L L

= + =′

p p p     = +          

∫

∫   (3)

Next, we consider a weightless curve S of equivalent 
concentrated mass M�  (Fig. 1, b). The equivalent moment 
of inertia for the system of concentrated mass is represented 
as follows:

2 2,xJ Mf Mf= = ζ� �   (4)

where M�  is the equivalent concentrated mass; ζ is the coef-
ficient of mass reduction. 

 
 
 
 
 
a 
 
 
 
 
 
 
b 
 
 
 
 
 

c  
Fig. 1. Models of the bent solid rod: a – material curve;  
b – weightless curve of equivalent concentrated mass;  

c – weightless curve of concentrated mass and an 
equivalent expansion of lift

By assigning to the moment of inertia of arc S the equiv-
alent moment of inertia of the system with the same concen-
trated mass M�  from (4), we obtain:

2 ,xJ
Mf

ζ =

considering the right-hand parts of expressions (2) and (3), 
we obtain:

2
2 2

0

2
2

0

sin 1 cos d

.

1 cos d

L

L

x
f x x

L L L

f x x
L L

p p p     +          
ζ =

p p   +       

∫

∫
  (5)

Coefficient of mass reduction depends on the geometri-
cal parameters and the deformed state of the rod. Thus, to 
replace the system (Fig. 1, a) with its single-mass equivalent 
(Fig. 1, b), it is necessary to perform the following. First, 
calculate the mass of material curve M from formula (1). 
Next, determine the coefficient of mass reduction using ex-
pression (5). And, finally, find the equivalent concentrated 
mass .M M= ζ�  

For the case ,L f�  the result from solving the set 
problem can be obtained analytically with a high degree of 
accuracy. Thus, expressions (2) and (3) after integration will 
take the following form

2 4
1

1 ,
4

f f
M mL C

L L

 p p   = + +        
  (6)

2 42 1
1 ,

2 8x

mf L f f
J C

L L

 p p   = + +        
  (7)

where C is an unidentified magnitude, which is disregarded 
because at ,L f�  the multiplier is very small. 
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The coefficient of mass reduction in this case will take 
the following form:

2

2

2

1
1

1 18
1 .

2 81
2

2

f
fL

Lf
L

p +      p ζ = = −   p   +   

  (8)

At the second stage, while trying to solve the set prob-
lem for cases when ,L f�  we apply a slightly different 
approach. We accept, as a variable parameter, not the mass 
of a bent rod, but the extension of arc lift of its curved axis f. 
The equivalent system is shown in Fig. 1, c. In this case, the 
equivalent moment of inertia for a single-mass model will be 
written in the following form:

( )22 ,xJ M f M f= = ψ��   (9)

where ψ  is the coefficient of deflection extension reduction.

( )2 1
.x

x

J
M f J

f M
ψ = ⇒ ψ =   (10)

Considering (2) and (3), the coefficient of deflection 
extension reduction

2
2 2

0

2
2

0

sin 1 cos d

.

1 cos d

L

L

x
f x x

L L L

f x x
L L

p p p     +          
ψ =

p p   +       

∫

∫
  (11)

Dependences (9) to (11) should be used for exact calcu-
lations of the moments of inertia of the curved sections in a 
string. Further numerical check of dependences (5) and (8) 
shows a high convergence of results. Thus, for the approxi-
mate calculations at / 1/ 20f L <  one can affirmatively use 
formulae (6) to (8).

5. Studying the inertial properties of the curved section in 
a drill string at its rotation using a model with distributed 

masses

At this stage of our study, we shall refine the statement of 
the problem. To this end, assign real transverse dimensions 
to the material curve. Consider a bent filled tubular rod of 
length s, which rotates around the x axis. Density of the 
material of the rod and the filler are, respectively, 1ρ  and 

2,ρ  radius of the cross section of the rod is r, and the wall 
thickness is h. The elastic line of the rod is described by an 
arbitrary analytical function y(x), which we consider to be 
known. Let this function be represented by expression (1). 
It is required to calculate the moment of inertia Jx of such an 
object when it rotates around the x axis.

