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1. Introduction 

The impact interaction between solid bodies typically 
occurs over a short period of time and is accompanied by 
large dynamic loads, which could result in the possible de-
struction of structures’ elements. Thus, it is only natural that 

the simplest theories for calculating the canonical bodies for 
strength upon impact are highlighted in the resistance of 
materials [1, 2]. They consider an impact to be instantaneous 
and, rather than the magnitude of force, apply its momen-
tum. Actually, they consider not the process of a mechanical 
impact, but its consequences, that is a post-impact motion. 

19.	 A numerical analysis of non-linear contact tasks for the system of plates with a bolted connection and a clearance in the fixture / 

Atroshenko O., Bondarenko O., Ustinenko O., Tkachuk M., Diomina N. // Eastern-European Journal of Enterprise Technologies. 

2016. Vol. 1, Issue 7 (79). Р. 24–29. doi: https://doi.org/10.15587/1729-4061.2016.60087 

20.	 Thinwalled structures: analysis of the stressedstrained state and parameter validation / Tkachuk M., Bondarenko M., Grabovskiy A., 

Sheychenko R., Graborov R., Posohov V. et. al. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 1, Issue 7 (91). 

P. 18–29. doi: https://doi.org/10.15587/1729-4061.2018.120547 

21.	 Numerical methods for contact analysis of complex-shaped bodies with account for non-linear interface layers / Tkachuk M. M., 

Skripchenko N., Tkachuk M. A., Grabovskiy A. // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 5, Issue 7 (95). 

P. 22–31. doi: https://doi.org/10.15587/1729-4061.2018.143193 

22.	 Tkachuk M. A numerical method for axisymmetric adhesive contact based on kalker’s variational principle // Eastern-European 

Journal of Enterprise Technologies. 2018. Vol. 3, Issue 7 (93). P. 34–41. doi: https://doi.org/10.15587/1729-4061.2018.132076 

MODELING 
THE ELASTIC 
IMPACT OF A 

BODY WITH 
A SPECIAL 

POINT AT ITS 
SURFACE

V .  O l ’ s h a n s k i i
Doctor of Physical and Mathematical 

Sciences, Professor*
Е-mail: OlshanskiyVP@gmail.com

O .  S p o l ’ n i k
Doctor of Physical and  

Mathematical Sciences, Professor*
Е-mail: alexspo@ukr.net
M .  S l i p c h e n k o

PhD, Associate Professor*
Е-mail: Slipchenko1982@gmail.com

V .  Z n a i d i u k
PhD*

Е-mail: karlsonman@gmail.com
*Department of Physics and 

Theoretical Mechanics
Kharkiv Petro Vasylenko National 

Technical University of Agriculture
Alchevskikh str., 44,  

Kharkiv, Ukraine, 61002

Розглянуто пружний прямий удар по плоскiй границi нерухо-
мого пiвпростору тiла, обмеженого в зонi контактної взаємодiї 
поверхнею обертання, порядок якої менший двох. Особливiсть 
задачi полягає в тому, що для вибраного випадку нескiнчен-
на кривизна граничної поверхнi в точцi первiсного контакту, з 
якої розпочинається процес динамiчного стискання тiл у часi. 
Крiм основних припущень не хвильової квазистатичної теорiї 
пружного удару твердих тiл, тут використано також вiдомий 
розв’язок статичної вiсесиметричної контактної задачi теорiї 
пружностi. Процес удару з невеликою початковою швидкiстю 
подiлено на два етапи, а саме на динамiчне стискання i динамiч-
не розтискання. Для кожного з них побудовано аналiтичний 
розв’язок нелiнiйного диференцiального рiвняння вiдносного 
зближення у часi центрiв мас тiл. Розв’язок нелiнiйної задачi 
з початковими умовами для диференцiального рiвняння другого 
порядку на першому етапi виражено через Ateb-синус, а на дру-
гому – через Ateb-косинус. Для спрощення розрахункiв складено 
окремi таблицi вказаних спецiальних функцiй, а також запро-
поновано компактнi апроксимацiї їх елементарними функцiя-
ми. Встановлено, що похибка аналiтичних наближень обох 
спецiальних функцiй менша одного вiдсотка. Виведено також 
замкненi вирази для обчислень максимальних значень: стис-
кання тiл, сили удару, радiуса кругової площадки контакту та 
тиску, який обмежений у центрi цiєї площадки. Розглянуто чис-
ловий приклад, пов’язаний з ударом жорсткого пружного тiла 
по гумовому пiвпростору. Задачi такого типу виникають при 
моделюваннi динамiчної дiї кускiв твердої мiнеральної сировини 
на гуму, при падiннi їх на футерованi гумою валки вiбрацiйно-
го класифiкатора. Внаслiдок порiвняння розрахованих параме-
трiв удару, одержано гарну узгодженiсть числових результа-
тiв, до яких призводять побудованi аналiтичнi розв’язки та 
iнтегрування нелiнiйного рiвняння на комп’ютерi. Цим пiдтвер-
джена вiрогiднiсть побудованих аналiтичних розв’язкiв задачi 
удару, якi дають розгортку короткочасного процесу в часi
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More complex variations in the theories of a mechanical 
impact are outlined in many publications, among which we 
emphasize [3–6].

