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1. Introduction

The commonly adopted world-wide practice that continues
to develop at present is the directed drilling of deep oil and gas
wells at which the axis of a bore often happens to be a spatial
curve. In this case, a string of drill pipes is a rather complex
spatial system with distributed parameters. Depending on the
magnitude of external and volumetric loads, as well as the con-
ditions of contact interaction with the wall of the well, a string
or its individual sections may experience phenomena that
are characteristic of classic elastic rods. Specifically, a string
can acquire a spiral-like shape, undergo local loss of stability,
execute longitudinal, twisting or transverse oscillations. In
addition, in the void of a curvilinear borehole a drill string is

exposed to the action of friction and contact forces, the forces
of inertia from a washing fluid, etc. The listed phenomena exert
a negative impact on the elements of a drill string, bits, down-
hole motors, and in general lead to a loss of energy and reduce
the techno-economic indicators of drilling [1—4].

To refine the parameters of loading and the stressed-de-
formed state of a drill string, it is necessary to have a well-de-
fined procedure for determining the moments of inertia of
its curved sections. Therefore, it is a relevant task for the
theory of dynamic stability of elastic systems to investigate
the inertial properties of a curvilinear string of pipes at ro-
tation. The solution to this problem is necessary in order to
properly conduct a dynamic analysis of drill strings at rotor
and rotor-turbine drilling techniques.




2. Literature review and problem statement

Estimation approaches to the theory of rods have been
developed quite well, however, when studying the processes
of rotation of the curved sections of a drill string, there are
certain difficulties related to the lack of precise expressions
to evaluate the moment of inertia of a bent pipe based on the
parameters of its deformation. Resolving such problems is
required to evaluate the dynamic stability and pliability of a
drill string under conditions of the non-stationary vibration
load when drilling deep wells and, particularly, wells with
difficult mining and geological conditions [4—6].

Most researchers tried to avoid taking into consider-
ation the influence of the curvilinearity at sections in a
drill string on its inertial properties at rotation, neglecting
this influence completely, or using a series of assumptions
[2, 4]. That created the problem for a dynamic analysis of
long strings at rotation because of a mismatch between
real objects and mathematical models [7]. Excessive sche-
matization of the behavior of these mechanical systems
simplifies the solutions to problems, but reduces the accu-
racy of results, and vice versa. In this case, each proposed
engineering model, which is based on a series of hypotheses
and assumptions, requires verification through numerical
methods [8] or experiment [9].

The features of approaches to the dynamic analysis of a
drill string depend on the shape of its elastic equilibrium,
which, as a result of the diversity of technical- technological
and mining-geological factors, can be both flat and spatial
[10]. Paper [11] described an analogy between the phenom-
ena of loss of stability when long rods are compressed and
when flexible shafts reach the critical frequency of rotation;
it also outlined approaches to practices aimed at preventing
these dangerous states. Based on the research results, the
authors proposed techniques for creating critical-free rotors,
resonance-free structures and rods that do not lose stability
when compressed.

Some authors [5, 12] believe that reducing the vibrations
of drilling equipment might be the key to maintaining the
dynamic stability of a drill string in general. The relevant
issues on designing vibration protection devices for long
structures (drill strings, pump-and-compressor rods) were
considered in papers [13—15]. Specifically, study [13] pre-
sented designs of inertial devices to control the dynamic
mode of a drill string, which simultaneously act as collared
drill pipes. They are executed in the form of a single-section
or multi-section hollow body partially filled with a loose
medium. Paper [14] addresses the development of shell elas-
tic elements for the strings of pump-and-compressor rods.
A special feature of the proposed designs is the optimal
combination of amortization and damping properties, which
makes it possible to significantly reduce the dynamic loads
on a string of rods. Authors of work [15] employed the ef-
fects that are based on the phenomenon of antiresonance to
develop a broadband vibration damper for the long elements
of structures.