We shall consider that the rod is made up of inhomoge-
neous rigid thin disks that could be exposed at rod deforma-
tion to angular and linear displacements (Fig. 2). The discs 
in this case remain perpendicular to the axis of the rod, and 
because we look at small deflections, the distortions of cross 
sections and the ovalization are disregarded. 

The moment of inertia of an arbitrary disk relative to the 
x1 axis (Fig. 2) will be represented in the form:

2 I
I 2cos ,

1
x

x x

J
J J

yζ = α =
+ ′

  (12)

where

2
2 2

1 1
cos .

1 1tg y
α = =

+ α + ′

Then the moment of inertia of an arbitrary disk relative 
to the x axis is:

2I
2 .

1
x

x

J
J my

y
= +

+ ′
  (13)

Fig. 2. Model of the filled tubular rod

The moment of inertia of a bent rod:

2I
2 d

1
x

x
s

J
J my s

y

 
= + + ′ ∫   (14)

or

2 2I
2 1 d ,

1
x

x
L

J
J my y x

y

 
= + + ′ + ′ ∫   (15)

where

( )2 2
I 2 1

1
;

2xJ m r h m r= − +  1 12 ;m rh= p ρ

2
2 2( ) ;m r h= p − ρ  1 2.m m m= +

For more specific numerical results, we show the result-
ing formula:

( )2 2 2
2 1

2
2

2
2

1
2 ¦

1 cos   

1 cos d .

x
L

m r h m r x
J m f

L
f x

L L

f x x
L L

 
− + p  = + ×   p p   +        

p p   × +       

∫

  (16)

Formula (16) is accurate, albeit cumbersome. For prac-
tical calculations based on (15), we shall derive a simplified 
formula. For the case of small deflections and the rod’s angles 
of rotation, we assume that the following inequalities hold:

( )
max 1,

x

y x
r
�  

( ) 1,y x ≤′  [0, ].x L∈
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Then

2
2

1
1 ,

1
y

y
≈ − ′

+ ′
 2 21

1 1 .
2

y y+ ≈ +′ ′

By retaining in the asymptotic decompositions of ex-
pression (15) the magnitudes of the order 2y′  and 2y  only, 
we obtain:

( )( )

2 2I
2

2 2 2
I

2 2
I

I

1 d
1

1
1 1 d

2

1
1 d ,

2

x
x

L

x
L

x
xL

J
J my y x

y

J y my y x

m
J y y x

J

 
= + + ≈′ + ′ 

 ≈ − + + ≈′ ′  

 
≈ − +′  

∫

∫

∫

consequently

2
2

I 2
I

1
1 d ,

2x x
xL

y
J J y x

i

 
≈ − +′  ∫   (17)

where 

( )2 2
2 1

I
I

1 2

1
2x

x

m r h m rJ
i

m m m

− +
= =

+
 

is the radius of inertia of the heterogeneous cross section of 
the rod. 

Let, as previously, the elastic line of the rod is de-
scribed by function (1), then, based on formula (17), the 
asymptotic expression for the moment of inertia will take 
the following form:

2

2

I 2
I

sin
1

1 cos d ,
2x x

xL

x
f

L
J J f x x

L L i

 π 
    π π  ≈ − +     

  

∫

upon integration

22

I
I

.
4 2x x

x

L f L
J J L f

L i

  π ≈ − +         
  (18)

A comparative analysis of dependences (16) and (18) 
shows that the difference between them is observed when the 
deflection extension exceeds 2,5 m (Fig. 3).

Fig. 3. Dependence of the moment of inertia of a drilling pipe 
Æ60 on the magnitude of deflection section in a drill string

Typically, the maximum deflection of a drill string in the 
well is much less than 2,5 m. Based on this, we can conclude 
that in practical calculations, when 10,L f >  in order to de-
termine the moments of inertia of the deflected sections of a 
drill string one can widely apply the simplified (asymptotic) 
formula (18).