Paper [3] sets out the synthesis of wave and quasi-static 
theories, as well as certain experimental methods for study-
ing impact processes. Monograph [4] described the impact 
theory that was developed by the author of that work. It also 
contains a critical review of known experimental results. 
Study [5] is a literary review of achievements in the impact 
theory in the past century. Monographic publication [6] 
addressed studying the performance of different structures 
upon impact and compared the theory with experiment. 

The above publications consider the development of the 
impact process over time, similar to [7], take into consid-
eration local deformations, using a solution to the contact 
problem from the theory of elasticity. Thus, studying the 
impact processes has for a long time attracted attention of 
scientists and is a relevant task in mechanics.

2. Literature review and problem statement

The theory, initiated in [7], plays a key role in the 
research into impact processes of solid bodies. It was mod-
ernized in works [8, 9], where it was also suggested that the 
bodies subjected to an impact are, in a contact zone, restrict-
ed by surfaces of the second order, but they additionally 
considered oscillatory processes. 

In addition to the above publications, a review of publi-
cations on a mechanical impact was performed in [5]. There 
was a marked tendency to an increase in the flow of publi-
cations that address an analysis of the dynamics of layered 
composite structures during impact.

Paper [10] describes analysis of performance, upon 
impact, of layered plates and cylindrical shells using the 
method of finite elements. The positive point is the pres-
ence of a large number of numerical results and geometric 
illustrations. The disadvantage of the work is the lack of 
simple calculation formulae, convenient for engineering 
calculations, because the research was conducted by purely 
numerical methods. 

Study [11] considered an impact at a little velocity along 
a plane with the preliminary load by pressure. Structures of 
this type are common in engineering and are widely used. In 
the work, a body that hits was an elastic ball; no cases were 
considered for bodies that hit with a more complex shape 
because it complicates the theory.

Paper [12] examined the performance of layered plates 
at low-velocity impact using the method of finite elements. 
However, the work lacks analytical solutions. The obtained 
results are not universal, because they relate to specific nu-
merical parameters for plates. For the case of change in the 
parameters, it is necessary to carry out new calculations, 
which is a disadvantage of numerical methods. 

The influence of compressing forces on the performance 
of composite panels under impact was studied in [13]. It was 
established that the presence of such forces increases dynam-
ic deflections. However, the problem was solved in a linear 
statement that rules out a possibility to model a change in 
the form of equilibrium upon impact.

Study [14] examined the dynamics of a composite plate 
with a hole upon impact. The authors calculated dynamic 
concentration of stresses in the zone of a hole. The analysis 
was carried out by numerical methods, but the study also 

lacks analytical solutions, which would make it possible to 
analyze the influence of different factors (size and shape of 
the hole, the properties of a material, etc.) on the magnitude 
of stress concentrations.

