
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/2 (99) 2019

36

 V. Melnyk, K. Melnyk, S. Lavrenchuk, I. Burchak, O. Kaganiuk, 2019

1. Introduction

High-performance cluster computing is widely used to
perform long-term weighty calculations. It is well known
that such calculations can be divided into separate compu-
tational parts, each of which can be performed on separate
computers. To perform such computing tasks, computers
have to exchange data with the appropriate frequency of
their receiving. This approach is also used to obtain the inte-
grated information related to the computing distribution on
different computers, and for order of posting the appropriate
data portion to implement the following computational
steps. It should be added that in our time cluster components
can provide an efficient environment for applications with
intensive data processing on distributed platforms [1–4]. For
this, the data should be organized in special structures, and all
applications in such an environment should be developed to eas-
ily and skillfully operate with such data. To operate with such
structures, the application is developed from a set of software
components, which together with the computing resources play
a leading role for flexibility and productivity optimization.

In many intensive computing applications, the volume
of data can be diffracted into sub-blocks of a specified byte

volume that is beneficial for conveyor processing of them. It
needs to note that in practice for the organization of such
computing the processing and communication may overlap
in order to improve the performance of such a system. In [5],
it is shown that during the transmission process small data
blocks lead to the improvement of the conveying and load
balancing, which takes place in the communication practice.
It is also noted that larger data blocks reduce the number of
messages for transmission but stimulate an increase in sys-
tem bandwidth and bring inconsistencies in the load, which
reduces the conveyance for data processing.

Applications written using a TCP/IP-based socket in-
terface, along with their performance and data processing
intensity, also put some other requirements such as compat-
ibility with heterogeneous networks, as well as a guarantee
of processing efficiency and scalability. To get an advantage
in using high-performance protocols in cluster applications,
some specially developed approaches were applied, including
those involving high-performance socket levels at the user
level via active protocols. These include the virtual interface
architecture and IBA [5], the applications for which should
be written with the account of the network productivity
saving. During the individual software components reorga-

INFLUENCE OF THE
DIRECT MESSAGE

SEARCH MECHANISM
BASED ON THE TCP

PROTOCOLS ON THE
EXCHANGE PROCESS

V . M e l n y k
PhD,	Associate	Professor*

E-mail:	melnyk_v_m@yahoo.com
K . M e l n y k

PhD,	Associate	Professor*
E-mail:	ekaterinamelnik@gmail.com	

S . L a v r e n c h u k
PhD,	Associate	Professor*
E-mail:	swit_lanka@ukr.net

I . B u r c h a k
PhD,	Professor**

E-mail:	i.burchak@lntu.edu.ua
O . K a g a n i u k

PhD,	Associate	Professor*
E-mail:	alexrakaganiuk@gmail.com

*Department	of	Computer	Engineering	and	
Cybersecurity***

Department	on	Engineer	and	Computer	Graphics*
***Lutsk	National	Technical	University
L’vivska	str.,	75,	Lutsk,	Ukraine,	43018

Реалізовано механізм прямого пошуку з розши-
ренням традиційного сокетного TCP-інтерфейсу
для отримання повідомлень, обходячи традицій-
ний порядок встановленої черги. Даний механізм
може застосовуватись для високопродуктивних та
кластерних комп’ютерних систем з метою інтен-
сифікації обміну даними та неперервності підтрим-
ки максимального навантаження на обчислювальні
машини. Інтерфейс для прямого пошуку повідом-
лень реалізований на базі ядра операційної системи
Linux. Отримання експериментальних результатів
тестування здійснено за допомогою простого набору
microbenchmark-міток. В ході тестування відправ-
ник надсилає необхідне число повідомлень сталого
розміру на встановлене з’єднання, а приймач про-
пускає неочікувані повідомлення і зчитує очікувані
повідомлення в простір користувача. Спосіб відшу-
кання очікуваних повідомлень реалізований завдяки
багаторазовому пошуку для випадку, коли сокетний
додаток розглядає TCP-сокет як список повідомлень
з можливістю приймати і видаляти дані не тільки з
вершини, але з будь-якого місця в сокетному буфері.
Всі очікувані повідомлення розпізнаються і обробля-
ються розробленим викликом seek_recv(). Кожен
тест містить ~80 повторень, які включають опе-
рації відкриття сокета, пересилання 800–1000 пові-
домлень відповідно до політики прийому і закриття
сокета. Система використовує тільки один актив-
ний сокет в один і той же час.