Modeling of contact interaction in the shell-rod systems
(the type of rod-rigid ferrule, elastic body-cylindrical shell)
at monotonous loading in order to determine the strength,
rigidity and damping capacity of these systems was per-
formed in papers [16—19]. Drilling shock absorbers with
solid shells were considered in [16], hydro-elevators and ring
compensators — in papers [17, 18], authors of [19] examined
the dampers that were designed based on the cut shells.

The phenomenon of contact interaction between the ele-
ments of a drill string and the wall of a well is a key factor that
determines the energy intensity of drilling process at string
rotation. For this area, it remains relevant to mathematically
model the static and dynamics of rod systems regarding the
tasks on eliminating the pinching of a drill string [20-22].
Refinement of models of interaction between the surface of a
rod and the elastic or non-elastic environment is required for
the safe operation of long objects. The use of such models is
relevant for pipelines in the areas of soil displacement [23], in
places where a damaged base is mobile [24], and where active
fault is crossed [25, 26]. Similar models of contacting bodies
are applicable to improve the durability of drill strings [27,
28] and to provide quality centering of casing pipes [29].

Specifically, paper [30] analyzed the dynamic behavior of
pipelines as a rod system, using the method of dynamic rigid-
ities. It is shown that for curved rods it is advisable to apply
a model that consists of straight sections and inertia-free
turning elements.

Analytical and experimental research into the dynamics
of a flexible shaft rotation in moving supports is reported in
[31]. The shaft is modeled in the form of a flexible rod, whose
mass is represented in the form of a cylinder located in the
place of the largest deflection of the rod. The moment of iner-
tia of such a system is determined similar to a cylinder whose
rotation axis is parallel to its central axis. Similar study is
reported in [32].

At present, there are known models in which a drill string
is represented as a standard rotational pendulum while the
layout of the bottom of a string is regarded as a fly-wheel [4].
There are other models with concentrated masses that take
into consideration the relationship between oscillations of
different classes [2, 4]. There are well-developed models that
take into consideration both the vibration of a drill string
and the so-called delay effects [2]. The nonlinear models of a
drill string [3] are applied in selected areas, as well as models
that more or less accurately take into consideration the in-
teraction between a string and the walls of a well [4, 33, 34].

Despite the diversity of mechanical and mathematical
solutions, all known models fail to account for changes in
the inertial characteristics of a drill string that occur due
to bending of pipes. Therefore, taking into consideration
the specified characteristics is possible by establishing and
investigating analytical dependences for determining the
moments of inertia for the curved sections of a drill string
at its rotation.

3. The aim and objectives of the study

The aim of this work is to derive and verify analytical de-
pendences to determine the moments of inertia of the curved
sections in a drill string at its rotation.

To accomplish the aim, the following tasks have been set:

— to explore the inertial properties of the curved section
in a drill string at rotation by using models with concentrat-
ed masses;

— to explore the inertial properties of the curved section
in a drill string at rotation by using a model with distributed
masses;

— to justify recommendations for the application of exact
and asymptotic results of research;

—to carry out numerical calculations and to perform a
comparative analysis of the moments of inertia of curvilin-



ear strings, equipped with drill pipes made from different
materials.

4. Studying the inertial properties of the curved section
in a drill string at its rotation by using models with
concentrated masses

Let the mass of a tubular rod be evenly distributed along
the curve S (Fig. 1, a), whose axis shape is described by an
arbitrary function y(x). For example, it could be a sinusoi-
dal or a cosine function if drill pipes are in the compressed
part of the string, a hyperbolic function if they are in the
stretched one, etc. Curve S rotates around the x axis at an
arbitrary angular speed. For certainty, we shall accept that
outline of the axis of curve § is described by a sinusoidal
function:

y(x)=fsin>, )

where L is the length of the deflection halfwave; fis the mag-
nitude of the maximum deflection.