The above papers [10–14] considered a mechanical im-
pact of bodies restricted by smooth surfaces, which have, at 
a contact point, a limited curvature; typically, it was a ball. 
However, in practice, there are other shapes of elastic bodies 
exposed to an impact. Only paper [4] considered the case of 
a tighter contact between bodies at dynamic compression, 
constrained by boundary surfaces that have an order higher 
than two. However, remain unexplored are the cases of an 
impact between bodies, whose boundary surfaces’ order is 
less than two (ogive, cone, and others). These bodies have a 
particular point at the contact surface. Therefore, existing 
theories for the case of such bodies are not applicable and 
require new mathematical models; construction of new the-
ories related to the impact between bodies with a particular 
point at their surfaces is a promising task.

3. The aim and objectives of the study

The aim of this study is to derive and verify formulae 
to calculate the variability in the parameters for an impact 
compression of bodies over time, in the presence of a partic-
ular point at the surface of one of the bodies.

To accomplish the aim, the following tasks have been set:
– to derive a formula to calculate a coefficient in the 

equation of impact; 
– to build a solution to the equation of impact at com-

pression of bodies; 
– to build a solution to the equation of impact at decom-

pression of bodies; 
– to perform calculations and run a comparative analysis 

of numerical results.

4. Materials and methods to study an elastic impact of 
bodies with a particular point at the contact surface

When carrying out a mathematical modeling of the 
process of the dynamic compression of solid bodies, we shall 
use assumptions from work [7] where it was believed that 
the entire kinetic energy of relative motion is converted into 
potential energy of the elastic deformations of bodies in the 
zone of their interaction while disregarding other forms of 
energy, specifically the energy of elastic waves, thermal en-
ergy, etc. This imposes certain limitations on the velocity of 
an impact, which, in accordance with [4], should not exceed 
4 m/s. Therefore, we build a mathematical model of a purely 
elastic impact, employing the theory of nonlinear differential 
equations and special functions.

Determining coefficients in the equation of impact. 
When deriving the basic equation of impact, we shall, in 
addition to basic provisions for theory [7], use a known 
solution to the axisymmetric contact problem from the 
elasticity theory [15]. According to this solution, the con-
vergence between the centers of masses of elastic bodies x, 
one of which is a half-space, and the second is restricted by 
the surface of rotation z=Ar3/2, (A>0) (Fig. 1), is described 
by expression [15]:

3/2
1

3
,

2
x J Aa= 					    (1)
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1,E  1,µ  2,E  2µ  are, accordingly, the modulus of elasticity 
and the coefficient of transverse deformation of bodies’ ma-
terials; P is the force of bodies’ compression; a is the radius 
of the contact area.

Fig. 1. Schematic of bodies collision

Pressure distribution at it is governed by law [15]:

( ) 21,25 ,
P r

p r f
a a

 = ⋅   π
				    (3)

where

( )
1

2
/

.
1r a

r r d
f

a a
ξ  =   ξ ξ − ξ

∫ 			   (4)

Integrals J1 and J2 are represented through gamma-func-
tion Г(z), tabulated in [16, 17], because, according to refer-
ence [18]:

( )
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These quadratures were obtained through a transition in 
(2) to the new variable of integration sin .ξ = ϕ

If one takes into consideration the tabular value [16]: 
( )7/4 0,9190625,Γ ≈  then

( ) ( )4 4
3/4 7/4 0,9190625 1,2254167;

3 3
Γ = Γ ≈ ⋅ ≈

( ) 1
3/2 ;

2
Γ = π

 
( ) 15
7/2 .

8
Γ = π

Thus, approximately, J1≈1.198140; J2≈0.718884. 
Values for J1 and J2, but with a less accuracy, were also 

calculated in [15]. 

Expression (4) at 0r →  has the uncertainty of type 
0 .⋅∞  To reveal it, compute the integral in (4). Through a 
transition to the new variable: 2,ξ = η  we obtain:

1

2 4
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This integral is expressed through incomplete elliptic 
integrals ( ); ,F δ ζ  ( );E δ ζ  of first and second kind, respec-
tively, because in [18]:
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Thus, pressure distribution is described by expression:
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then at the edge of the contact area, at ,r a=  pressure ( ) 0.p a =  
At the center of the area, the pressure is maximum. There, 

( ) 20 2,5 2,5 .cp

P
p p

a
= ⋅ = ⋅

π
 

Therefore, maximum pressure is 2.5 times greater than 
the average over the zone. Graph of pressure distribution 
along the radius of the zone is shown in Fig. 2.