Отримані результати доводять помітне знижен-
ня процесорного часу обробки повідомлень на 36–40 %
та загальне зростання продуктивності. Однак, при
наближенні до об’єму повідомлень 1000 байт, близь-
кого до характерного розміру корисного заванта-
ження TCP-пакета, спостерігається падіння про-
дуктивності процесу обміну

Ключові слова: ТСР-сокети, пошук повідомлення,
розширення інтерфейсу, продуктивність

UDC 004.451

DOI: 10.15587/1729-4061.2019.167995

37

Information technology

nization, improvements in the performance of the data trans-
fer process and computing results, as well as the increase
of application scalability with adaptation to heterogeneous
networks, are observed. According to the virtual interface
architecture, to increase the performance significantly, some
socket characteristics support efficient data splitting on the
output nodes. With high performance and low overhead,
sockets give an ability to achieve high-quality results for
applications in many directions.

Despite the cluster structure sets the requirement for
working computers to be fully loaded in order to reduce the
calculation time, yet cluster systems suffer overheads during
the course of the communication process. Such overheads
also depend on the number of computers in the cluster, the
use of libraries for the communication arrangement, the
choice of an interface for inter-computer communications
and communication between other units within the com-
puting cluster. Despite a variety of experimental results,
the latest researches demonstrated the interdependence of
efficient library design for messaging in clusters that use
Ethernet and TCP/IP components to achieve the network
performance [6, 7]. Therefore, the aim is to improve the
communication process, focused on the messages transfer-
ring based on TCP protocols, due to some restructuring of
specific socket levels.

2. Literature review and problem statement

To solve the problem of improving the communication
process efficiency, various authors focused on a dual ap-
proach. One of them took into account the rebuilding of the
library design based on TCP protocols responsible for the
messages exchange, and the other one pointed to hardware
restructuring. Thus, the work [8] proposed the implemen-
tation of the hardware support approach using the network
card interface to disconnect some critical parts during the
protocols processing.

However, a large number of authors are focused on the
messages transmission support by using specific socket
connections via rebuilt interfaces applied at the user level
or at the individual protocols levels [9–13]. Such approach-
es also increase the performance and productivity, reduce
latency and improve the overall communication process.
But they use the costly operations of data copying and do
not take into account the communication directed to a
particular user network application, following the order of
the set socket queue.

The work [14] proposes a stream control transfer protocol
(SCTP) that is a reliable transport layer protocol and similar
to the TCP protocol in the mechanism of the network gener-
al stream control between two operating workstations. How-
ever, unlike TCP, such a connection can be called associative
that can comprise several independent message streams in a
single communication process. The SCTP ensures the mes-
sages ordering within the stream, but not across the entire
stream association. Such a mechanism could be used to pro-
vide advantages for direct search sockets, depending on the
specific circumstances in which the data can be processed
outside the established order. For example, the MPI tag calls
to receive the data can be implemented as outside-separated
united streams, i.e., independent web responses on a pipe-
lined connection. But the direct search for a scheduled mes-
sage in a queue and its receipt by the user application outside

the established order in the queue has not been implemented
yet in these works.

However, direct search sockets are more flexible, because
they allow deviations from the established order of receiving
a response to a call outside the message receiving queue. In
addition, the API interface for search sockets is the only ex-
tension on the receiving side compared with the traditional
socket interface. The SCTP requires far more advanced ex-
tensions and modifications to manage the sending, receiving
and connecting functions [15].

This communication tool is orthogonal to direct search
sockets. Here it is allowed to use a few IP addresses for each
computer as a part of the established stream association
potentially using multiple network paths to increase the
transmission process reliability.

As it was mentioned above, the overheads incurred on
TCP-based message exchange depend not only on message
size and transmission frequency, but also on whether the
message is expected or unexpected (sudden) for the network
application. The paper [16] submits that the message may
arrive in a queue as unexpected if its data is received by
the process-receiver before making the library call in order
to receive such message to the memory buffer at the user
program level. It is well known [7, 17] that unexpected data
is first copied to a temporary library buffer. Such recopying
operations are costly for the overall exchange process and
reduce its performance.