In further calculations, we represent this material curve
in the form of a weightless curve with a focused mass
(Fig. 1, b). The essence of the proposed model is as follows.
The magnitude of concentrated mass M must be chosen so
that the inertial properties of the model with a concentrated
mass at rotation relative to the x axis are equivalent to the
model with distributed parameters.

First, determine the mass of arc S (Fig. 1, a):

M = [m(s)ds = [m(x){1+[y'(x)] dv =
:mj\/1+(f2)2 0052(%95) dx, 2)

where m(s) is the mass per unit of the rod’s length;

ds:./1+[y’(x)]2dx

is the differential of the arc of curve y(x);

y'(x)= dyd(xx) = f%cos(ﬁx).

L

The moment of inertia of arc S relative to the x axis:

J. =[P @m) 1+ [y ()] dr=
:mfzzsinz(rzx)\/1+(f2) cosz(%xj dx. 3)

Next, we consider a weightless curve S of equivalent
concentrated mass M (Fig. 1, b). The equivalent moment
of inertia for the system of concentrated mass is represented
as follows:

J.=Mf*=CMf?, )

where M is the equivalent concentrated mass; ¢ is the coef-
ficient of mass reduction.
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Fig. 1. Models of the bent solid rod: a — material curve;
b — weightless curve of equivalent concentrated mass;
¢ — weightless curve of concentrated mass and an
equivalent expansion of lift
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By assigning to the moment of inertia of arc S the equiv-
alent moment of inertia of the system with the same concen-
trated mass M from (4), we obtain:

.
C=

considering the right-hand parts of expressions (2) and (3),
we obtain:
)dx

3 e

(= — 2 . 5)
{\/1+(f:) cosz(%x)dx

Coefficient of mass reduction depends on the geometri-
cal parameters and the deformed state of the rod. Thus, to
replace the system (Fig. 1, a) with its single-mass equivalent
(Fig. 1, b), it is necessary to perform the following. First,
calculate the mass of material curve M from formula (1).
Next, determine the coefficient of mass reduction using ex-
pression (5). And, finally, find the equivalent concentrated
mass M =M.

For the case L> f, the result from solving the set
problem can be obtained analytically with a high degree of
accuracy. Thus, expressions (2) and (3) after integration will
take the following form

M= mL[1+i[an]2 +c[fL”]4], (6)
J. =’”J;L(1+;[f;] *C[TU %

where C is an unidentified magnitude, which is disregarded
because at L>> f, the multiplier is very small.




The coefficient of mass reduction in this case will take
the following form:

§M1[11(7‘f)z]. )

At the second stage, while trying to solve the set prob-
lem for cases when L> f, we apply a slightly different
approach. We accept, as a variable parameter, not the mass
of a bent rod, but the extension of arc lift of its curved axis f.
The equivalent system is shown in Fig. 1, ¢. In this case, the
equivalent moment of inertia for a single-mass model will be
written in the following form:

J.=M[*=M(yf), 9)

where y is the coefficient of deflection extension reduction.

M(wf)2=Jx=>w=}\/§-

Considering (2) and (3), the coefficient of deflection
extension reduction

L 2
fsin2 (m)\/1+(fn) cos® (Ex) dx
UL L L
L 2 ’
J\/1+(fn) cosz(gx)dx
) L L
Dependences (9) to (11) should be used for exact calcu-
lations of the moments of inertia of the curved sections in a
string. Further numerical check of dependences (5) and (8)
shows a high convergence of results. Thus, for the approxi-

mate calculations at f /L<1/20 one can affirmatively use
formulae (6) to (8).

(10)

1

3. Studying the inertial properties of the curved section in
a drill string at its rotation using a model with distributed
masses

At this stage of our study, we shall refine the statement of
the problem. To this end, assign real transverse dimensions
to the material curve. Consider a bent filled tubular rod of
length s, which rotates around the x axis. Density of the
material of the rod and the filler are, respectively, p, and
p,, radius of the cross section of the rod is 7, and the wall
thickness is A. The elastic line of the rod is described by an
arbitrary analytical function y(x), which we consider to be
known. Let this function be represented by expression (1).
It is required to calculate the moment of inertia_J, of such an
object when it rotates around the x axis.