Fig. 2. Distribution of contact pressure along the radius of 
the zone

In addition to [15], other authors later built the general-
ized solutions to the static contact problem [19]. 

The following formula to calculate the strength of an 
impact follows from (1), (2):

5/3.P x= β

Here 
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If the mass of a body that hits is equal to M, then the 
impact process, according to [7], will be described by a dif-
ferential equation:

5/3,M x P x= − = −β�� 				    (6)

where a dot above x  indicates a time-dependent deriva-
tive t. 

For the further integration of equation (6), we shall use 
it in the form:

5/3.
d x

x x
d x M

β
= −
�

� 				    (7)

Construction of the solution to the equation of impact 
at compression of bodies. It is matched by time ( )0; .ct t∈  
Differential equation (7) is to be solved under initial con-
ditions:

( )0 0,x =  ( ) 00 ,x = υ� 				    (8)

we denote via symbol 0υ  the initial velocity of collision 
between bodies. 

Upon integrating (7), taking into consideration (8), we 
obtain:
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At the time of maximum compression, radicand cx x= in 
(9) is equal to zero. Therefore, the maximum compression is:
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where the upper bound is the Ateb-sine [20–23]. Thus,
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A time-dependent change in the force of an impact is 
governed by law:
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The radius of the contact area, as well as pressure at its 
center, depend on the values for Ateb-sine as well, because, 
according to (2) and (5):
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Maximum values are acquired by the characteristics of 
an impact interaction at ct t=  or when:
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Maxima are represented by concise formulae:
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The root of equation (12) is related to integral:
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which is expressed through a gamma function tabulated 
according to formula [18]:
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Given ( )3 / 8 2,370437,Γ »
 

( )7 / 8 1,089653,Γ »  we find: 
1,445927.I »
The result is the obtained formula for the calculation of 

compression process duration:

0

1,445927 .c
c

x
t =

υ
				     (14)

To simplify the numerical realization of solution derived, 
we give a table of Ateb-sine whose values, with an acceptable 
accuracy, can be found through a linear interpolation of data 
from Table 1.

Table 1
Values for Ateb-sine (brackets: approximated)

10η 5 4
10Sa , 1,

3 3
 η  

10η 5 4
10Sa , 1,

3 3
 η  

0.0 0.00 (0.00) 7.5 7.04 (7.02)

0.5 0.50 (0.50) 8.0 7.42 (7.42)

1.0 1.00 (1.00) 8.5 7.78 (7.78)

1.5 1.50 (1.50) 9.0 8.12 (8.12)

2.0 2.00 (2.00) 9.5 8.43 (8.43)

2.5 2.49 (2.50) 10.0 8.72 (8.72)

3.0 2.98 (3.00) 10.5 8.98 (8.98)

3.5 3.47 (3.49) 11.0 9.22 (9.22)

4.0 3.95 (3.97) 11.5 9.43 (9.43)

4.5 4.43 (4.44) 12.0 9.60 (9.60)

5.0 4.89 (4.89) 12.5 9.75 (9.75)

5.5 5.35 (5.34) 13.0 9.86 (9.86)

6.0 5.79 (5.78) 13.5 9.94 (9.94)

6.5 6.22 (6.20) 14.0 9.99 (9.99)

7.0 6.64 (6.62) 10I 10.00 (10.00)
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Here in parentheses we give approximate values, which 
are derived via approximation:

( ) ( )
( ) ( )

2

2

at 0 0,2,
5 4

Sa ,1, 0,1996 1,0277 0,2 0,2064 0,2 at 0,2 0,8,
3 3

1 1,2sin 5 / 3 at 0,8 .I I

η ≤ η ≤
  η » + η− − η− < η <     − ⋅ − η ≤ η ≤  

 

This approximation is a special case of the more general 
approximation of Ateb-sine, proposed in [24]. Its error is less 
than one percent. 

Construction of the solution to the equation of impact at 
decompression of bodies. 