During the message transferring based on TCP proto-
cols, the messages can be considered received if its data have
appeared in the network and the TCP stack places it in the
socket connection buffer between two communication hosts.
In [16], the situation is presented when the user program
expects a specific message along with unexpected messages
in the queue that arrived in the system at the same time or
before. For example, the system can expect a message with
its transmission interface and a given tag type [18]. The
message transmission interface (MTI) is like a consistent
portable transmission system to implement it on a variety of
parallel computing architectures.

These works also include those based on the use of a re-
built library with a more efficient design that is based on the
use of a rebuilt library with a more efficient design, driven
by events from its own complementary architecture [19].
This should also include the kind of works that use special
support of general hardware restructuring and network card
interface, as well as those based on TCP splitting [7, 8].

The expected increase in performance comes from the
specific reconstruction of the socket-level interface of the
operating system. Based on the described model [16] and
the practical implementation, it is completely unrelated
to works that focus on the connectivity support with the
use of a network card interface or used library. This work
should cooperate with ideas that lead to the restructuring
and improvement of other system components to enhance
high-performance TCP communication.

In cluster communication practice, there are several quite
effective implementations of the message interface, many of
which are freely available or open to use. This gave impetus to
the parallelization of software development and the develop-
ment of large-scale and portable applications that are designed
to perform parallel and distributed computing. During the
communication process, the socket interface of the operating
system for TCP protocols receives certain bytes from the con-
nection made by using recv() or read() system calls. According

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/2 (99) 2019

38

to the queue order and messages alternate reception, it is first
necessary to release the socket from the previous unexpected
messages in order to access the expected message in the next
step. Every unexpected message should be copied to the unex-
pected message pool by using additional copy operations that
cause significant overheads of the delivery system. In this case,
it is needed to additionally, before the message receiving at the
application level, check the receiving pool of unexpected mes-
sages and only then call the receiving function of the expected
message at the level of connection socket.

From the literature review, it is clear that the approach of
direct message search in the socket stack is not sufficiently
described and investigated. However, it is related to works
approached to increasing the productivity of messaging ex-
change based on TCP protocols. The extended socket TCP
interface to perform the direct access to randomly located
messages within a single connection is not sufficiently ex-
plored yet. The influence of the proposed mechanism on the
message exchange process and its characteristics taking into
account the message parameters is also not justified.

3. The aim and objectives of the study

The aim of this work is to implement the mechanism of
direct message search and its impact on the messaging pro-
cess performance. This mechanism coupled with the extend-
ed socket interface for direct search can be used to ensure
the conveyance of data delivery for processing in high-speed
computer systems and to ensure the load stability on the
computing machines.

To achieve this goal, the following objectives were set:
– to implement the simulated [16] mechanism for direct

message search based on the established TCP communica-
tion between the machines and the integrated test method
of simple microbenchmarks;

– to apply the extended socket TCP interface and search
function to implement the approach of receiving the expect-
ed message from any stack position bypassing costly copying
operations;

– to search for randomly located expected messages in
a queue using multiple searches and release memory buffers
after messages are received;

– using the microbenchmark testing of the system with
the implemented mechanism, to reveal a reduction in CPU
processing time of expected messages and the exchange
performance increase depending on changes in their volume
and quantity.

4. Features of Linux interaction to implement the direct
message search mechanism

The socket interface to perform the direct search of
expected messages on a socket can be developed and imple-
mented on the basis of the Linux operating system kernel.
The interface operation checking is carried out by using a
method of microbenchmark testing, the data for which is
obtained outside the request, implemented for this socket [20].
The results of qualitative calculations and assumptions [16]
indicate a CPU processing time reduction for message pro-
cessing using the direct search approach of the expected
message in the stack. The performance growth for such a
system will depend on the receiving of expected messages

with larger volume or the number of messages that have to
be bypassed in the receiving queue.