We shall consider that the rod is made up of inhomoge-
neous rigid thin disks that could be exposed at rod deforma-
tion to angular and linear displacements (Fig. 2). The discs
in this case remain perpendicular to the axis of the rod, and
because we look at small deflections, the distortions of cross
sections and the ovalization are disregarded.

The moment of inertia of an arbitrary disk relative to the
x1 axis (Fig. 2) will be represented in the form:

Ju

]xz;=]xlcosz(l=1+y,2, (12)
where
cos’o. 1 !

- 1+tg° - 1+y?*

Then the moment of inertia of an arbitrary disk relative
to the x axis is:

Jo= Ly (13)
+y
Y
o_L
,j//
0 \\/’*
Fig. 2. Model of the filled tubular rod
The moment of inertia of a bent rod:
— ]xl 2
J. _!(1+y'2 +my” [ds (14)
or
J :j Ja +my® J1+y?dx, (15)
x ‘ 1+y/2
where
1 2 )
]ﬂ:Emz(r—h) +mr’; m,=2mrhp,;

m, =n(r—h)’p,; m =m, +m,.

For more specific numerical results, we show the result-
ing formula:

2

. om
b= I

L)

(16)

Formula (16) is accurate, albeit cumbersome. For prac-
tical calculations based on (15), we shall derive a simplified
formula. For the case of small deflections and the rod’s angles
of rotation, we assume that the following inequalities hold:

maxM <1,
L &

y'(x)<1, x€][0,L].



Then

2 M+yt= 1+ y

By retaining in the asymptotic decompositions of ex-

1+y

pression (15) the magnitudes of the order y’* and y* only,
we obtain:
.][ 2 ’2
= 14 1+y” dy =
J. -!(1 Lt Yy
2 1 ’2
f( xIl y” +my )(1+—y )dxz
i 2
1
=], (1—y +—y Jd;
=z,
consequently
1 ’2 y2
Jo=Ja]|1=50 + 5 i (17)
L lxl

where

1 ,
7 5 (r—h)2 +mr?

m m,+m,

is the radius of inertia of the heterogeneous cross section of
the rod.

Let, as previously, the elastic line of the rod is de-
scribed by function (1), then, based on formula (17), the
asymptotic expression for the moment of inertia will take
the following form:

. X :
J. =] J' 1_1(fncos(nxn2+(fsmL)
R ] S A V) i2 ’

xl

upon integration

szj_ﬂ[L-(f;)}(ix{jzg}

A comparative analysis of dependences (16) and (18)
shows that the difference between them is observed when the
deflection extension exceeds 2,5 m (Fig. 3).

(18)
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Fig. 3. Dependence of the moment of inertia of a drilling pipe
60 on the magnitude of deflection section in a drill string

Typically, the maximum deflection of a drill string in the
well is much less than 2,5 m. Based on this, we can conclude
that in practical calculations, when L/ f>10, in order to de-
termine the moments of inertia of the deflected sections of a
drill string one can widely apply the simplified (asymptotic)
formula (18).

6. Numerical verification of results from the analytical
study

As shown above, the moment of inertia of the curved
section in a drill string, both in (16) and (18), depends on the
parameters that determine both the geometry of its shape
and the dimensions of the cross-section. Therefore, for prac-
tical calculations, it is also needed to estimate the magnitude
of the maximum deflection of the section in a drill string
depending on its diameter. To do this, we shall use known
ratios between the diameters of drill pipes (DP), weighted
drill pipes (WDP), and a bit:

dyoe/D,=0,75+0,85 at D, <295,3 mm;
dyop/D, =0,65+0,75 at D, >295,3 mm;
dyp/dypp =0,75+0,8,

(19)

where dypp, dpp, D, are, respectively, the diameter of WDP,
DP, and a bit.