Next, consider the process of the dynamic decompression 
of bodies that occurs over interval ( ); .c yt t t∈  To this end, we 
build a solution to the differential equation (7) under initial 
conditions:

( ) ,c cx t x=  

( ) 0.cx t =�

Upon double integration, we obtain:
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3 3 c
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is the periodic Ateb-cosine [21, 22]. 
A change in the force of impact 

over time is governed by law:
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To calculate a time-dependent 
change in the radius of the contact 
area and pressure at its center, we ob-
tain formulae:
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Thus, the decompression process of bodies is described 
by Ateb-cosine and its powers. 

The impact process ends at t=ty, which is a root of 
equation:

( )05 4
Сa , 1, 0,

3 3 y c
c

t t
x

 υ
− =  

which has a solution:

( )0 .y c
c

t t I
x
υ

− =

Hence, we obtain the formula to calcu-
late the impact duration:

0 0

2 2,891854 .c c
y c c

x x
t t I t= + = =

υ υ

In order to simplify calculation of the 
decompression process, we give the values 
for Ateb-cosine in Table 2.

Table 2

Values for Ateb-cosine (brackets: approximated)

10ζ 5 4
Сa , 1,

3 3
 ζ  

10ζ 5 4
Сa , 1,

3 3
 ζ  

0.0 10.00 (10.00) 7.5 6.61 (6.62)

0.5 9.98 (9.98) 8.0 6.19 (6.17)

1.0 9.93 (9.93) 8.5 5.76 (5.74)

1.5 9.85 (9.85) 9.0 5.31 (5.30)

2.0 9.74 (9.74) 9.5 4.86 (4.86)

2.5 9.59 (9.59) 10.0 4.39 (4.40)

3.0 9.41 (9.41) 10.5 3.91 (3.93)

3.5 9.20 (9.20) 11.0 3.43 (3.45)

4.0 8.96 (8.96) 11.5 2.94 (2.96)

4.5 8.70 (8.70) 12.0 2.45 (2.46)

5.0 8.41 (8.41) 12.5 1.96 (1.96)

5.5 8.09 (8.09) 13.0 1.46 (1.46)

6.0 7.75 (7.76) 13.5 0.96 (0.96)

6.5 7.39 (7.40) 14.0 0.46 (0.46)

7.0 7.01 (7.02) 10I 0.00 (0.00)

In brackets, Table 2 gives the approximated values for 
Ateb-cosine, obtained through approximation:

Table 2 shows that an error of the recorded analytical 
approximation is less than one percent. This indicates the 
adequacy of the represented formulae.

5. Results of calculations of the impact parameters, their 
comparative analysis

By using the derived formulae, we shall compute the char-
acteristics of an impact at: M=0.7 kg; υ0=3 m/s; A=5 m-1/2; 
E1=2·1011 Pa; µ1=0.25. Material of the half-space is rubber 
for which [25]: E2=7.5·106 Pa, µ2=0.5. For these initial data 
β=2.77632·106 N·m-5/3. From formulae (13) and (14), we 
obtain: xc=0.008517 m; Pc=986.2176 N; ac=0.009649 m; 
pc=8429081.797 Pa. Duration of the compression and im-
pact are, respectively: tc=0.004105 s; ty=0.008210 s. Values 
for x(t), calculated based on formulae (10), (15), at different 
moments are given in Table 3.

Values for Ateb functions were computed by the method 
of linear interpolation of data from Tables 1, 2. For compar-
ison, Table 3 also gives values for x(t), obtained by a com-
puter-based integration of equation (6) in the programming 
environment “Maple” [26]. There is a good consistency of 

( )
( ) ( )

2

2

1 1,2sin 5 / 3 at 0 0,75,

5 4
a ,1, 0,1996 1,0277 1,2459 0,2064 1,2459 at 0,75 1,25,

3 3
at 1,25 .

C

I

  − ⋅ζ ≤ ζ ≤ 
  ζ » + − ζ − − ζ < ζ <   ζ ≤ ζ ≤


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results from calculations by two procedures, confirming the 
probability of analytical solutions to the nonlinear problem. 