6. Numerical verification of results from the analytical 
study

As shown above, the moment of inertia of the curved 
section in a drill string, both in (16) and (18), depends on the 
parameters that determine both the geometry of its shape 
and the dimensions of the cross-section. Therefore, for prac-
tical calculations, it is also needed to estimate the magnitude 
of the maximum deflection of the section in a drill string 
depending on its diameter. To do this, we shall use known 
ratios between the diameters of drill pipes (DP), weighted 
drill pipes (WDP), and a bit:

WDP b b

WDP b b

DP WDP

0,75 0,85 at 295,3 mm;

0,65 0,75 at 295,3 mm;

0,75 0,8,

d D D

d D D

d d

= ÷ ≤ 
= ÷ > 
= ÷ 

  (19)

where WDP,d  DP,d  bD  are, respectively, the diameter of WDP, 
DP, and a bit. 

The extension of a drill string’s section deflection in 
the well:

( )Bh Dl 2;f D d= −   (20)

Bh ,D  Dld  are, respectively, the diameter of the bore hole and 
a drill lock. 

We assume that Bh b;D D≈  Dl DP.d d≈  Comparing (19) 
and (20), after appropriate transformations, we obtain: 

– for DP section:

( )
( )

DP DP b

DP DP b

0,236 0,393  at 295,3 mm;

0,333 0,521 at 295,3 mm;

f d D

f d D

= ÷ ≤ 


= ÷ > 
 (21)

– for WDP section:

( )
( )

WDP WDP b

WDP WDP b

0,177 0,314  at 295,3 mm;

0,250 0,417 at 295,3 mm.

f d D

f d D

= ÷ ≤ 


= ÷ > 
  (22)

We shall quantitatively and qualitatively verify expres-
sion (16) by using data on drill pipes made from different 
materials. Currently, there is a trend in the development 
and modernization of drilling equipment towards manufac-
turing drill pipes from unconventional materials – titanium 
and fiberglass. Given the scientific and practical interest to 
their future use, we calculated the moments of inertia for the 
deflected sections in steel and aluminum, as well as titanium 
and fiberglass, drill pipes. Accordingly, we accepted the 
following average values for the density of pipes’ material: 
steel – 7850stρ =  kg/m3, titanium – 4500tρ =  kg/m3, alu-
minum – а 2700ρ =  kg/m3, fiberglass – 2000fbρ =  kg/m3. 
Drilling mud density is р 1300ρ =  kg/m3. Based on (21) and 
(22), the magnitudes of the maximum deflections of sections 
are assigned as follows: for DP stage – DP DP,f r≈  for WDP 
stage – WDP WDP0,8 .f r≈  Length of deflection halfwaves are 
as follows: for DP stage – DP 20 80L = ÷  m, for WDP stage –  

WDP 10 30L = ÷  m. The results of numerical calculations of 
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the moments of inertia for the deflected sections of drill and 
weighted drill pipes are given in Tables 1, 2. An analysis of 
formula (16), as well as charts in Fig. 4, 5, show that for a 
certain length of the halfwave of the section deflection in a 
string its moment of inertia is in quadratic dependence on 
the magnitude of the deflection. At the same time, it follows 
from formula (18) that at the fixed deflection extension the 
moment of inertia of the deflected section depends linearly 
on the length of a halfwave (Fig. 6).

Fig. 4. Dependence of moments of inertia of the deflected 
sections of DP ((Æ114 mm) on a deflection extension

Fig. 5. Dependence of moments of inertia of the deflected 
sections of WDP ((Æ203 mm) on the magnitude of deflection

Fig. 6. Dependence of moments of inertia of the deflected 
sections of DP ((Æ114 mm) on the length of a halfwave