The extension of a drill string’s section deflection in
the well:

/= (DBh —d, )/2’

Dy, dy, are, respectively, the diameter of the bore hole and
adrill lock.

We assume that Dy, =D,; dp =d,,. Comparing (19)
and (20), after appropriate transformations, we obtain:

— for DP section:

(20)

Jop=(0,236+0,393)d,, at D, SZQS,Smm;} o1

Jop =(0,333+0,521)d,, at D, >295,3 mm;
— for WDP section:

Fuop =(0,177+0,314) dyp, at D, <295,3 mm;
22
Fuop =(0,250+0,417)dypp at D, >295,3 mm, (22)

We shall quantitatively and qualitatively verify expres-
sion (16) by using data on drill pipes made from different
materials. Currently, there is a trend in the development
and modernization of drilling equipment towards manufac-
turing drill pipes from unconventional materials — titanium
and fiberglass. Given the scientific and practical interest to
their future use, we calculated the moments of inertia for the
deflected sections in steel and aluminum, as well as titanium
and fiberglass, drill pipes. Accordingly, we accepted the
following average values for the density of pipes’ material:
steel — p, =7850 kg/m?, titanium — p, =4500 kg/m?, alu-
minum — p, =2700 kg/m3 fiberglass — p, =2000 kg/m?.
Drilling mud density is p, =1300 kg/m?. Based on (21) and
(22), the magnitudes of the maximum deflections of sections
are assigned as follows: for DP stage — f,, =#,,, for WDP
stage — fypp = 0,8%,pp. Length of deflection halfwaves are
as follows: for DP stage — L;, =20+80 m, for WDP stage —
Ly =10+30 m. The results of numerical calculations of



the moments of inertia for the deflected sections of drill and
weighted drill pipes are given in Tables 1, 2. An analysis of
formula (16), as well as charts in Fig. 4, 5, show that for a
certain length of the halfwave of the section deflection in a
string its moment of inertia is in quadratic dependence on
the magnitude of the deflection. At the same time, it follows
from formula (18) that at the fixed deflection extension the

Table 1
Moments of inertia for the deflected sections of
WDP stage
LWDp:1O m

dWDp:108 mim dWDp:12O mm dWDp:146 mim

: f . . . i . .

moment of inertia of the deflected section depends linearly Steel | Titani Steel | 1itani Steel | Titani

. um um um

on the length of a halfwave (Fig. 6).
0 2.413 1.386 3.004 1.731 6.946 3.998
1
Iy 0 0.2r| 2.463 1.415 3.067 1.769 7.090 4.083
kg-m’
em 04r| 2611 | 1501 | 3255 | 1.880 | 7.522 | 4339
7.5 0.6r| 2858 | 1646 | 3568 | 2066 | 8242 | 4764
0.87| 3.204 1.848 4.007 2.327 9.251 5.360
5 LWDP:20 m

/ dwpp=146 mm dwpp=178 mm dwpp=203 mm
25 _/__,_/ / Steel | Titani= | oo | Titani- | o | Titani-

um um um
0 0 13.892 7.996 30.766 | 17.708 | 53.884 | 30.994
0 0,014 0,028 0,042 Y 0,056 0.2r| 14.180 8.166 31.404 18.085 | 54.998 | 31.650

,m

—Stell —Titanium — Aluminum — Fiberglass 0.4r| 15044 | 8677 | 33319 | 19216 | 58340 | 33.618
Fig. 4. Dependence of moments of inertia of the deflected 0.6r| 16485 | 9.529 | 36509 | 21.101 | 63.909 | 36.899
sections of DP ((J114 mm) on a deflection extension 0.87| 18503 | 10.721 | 40.976 | 23.740 | 71.707 | 41.492