According to the submitted data [16] and Linux theory,
the TCP stack under the Linux kernel control works with sep-
arate socket buffers, denoted in the literature as sock_buff’s or
skb’s. Since the transmitted packets in their receiving process
are accepted by the network device, the data about them are
placed in the ring buffer, and sock_buff is assigned to the data
itself, i. e. the useful part of the message. The sock_buff buffer
saves the metadata for each package, and the stack of the Li-
nux operating system for TCP/IP processes the package data
by interacting with the sock_buff memory buffer, respectively.
For each particular connection, the sock_buff buffer is placed
in the common queue of the socket buffer. To simplify the
packets acceptance in the correct order and manage them,
each packet is assigned with a sequence number in the queue
that specifies the number of bytes sent for each packet in
particular during the connection performance. This solving
method allows you to renew packets on the receiving side
again by using repeatable requests at the network level and
remove the received data from the socket buffers. The user’s
application does not know, but it should know the data order
in packages or the alternation of their receipt. The tasks that
are solely related to the user’s application are how the data
elements are sent from the source and their fixed lengths.

In [16], a block diagram of the algorithm of the functions
involved in the receiving of the arrived message is presented.
Specifically, the tcp_recvmsg() function is intended to copy
the sock_buff’s buffer messages in the socket queue, which are
associated with the actual data located in the ring buffer. The
function checks the first skb in the socket buffer and then cop-
ies the data to the user’s space buffer. If skb has more data than
is specified in the query, the tcp_recvmsg() function leaves
a “reminder” in the socket buffer queue. If a user requests a
larger amount of data than the one placed on the first skb,
it is allocated along with the corresponding data on the ring
buffer, and the described above specified steps continue with
the next skb standing in the queue. In the end variant, the
function tcp_recvmsg() returns all requested data from the
socket buffer after the complete read-out procedure. It also
removes all skb’s buffers that contain the received data in full
volume and updates the sequence number of the first byte to
perform the next socket reading operation.

Also, TCP typically uses the sequence numbers to track
the reader from the socket buffer and determines the con-
tinuation order of the readout procedure. At each step, the
copied_seq variable that fixes the copy order receives the
sequence number for which the data will be read. Thus, this
variable will contain the complete order of what has already
been copied and that will be read off from the receiving
queue. If the sequence of numbers copied_seq was greater
than the number of the first base skb sequence and some of
them have already been read from it, then the full length of
the data request will be copied starting from the sequence
number specified in the copied_seq variable. So, by using
sequence numbers, data determinations on the socket that
the receiving request should read will be made.

5. Description and implementation of an additional search
procedure for sockets

The main purpose to use sockets that are searching for
a message in a queue is to receive the data about them that

39

Information technology

are placed on the socket reception buffer in random order.
When the data is copied from the socket, the corresponding
skbs with the copied data should be removed from the overall
socket buffer, and the current skbs list should also be reduced
by their number. Because the data that was read and removed
under the corresponding sequence numbers is no longer
available and is not accessed for any operations, then the sub-
sequent requests on the socket should “know” and take into
account that these data no longer exist in the buffer.

This approach is implemented through a connections list
that contains the initial and final sequence numbers for each
already selected data «hole» in the socket reception buffer.
Creating a hole frees up memory space in the socket buffer
and allows to normalize the TCP flow behavior regardless of
the location in the buffer from which the data was read and
deleted. When the request to receive the message begins the
copying process of data into the user’s space, it passes on its
way any hole that is met and continues to normally receive
data from the sequence number that goes after the hole. In
the data receiving process with the user program, the list of
holes usually increases. Then they are merging, and at the
same time the dynamic buffer reduction associated with the
holes removal takes place.

The implementation developed in this work requires the
creation of a new stream protocol SOCK_SEEK_STREAM
that uses the same stack as TCP and ordinary SOCK_
STREAM sockets. However, their basic functions are to be
modified, so that they can directly search the expected mes-
sages by using SOCK_SEEK_STREAM sockets.

If a socket request performed on the socket does not pro-
vide the direct search procedure of the expected message, or
if the call doesn’t find the required packet to be received, then
its way through the TCP stack and used functions is almost
identical to the code used by the traditional Linux kernel.
When the search request is performed on a socket and re-
quires the direct search of any expected message, then its way
through the TCP stack remains the same, but the code track
through separate socket functions may change. Basically, the
changes will concern the code of the function tcp_recvmsg()
that was entered into it. All additionally involved modifica-
tions are also required for managing the list of holes, sequence
numbers and skb’s that have already been read.