Table 1

Moments of inertia for the deflected sections of  
WDP stage

LWDP=10 m

f

dWDP=108 mm dWDP=120 mm dWDP=146 mm

Steel
Titani-

um
Steel

Titani-
um

Steel
Titani-

um

0 2.413 1.386 3.004 1.731 6.946 3.998

0.2r 2.463 1.415 3.067 1.769 7.090 4.083

0.4r 2.611 1.501 3.255 1.880 7.522 4.339

0.6r 2.858 1.646 3.568 2.066 8.242 4.764

0.8r 3.204 1.848 4.007 2.327 9.251 5.360

LWDP=20 m

f

dWDP=146 mm dWDP=178 mm dWDP=203 mm

Steel
Titani-

um
Steel

Titani-
um

Steel
Titani-

um

0 13.892 7.996 30.766 17.708 53.884 30.994

0.2r 14.180 8.166 31.404 18.085 54.998 31.650

0.4r 15.044 8.677 33.319 19.216 58.340 33.618

0.6r 16.485 9.529 36.509 21.101 63.909 36.899

0.8r 18.503 10.721 40.976 23.740 71.707 41.492

LWDP=30 m

f

dWDP=203 mm dWDP=245 mm dWDP=273 mm

Steel
Titani-

um
Steel

Titani-
um

Steel
Titani-

um

0 80.826 46.491 150.875 87.032 275.717 158.479

0.2r 82.497 47.475 154.035 88.914 281.395 161.813

0.4r 87.510 50.428 163.513 94.562 298.429 171.813

0.6r 95.865 55.349 179.310 103.975 326.819 188.481

0.8r 107.562 62.239 201.426 117.154 366.566 211.815

Based on the numerical data from Tables 1, 2, one 
should note the following. Increasing the density of a 
material for drill pipes of the curved section leads to a 
disproportionate increase in its moment of inertia. This 
can be explained based on the following considerations. 
Take for the first case the ratio between the density of steel 
and fiberglass, which is 3,9 times. At the same time, the 
ratio between the moments of inertia of the two sections 
made, respectively, from steel and fiberglass drill pipes is 
smaller. For example, for DP Æ89 mm (L=40 m) – 2,9¸3,2; 
for DP Æ114 mm (L=60 m) – 2,6¸3,0; for DP Æ139 mm 
(L=80 m) – 2,4¸2,7. Consider the second case when the 
density of steel is 2,25 times greater than the density of 
titanium. In this case, the ratio between the moments 
of inertia of two sections made, respectively, from steel 
and titanium weighted drill pipes is also smaller. For 
example, for WDP Æ203 mm (L=20 m) – 1,72¸1,74; for  
WDP Æ273 mm (L=30 m) – 1,73¸1,74.

Based on this analysis, it can be argued that a change 
in the moment of inertia for the curved sections in a string 
depends in the first place on the density of pipes’ material, 
with which it is equipped. Changing the moments of inertia 
of these sections depending on the length of a halfwave of 
deflection occurs in the same proportion.
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7. Discussion of results of studying the moment of inertia 
for the curved section in a drill string at its rotation

The proposed analytical approaches to the evaluation 
of moments of inertia for the curved sections in a drill 
string at its rotation can be implemented in two ways. The 
advantages of these techniques are a relatively simple math-
ematical apparatus, as well as the fact that the results from 
one technique can always be confirmed by the results from 
another technique. The results obtained from calculating 
the moments of inertia for the curved sections, equipped 
with steel, aluminum, titanium or fiberglass pipes, can be 
applied in the further research. Important in this regard is 
an analysis of the stressed-strained state of a drill string’s el-
ements, refinement of energy costs on the process of rotation 
of curved sections in a well, as well as analysis of the critical 
frequencies of rotation.

Under actual conditions, the eccentric rotation of curved 
sections in a string at frequencies close to critical is charac-
terized by a transition to an unsteady state, predetermined 
by the occurrence of transverse oscillations and “running” 
waves. Approaching the critical frequencies always leads to 
an increase in the number of halfwaves in deformation, and, 
accordingly, in the number of deflected sections in a drill 
string. The new steady position with the increased number 

of halfwaves of deformation forms at the frequency of ro-
tation, which is greater than the critical. Therefore, to de-
termine the difference between the “operating” and critical 
frequencies of rotation of the deformed drill string, we plan 
further studies in the future.

The disadvantage of our study is the lack of practical test 
of the established analytical dependences experimentally. 
This is explained by the absence of specialized measuring 
borehole equipment and the impossibility of its application 
under industrial conditions. However, the research results 
obtained when using a model with the distributed mass are 
in good agreement with the results of studies, reported in 
[31, 32], by applying a finite element method.