LWDP=30 m

120
Jx dWDp:203 mim dWDP:245 mm dWDP:273 mim
kg.mllOO f Titani Titani Titani
Steel 1tani- Steel itani- Steel 1tani-
um um um
80 0 80.826 | 46.491 | 150.875 | 87.032 | 275.717 | 158.479
60 / 0.2r| 82497 | 47.475 | 154.035 | 88.914 | 281.395 | 161.813
0.4r| 87.510 | 50.428 | 163.513 | 94.562 | 298.429 | 171.813
40
0.6r| 95.865 | 55.349 | 179.310 | 103.975 | 326.819 | 188.481
20 0.87| 107.562 | 62.239 | 201.426 | 117.154 | 366.566 | 211.815
0
0 0,02 0,04 0,06 f0,08 Based on the numerical data from Tables 1, 2, one
,m

=Stell ==Titanium

Fig. 5. Dependence of moments of inertia of the deflected
sections of WDP ((2203 mm) on the magnitude of deflection
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Fig. 6. Dependence of moments of inertia of the deflected
sections of DP ((&114 mm) on the length of a halfwave

should note the following. Increasing the density of a
material for drill pipes of the curved section leads to a
disproportionate increase in its moment of inertia. This
can be explained based on the following considerations.
Take for the first case the ratio between the density of steel
and fiberglass, which is 3,9 times. At the same time, the
ratio between the moments of inertia of the two sections
made, respectively, from steel and fiberglass drill pipes is
smaller. For example, for DP @89 mm (L=40 m) — 2,9+3,2;
for DP @114 mm (L=60 m) — 2,6+3,0; for DP @139 mm
(L=80 m) - 2,4+2,7. Consider the second case when the
density of steel is 2,25 times greater than the density of
titanium. In this case, the ratio between the moments
of inertia of two sections made, respectively, from steel
and titanium weighted drill pipes is also smaller. For
example, for WDP @203 mm (L=20 m) — 1,72+1,74; for
WDP @273 mm (L=30 m) — 1,73+1,74.

Based on this analysis, it can be argued that a change
in the moment of inertia for the curved sections in a string
depends in the first place on the density of pipes’ material,
with which it is equipped. Changing the moments of inertia
of these sections depending on the length of a halfwave of
deflection occurs in the same proportion.



Moments of inertia for the deflected sections of DP stage

Table 2

Lpp=20 m
dpp=60.3 mm dpp=73.0 mm
/ Steel Titanium Aluminum Fiberglass Steel Titanium Aluminum Fiberglass
0 0.251 0.148 0.092 0.070 0.455 0.271 0.172 0.133
0.25r 0.260 0.153 0.096 0.073 0.471 0.281 0.179 0.139
0.5r 0.286 0.169 0.106 0.082 0.519 0.312 0.201 0.157
0.75r 0.329 0.196 0.125 0.097 0.600 0.364 0.237 0.187
r 0.390 0.234 0.150 0.118 0.712 0.436 0.287 0.229
Lpp=40 m
de=89.0 mm de=101.6 mm
/ Steel Titanium Aluminum Fiberglass Steel Titanium Aluminum Fiberglass
0 1.694 1.027 0.668 0.528 2.577 1.584 1.050 0.842
0.25r 1.756 1.067 0.697 0.554 2.673 1.648 1.098 0.884
0.5r 1.941 1.190 0.786 0.629 2.960 1.843 1.242 1.009
0.75r 2.249 1.394 0.934 0.755 3.439 2.166 1.482 1.216
r 2.681 1.679 1.141 0.932 4.109 2.619 1.819 1.507
Lpp=60 m
de=114.3 mm de=127.0 mim
/ Steel Titanium Aluminum Fiberglass Steel Titanium Aluminum Fiberglass
0 5.630 3.509 2.369 1.925 7.901 4.990 3.427 2.818
0.25r 5.843 3.656 2.480 2.023 8.205 5.204 3.592 2.964
0.5r 6.484 4.097 2.814 2.315 9.120 5.846 4.087 3.402
0.75r 7.550 4.832 3.371 2.803 10.644 6.915 4912 4.133
r 9.044 5.861 4.151 3.486 12.778 8.412 6.067 5.155
Lpp=80 m
dpp=139.7 mm dpp=168.3 mm
/ Steel Titanium Aluminum Fiberglass Steel Titanium Aluminum Fiberglass
0 14.342 9.178 6.402 5.323 26.372 17.341 12.489 10.602
0.25r 14.905 9.579 6.717 5.604 27.441 18.129 13.125 11.179
0.57 16.593 10.783 7.661 6.446 30.650 20.491 15.032 12.909
0.75r 19.406 12.789 9.233 7.851 35.998 24.428 18.211 15.793
r 23.345 15.598 11.435 9.816 43.486 29.940 22.661 19.831