Another significant change should be made in the func-
tion tcp_recvmsg() that refers to the socket receiving proce-
dure, which directly searches for the expected message. Such
a change is to disable the TCP preload mechanism on the
queue [16]. Despite the pre-loading mechanism of the TCP
queue allows to manage better the stream resources during
the message exchange process, it also causes a slight decrease
in performance. On the other hand, it is not possible to
change easily the download queue in the general messaging
procedure in order to activate the process of further search.
In connection with all submitted above, the pre-loading
mechanism should be turned off at the moment of socket
receiving when the socket performs a direct search of the
expected message.

After the SOCK_SEEK_STREAM socket has been cre-
ated, the well-known functions recv() and recvmsg() can be
used as ordinary functions. The newly developed seek_recv()
function can be implemented as a system call described below,
which should provide the following arguments:

ssize_t seek_recv(int s, void *buf, size t len,
int flags, size_t offset);

As can be seen from the usage of the functions for or-
dinary sockets, the arguments for calling the seek_recv()
function will be the same as for the function recv(), but with
some change added to indicate the number of bytes to be
transmitted into the stream. This offset always should point
to the first byte that should be obtained through the use of
the system call recv().

Since the call seek_recv()changes the msghdr structure
and then calls the general function sock_recvmsg(), then the
recvmsg()function from the standard library can be used to
make the search for recipients. The msg_seek variable has
been added to the msghdr structure in order to specify the
search offset. With modifying the structure msghdr passed
to the function recvmsg() as a parameter, it is easier to make
a packet search that is expected to be received without in-
volving a new special function.

To be able to make a search for previous messages of a large
size, it is needed to increase the maximum size of the receiving
buffer that is controlled through the system variable net.core.
rmem_max and the sysctl parameter. Because of the setsock-
opt() function introduction, the variable net.core.rmem_max
allows you to set the maximum buffer size for each accepted
message that can be reset. Therefore, the sysctl parameter
should be set accordingly for a sufficient amount of bytes
and the receiving buffer should be increased, if necessary,
throughout the entire user program interval.

In the case when the receiving buffer is completely filled
in and the usual TCP operations are executed, then the call
to receive the message search during its execution returns an
error. And in case when new packages are received and the
socket buffer is already full, they will not be accepted but
resent again by the sender in accordance with the normal
TCP flow control [21]. In this case, to release more space in
the kernel, the application should clearly react to the socket
buffer overflow error and delete some unnecessary data that
could remain in the buffer.

6. Research results of the direct search mechanism for
the messages on the basis of TCP protocols

According to model assumptions [16], the mechanism of
message direct search was implemented on hosts with the
established connection that allowed sending and receiving
the messages. The main task in this mechanism was to
implement a socket interface designed from the traditional
one by rebuilding the usual socket functions and calls. This
interface would allow you also to recognize the expected
messages in the queue within the same connection, to deliver
them to the user space and to perform the released memory
buffers removing.

The socket interface for the direct message search was
implemented on the basis of the Linux kernel 2.6.13. The
experimental results were obtained according to model
assumptions in [16] by testing to get a set of simple mi-
crobenchmarks. To get such a set at first look, two hosts
can be used intended to send and receive messages via the
established connection with the possibility to obtain a set of
simple microbenchmarks outside the request.

For testing, the sender sends a message with a fixed
configuration to the established connection several times.
The receiver passes several times N queued messages, reads
the expected message and then reads N missed messages
that were set before the expected message. The message

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/2 (99) 2019

40

receiver is clearly configured to perform the recognition
approach of the “unexpected” and “expected” message. In
case of a regular message search, other N messages that are
in front of it should first be copied from the socket buffer
into an additional memory called the “pool of unexpected
messages”. In case of search for the expected message im-
plemented in this paper, all missed unexpected messages
are recognized and processed by using the developed
seek_recv() system call.

Overall system performance can be estimated using the
sum of both time intervals: system time and user time that
can be explored in the message receiver system. The percent-
age of the processor active time that should be reduced in
case of expected message direct search will be that metric in-
dicator used to estimate the effectiveness of the implemented
approach. Every test should consist of ~80 repetitions, each
of which should include a set of operations such as socket
opening, sending 800–1,000 messages to it in accordance
with the acceptance politics described above and closing of
the opened socket. The system should only use one active
socket at the same time interval.