Table 3

Values for x(t)/xc calculated by two procedures

t/tc
0

c

t
x
υ x(t)/xc, formulae  

(10, 15)
x(t)/xc, numerical 

integration

0.25 0.3615 0.3580 0.3582

0.50 0.7230 0.6824 0.6826

0.75 1.0845 0.9146 0.9149

1.00 1.4459 1.0000 1.0000

1.25 1.8074 0.9145 0.9149

1.50 2.1689 0.6826 0.6826

1.75 2.5303 0.3580 0.3582

The diagrams of change in x(t) and P(t) over time t, ob-
tained from calculations, are shown in the dimensionless co-
ordinates in Fig. 3. Over a compression interval, the diagram 
of x(t) is convex, and the diagram for P(t) changes concavity 
to convexity. 

Fig. 4 shows the estimated diagrams of change in a(t) 
and p(t) over time. There is a rapid growth in pressure p(t) 
in the center of the contact area of bodies.

Fig. 3. Diagrams of time-dependent change:  
1 – x(t)/xc; 2 – P(t)/Pc

Fig. 4. Diagrams of time-dependent change:  
1 – a(t)/ac; 2 – p(t)/pc

The course of the impact process is affected by the 
geometry of the hitting body. This is confirmed by results 
from the calculation of an impact characteristics, given in 
Table 4 for different values of A. The estimations employed 
formulae (13), (14).

Table 4

Impact characteristics at different A

A, m-1/2 104 xc, m Pc, N 104 ac, m 10-6 pc, Pa 104 tc, s

2 67.74 1240.24 152.6 4.23825 32.65

4 80.55 1042.76 107.9 7.12741 38.82

6 89.15 942.36 88.1 9.66174 42.97

An increase in A leads to an increase in xc, pressure pc, 
and the impact duration. However, it is accompanied by a 
decrease in Pc and ac. Attention should be paid to that at 
a change in A the product Pc·tc remains an approximately 
constant magnitude. To find out why it happens, we shall 
consider the calculation of impact pulse S(P). At time inter-
val [ ]*0;t t∈ , it is represented by integral:

( ) ( )
* *

5/3

0

0 0

5 4
Sa ,1, d .

3 3

t t

c
c

t
S P P t d t P t

x

  υ
= =      

∫ ∫

Over the entire impact duration, when t*=ty, the pulse 
is equal to:

( )
5/3

0

0

5 4
2 Sa ,1, d .

3 3

ct

c
c

t
S P P t

x

  υ
=      

∫

Compute this integral approximately from the formula 
of trapezoid [27]:

( )
5/3

1 5 4
1 4 Sa ,1, .

3 3 3 2c c

I
S P P t

    » +       

Since

5 4
Sa ,1, 0,682,

3 3 2
I  »  

 

then 
5/3

1 5 4
1 4 Sa ,1, 1,03788.

3 3 3 2
I    + »       

Therefore, strength of pulse P(t), over an impact dura-
tion, is approximately:

( ) 1,03788 .c cS P P t» ⋅ 			    (16)

By using the results from Table 4 and formula (16), we 
obtain, at A=2, 4, 6 m-1/2, respectively, S(P)=4.2028; 4.2013; 
4.2027 N×s. These numbers are little different from the 
exact value for pulse S(P)=2Mυ0=4.2 N×s. Thus, the stable 
product Pc·tc in Table 4 is a consequence of the fact that 
S(P)=2Mυ0=const in the considered example.

Next, we determine the influence on the impact pa-
rameters exerted by the initial velocity of bodies’ collision, 
which, in accordance with [25], can reach 5 m/s. To conduct 
calculations, we save the above-specified source data, where  
A=5 m-1/2, β=2.77632·106 N∙m-5/3
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3/82
3/40
0

4
0,6037365 ,

3c

M
x

 υ
= = υ β 

 

Pc=βxc
5/3. Changing υ0, we obtain the impact parameters, 

given in Table 5.

Table 5

Impact characteristics at different 0υ

υ0, m/s xc·104, m Pc, N 104ac, m 10-6pc, Pa 104tc, s

3 85.17 986.22 96.49 8.429 41.05

4 105.68 1413.03 111.42 9.058 38.20

5 124.94 1867.63 124.57 9.578 36.13

The calculations confirm that an increase in υ0 leads to 
an increase in xc, Pc, ac, pc and a decrease in tc. At υ0=5 m/s, 
force Pc is close to 1,900 N. Paper [25] noted that force Pc 
may exceed 1,960 N. 