The advantage of the dependences established in the 
course of our study is the high accuracy of results and the 
ease of their application in practical calculations at drilling 
enterprises. Employing them could help assess more accu-
rately the dynamic stability and pliability of a drill string 
under conditions of a vibration load at rotor and rotor-tur-
bine drilling techniques. Studies into such an aspect could 
address the elucidation of the magnitude of consumption of 
mechanical energy on pushing and turning the curved sec-
tions in a drill string, as well as searching for energy-saving 
modes of its operation. In this regard, there are remaining 
complex and relevant issues related to analytical and nu-

Table 2

Moments of inertia for the deflected sections of DP stage

LDP=20 m

f
dDP=60.3 mm dDP=73.0 mm

Steel Titanium Aluminum Fiberglass Steel Titanium Aluminum Fiberglass

0 0.251 0.148 0.092 0.070 0.455 0.271 0.172 0.133

0.25r 0.260 0.153 0.096 0.073 0.471 0.281 0.179 0.139

0.5r 0.286 0.169 0.106 0.082 0.519 0.312 0.201 0.157

0.75r 0.329 0.196 0.125 0.097 0.600 0.364 0.237 0.187

r 0.390 0.234 0.150 0.118 0.712 0.436 0.287 0.229

LDP=40 m

f
dDP=89.0 mm dDP=101.6 mm

Steel Titanium Aluminum Fiberglass Steel Titanium Aluminum Fiberglass

0 1.694 1.027 0.668 0.528 2.577 1.584 1.050 0.842

0.25r 1.756 1.067 0.697 0.554 2.673 1.648 1.098 0.884

0.5r 1.941 1.190 0.786 0.629 2.960 1.843 1.242 1.009

0.75r 2.249 1.394 0.934 0.755 3.439 2.166 1.482 1.216

r 2.681 1.679 1.141 0.932 4.109 2.619 1.819 1.507

LDP=60 m

f
dDP=114.3 mm dDP=127.0 mm

Steel Titanium Aluminum Fiberglass Steel Titanium Aluminum Fiberglass

0 5.630 3.509 2.369 1.925 7.901 4.990 3.427 2.818

0.25r 5.843 3.656 2.480 2.023 8.205 5.204 3.592 2.964

0.5r 6.484 4.097 2.814 2.315 9.120 5.846 4.087 3.402

0.75r 7.550 4.832 3.371 2.803 10.644 6.915 4.912 4.133

r 9.044 5.861 4.151 3.486 12.778 8.412 6.067 5.155

LDP=80 m

f
dDP=139.7 mm dDP=168.3 mm

Steel Titanium Aluminum Fiberglass Steel Titanium Aluminum Fiberglass

0 14.342 9.178 6.402 5.323 26.372 17.341 12.489 10.602

0.25r 14.905 9.579 6.717 5.604 27.441 18.129 13.125 11.179

0.5r 16.593 10.783 7.661 6.446 30.650 20.491 15.032 12.909

0.75r 19.406 12.789 9.233 7.851 35.998 24.428 18.211 15.793

r 23.345 15.598 11.435 9.816 43.486 29.940 22.661 19.831
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merical modeling of oscillatory processes of a drill string 
when drilling conditional-vertical, inclined-directed, and 
horizontal wells.

8. Conclusions 

An analysis of the derived research results testifies to 
that an increase in the density of a material for the curved 
section of WDP by 2,25 times leads to an increase in its 
moments of inertia by 1,7 times, while at the same time in-
creasing the density of a material for the curved section of 
DP by 3.9 times on average increases its moment of inertia 
by 2,4¸3,2 times.

The study that we performed has also shown that the 
analytical evaluation of inertial properties of the curved 
sections belongs to a different scale of motion or a scale of 
the deformed state of a drill string. It turned out that the 
results obtained from simple models are applicable only in 
cases when a curvilinear section of a drill string undergoes 
large displacements (lift extension is larger or significantly 
larger than the transverse size of the string). Only in this 
case one can obtain values for the moments of inertia with a 
sufficient degree of accuracy. For the case of small displace-
ments (when a lift extension of the curvilinear section is less 
than, or comparable to, a transverse size of the string), it 
is necessary to apply those dependences that were derived 
when using a model with distributed parameters.
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