Fig. 1 shows the active CPU time reduction that is
reached in the case of using the direct search interface.
Several curves correspond to N values of unexpected mes-
sages set before the expected one in the range from 2 to 16,
respectively. In the graphic with the logarithmic scale, the
X-axis shows the message size in bytes. On the Y-axis, the
reduction percentage of the CPU time is given for the case
of using the socket with direct message search. It should
be added that each data point has been checked 10 times
minimum. The submitted curves show averaged values
with standard error bands, in order to visually demonstrate
the deviation of the experimental values present in the test
studies. As can be seen from the dependency graph, the val-
ues obtained below the 0 % level point to those situations
where the new interface still reduces the system perfor-
mance. This especially concerns small-sized messages for
which the scattering bands of test results are significantly
larger. From the test experiment results shown in Fig. 1, a
significant reduction of the error bands for messages with
larger sizes is observed. This can be explained by the fact
that the tests take more time and become less dependent
on the random behavior of the operating system and cach-
ing. For the case of the message direct search mechanism
and the developed interface involvement [16], the results
indicate a noticeable decrease in CPU execution time by
36–40 %.

Fig.	1.	Influence	of	various	message	sizes	and	their	
disordered	amount	N	on	the	socket	performance	with	direct	

message	search

In general, the curves obtained in Fig. 1 show an im-
provement in performance indicators that are dependent on
the message sizes increase or larger N values for unexpected
messages. These results do not reflect the surprise if to take
into account the need for more copy operations and addi-
tional their costs in the same tests. In the best of cases, the
results indicate a noticeable decrease in the CPU execution
time by 36–40 % for the case of involving newly developed
interface [16] in operation.

7. Discussion of the research results for the message
direct search mechanism

In overall, coming from the received research results for
the direct search mechanism based on TCP protocols during
the message exchange on a socket within one connection, a
reduction in CPU processing time for the received expect-
ed messages is observed. This fact says about the overall
increase in the exchange process performance for the case
when the expected messages should be delivered to the us-
er’s space. The performance growth especially is observed
in the process of receiving the expected messages that are
set outside the established order of their receiving. The
performance also increases significantly in case of sending
the larger volume of bytes per message or in case of sending
smaller volume with a larger number of expected messages.

However, along with all the positive results, it should be
noted (Fig. 1) that the implementation of the search proce-
dure sometimes leads to a general decrease in performance
due to overheads increase because of the additional costs of
the socket buffers processing. Such a decrease is observed
especially for small values of N for previous unexpected
messages, as well as for small messages in their small sending
amount. This takes place, for example, in such cases as a list
of “holes” managing for already received messages in order to
expand the socket buffer.

There are also some performance decreases for such
system that arise for 10-byte messages that are, for exam-
ple, somewhat unrealistic amount of data representation
in well-configured applications developed for high-per-
formance computing systems. This approximation may be
useful for application testing where it is difficult to coordi-
nate the communication process, or by using the method of
microbenchmarks to detect and compare the basic delay time
in the communication channel.

During the testing process, some other interesting result
of a performance reduction is revealed for the size of the mes-
sages of up to 1,000 bytes. This specified size for the message
is closest to the size of the useful TCP packet download that
is equal to 1,460 bytes. Consequently, the relative costs of
managing the list of holes after reading messages, in this
case, are somewhat higher than in the other mentioned cases.

The research results show that the socket interface
for direct expected message search can be useful for com-
munication and data transmission based on TCP. But in
agreement with the obtained results, the high-speed power
of the library to send messages around this interface is still
not fully realized. The work experience with the code set for
microbenchmarks says that it is needed to make only a few
minor changes to individual functions to use direct message
search sockets. Integrating this interface into the MPI li-
brary, it is possible to significantly improve additional ideas
about the convenience of using it in the future. For example,

41

Information technology

applications will first need to check the message headers by
using the regular network services, perhaps to take a look or
pick them up before getting information about their number
required for the search procedure.