Information about the effect of a body mass on the im-
pact characteristics is given in Table 6. In the calculations, 
we used previous numerical data by assigning υ0=4 m/s.

Table 6

Impact characteristics at different M

M, kg xc·104, m Pc, N 104ac, m 10-6pc, Pa 104tc, s

0.7 105.68 1413.03 111.42 9.058 38.20

0.8 111.11 1536.05 115.20 9.211 40.16

0.9 116.13 1653.39 118.65 9.346 41.98

1.0 120.81 1765.93 121.81 9.471 43.67

Here, an increase in the hitting body mass leads to an 
increase in both xc, Pc, ac, pc and tc, which was not the case 
when increasing υ0. 

The calculations show that a velocity change in υ0 has a 
considerably larger effect on the impact characteristics than 
a change in M.

6. Discussion of results of studying the derived analytic 
solutions to an elastic impact of the body with  

a special point

The built analytical solutions to the impact are quite 
universal. They do not have analogs in the scientific litera-
ture because they relate to the development of the theory of 
a quasi-static impact of bodies that have a particular point at 
the contact surface.

The obtained solutions are not linked to specific values 
for the physical and geometrical parameters of bodies ex-
posed to impact. They make it possible to calculate a change 
in the impact process parameters over time, as well as ex-
treme values: the strength of an impact, the magnitude of 
bodies’ compression, the radius of the contact area, and the 
maximum pressure at the center of this plane. An apparatus 
of the periodic Ateb functions has proven to be an effective 
means to represent the analytical solutions, owing to these 

special functions, tabulated in this work. Comparison of 
numerical results obtained by different methods confirms 
the reliability of the derived analytical solutions. The results 
of calculations correspond to the physical essence of the im-
pact process (small duration in time, a large maximum of the 
impact force, etc.).

The results obtained could be used in hybrid theories where 
they synthesize the quasi-static and wave theories. They could 
be applied when calculating a response to the impact from both 
homogeneous and composite beams, plates, and shells. 

The outlined theory applies to low impact velocities, 
not exceeding 5 m/s, so that the deformations of bodies are 
within the limits of the elasticity theory. 

The considered theory applies to only one case of a par-
ticular point at the boundary surface of a body. However, 
there are cases with points with higher attributes (a vertex 
of the cone, etc.). Development of the impact theory for such 
bodies could be a direction for further research.

7. Conclusions 

1. We have derived a formula for the calculation of a coef-
ficient in the impact equation, which depends on the geomet-
ric characteristics and materials of bodies exposed to impact. 
It is easy to calculate when using the formula derived in this 
work. Calculations are given in the results computation.

2. We have built a solution to the equation of impact at 
compression of bodies, which is expressed by Ateb-sine, and 
makes it possible to calculate time-dependent changes in the 
impact strength, in the convergence of the centers of mass of 
bodies, the radius of the contact area and pressure at its cen-
ter, by using the compiled table of this function. Ateb-sine 
has not been used in the theory of impact before.

3. We have built a solution to the equation of impact 
at decompression of bodies, which is expressed through 
Ateb-cosine. We have derived a formula for the calculation of 
an impact duration. The table of this function makes it easy 
to use the solution in calculation.

4. The calculations have been performed, which con-
firmed the adequacy of the built analytical solutions; the 
effect of various factors on the main impact characteristics 
has been investigated. It was established:

– increasing the geometrical parameter leads to an in-
crease in the maximum of compression, impact strength, 
pressure and duration of the impact, but it is accompanied by 
a decrease in the maximum of impact strength and the radius 
of the contact area; 

– a growth of the initial impact velocity is accompanied 
by the growth of all impact parameters, except for the impact 
duration, which decreases; 

– a growth in the hitting body mass is accompanied by 
an increase in all impact parameters due to an increase in the 
kinetic energy of the hitting body; 

– a change in the initial velocity exerts a more essential, 
compared to a change in mass, influence on the impact char-
acteristics, which has been represented in tables.
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