7. Discussion of results of studying the moment of inertia
for the curved section in a drill string at its rotation

The proposed analytical approaches to the evaluation
of moments of inertia for the curved sections in a drill
string at its rotation can be implemented in two ways. The
advantages of these techniques are a relatively simple math-
ematical apparatus, as well as the fact that the results from
one technique can always be confirmed by the results from
another technique. The results obtained from calculating
the moments of inertia for the curved sections, equipped
with steel, aluminum, titanium or fiberglass pipes, can be
applied in the further research. Important in this regard is
an analysis of the stressed-strained state of a drill string’s el-
ements, refinement of energy costs on the process of rotation
of curved sections in a well, as well as analysis of the critical
frequencies of rotation.

Under actual conditions, the eccentric rotation of curved
sections in a string at frequencies close to critical is charac-
terized by a transition to an unsteady state, predetermined
by the occurrence of transverse oscillations and “running”
waves. Approaching the critical frequencies always leads to
an increase in the number of halfwaves in deformation, and,
accordingly, in the number of deflected sections in a drill
string. The new steady position with the increased number

of halfwaves of deformation forms at the frequency of ro-
tation, which is greater than the critical. Therefore, to de-
termine the difference between the “operating” and critical
frequencies of rotation of the deformed drill string, we plan
further studies in the future.

The disadvantage of our study is the lack of practical test
of the established analytical dependences experimentally.
This is explained by the absence of specialized measuring
borehole equipment and the impossibility of its application
under industrial conditions. However, the research results
obtained when using a model with the distributed mass are
in good agreement with the results of studies, reported in
[31, 32], by applying a finite element method.

The advantage of the dependences established in the
course of our study is the high accuracy of results and the
ease of their application in practical calculations at drilling
enterprises. Employing them could help assess more accu-
rately the dynamic stability and pliability of a drill string
under conditions of a vibration load at rotor and rotor-tur-
bine drilling techniques. Studies into such an aspect could
address the elucidation of the magnitude of consumption of
mechanical energy on pushing and turning the curved sec-
tions in a drill string, as well as searching for energy-saving
modes of its operation. In this regard, there are remaining
complex and relevant issues related to analytical and nu-



merical modeling of oscillatory processes of a drill string
when drilling conditional-vertical, inclined-directed, and
horizontal wells.

8. Conclusions

An analysis of the derived research results testifies to
that an increase in the density of a material for the curved
section of WDP by 2,25 times leads to an increase in its
moments of inertia by 1,7 times, while at the same time in-
creasing the density of a material for the curved section of
DP by 3.9 times on average increases its moment of inertia
by 2,4+3,2 times.

The study that we performed has also shown that the
analytical evaluation of inertial properties of the curved
sections belongs to a different scale of motion or a scale of
the deformed state of a drill string. It turned out that the
results obtained from simple models are applicable only in
cases when a curvilinear section of a drill string undergoes
large displacements (lift extension is larger or significantly
larger than the transverse size of the string). Only in this
case one can obtain values for the moments of inertia with a
sufficient degree of accuracy. For the case of small displace-
ments (when a lift extension of the curvilinear section is less
than, or comparable to, a transverse size of the string), it
is necessary to apply those dependences that were derived
when using a model with distributed parameters.
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