On the other hand, the actual performance is likely to
change depending on the number of sent messages, accord-
ing to which messages are queued randomly. As it is known,
the result of the set of microbenchmarks detects only the
result of the amount of CPU processing time taken into
consideration, but not its combination with the delay time
during communication. According to the methodology [22],
these results should be arranged to describe the overall per-
formance of the proposed system. Expected results should
also be largely independent of the physical intermediate de-
vices use or the number of sockets. Since the changes in the
operating system are limited to the socket level, they strictly
take into account the basis of each socket.

The sockets with the direct message search can also
result in performance improvement beyond the domain of
the data computing cluster. For example, for a more effective
TCP process, modern HTTP implementations transmit
multiple simultaneous requests and replies to a single-
directed conveyor connection [23]. Based on the common
considerations, the sockets that perform direct message
search can also be used for parallel data processing through
an established one-way communication. This applies to het-
erogeneous stream readings, the information parting, i. e. its
fragmentation, as well as the information content displaying
of different connection parts.

As can be seen from the research analysis of the direct
message search mechanism, it is necessary to consider the
number of expected messages that are in the sample queue
within a single connection. From the experimental results
obtained by testing the implemented delivery system by
the method of microbenchmarks, it is clear that this system
distinguishes between expected and unexpected messages
with variable byte volume due to the extended socket inter-
face. However, the performance of such a system for large

byte messages will depend more on the mechanism of their
fragmentation into the corresponding parts before sending.

In the future, we plan to conduct a research on the use
of the direct search mechanism with the extended socket
interface integrated into a full-featured active library re-
sponsible for the messaging or communication. Important
in this study will be performance (speed) dependence of
the exchange system with the extended interface on various
message fragmentation.

8. Conclusions

1. The direct search mechanism of randomly expected
messages located in the stack during the established TCP
communication between working machines is practically
implemented in this paper. To obtain the research results,
the system with the message direct search was tested with
the method of simple microbenchmarks. Every test consisted
of ~80 repetitions, where each of which included the sending
of 800–1000 packages and other necessary operations.

2. The mechanism implementation used the extended
socket TCP interface developed on a basis of traditional one,
which searched and performed the receiving of messages
from any stack position within a single connection, bypass-
ing costly copying.

3. During the process to find the randomly located mes-
sages in the queue, the procedure of multiple their search was
used. Along with message receiving, the message buffers are
released to expand the memory of the overall socket buffer.

4. Based on the testing results, there is the CPU process-
ing time reduction by 36–40 % for the received messages.
The overall performance increase of the message exchange
process has a significant manifestation in case of sending
more messages or a large number of small messages. Howev-
er, when the volume of messages is approached to the size of
the useful TCP packet download, there is a decrease in the
performance of the message exchange process.

References

1. Distributed processing of very large datasets with DataCutter / Beynon M. D., Kurc T., Catalyurek U., Chang C., Sussman A., Saltz J. //

Parallel Computing. 2001. Vol. 27, Issue 11. P. 1457–1578. doi: https://doi.org/10.1016/s0167-8191(01)00099-0

2. Small-file access in parallel file systems / Carns P., Lang S., Ross R., Vilayannur M., Kunkel J., Ludwig T. // 2009 IEEE International

Symposium on Parallel & Distributed Processing. 2009. doi: https://doi.org/10.1109/ipdps.2009.5161029

3. Managing Big Data with Information Flow Control / Pasquier T. F. J.-M., Singh J., Bacon J., Hermant O. 2015. URL: http://tfjmp.

org/files/publications/cloud-2015.pdf

4. Melnyk V. M., Bahniuk N. V., Melnyk K. V. Influence of high performance sockets on data processing intensity // ScienceRise. 2015.

Vol. 6, Issue 2 (11). P. 38–48. doi: https://doi.org/10.15587/2313-8416.2015.44380

5. Infiniband Trade Association. URL: http://www.infinibandta.org

6. Netgauge: A Network Performance Measurement Framework / Hoefler T., Mehlan T., Lumsdaine A., Rehm W. // High Performance

Computing and Communications. 2007. P. 659–671. doi: https://doi.org/10.1007/978-3-540-75444-2_62

7. Majumder S., Rixner S., Pai V. S. An Event-driven Architecture for MPI Libraries // In Proceedings of the 2010 Los Alamos Com-

puter Science Institute Symposium. 2010. URL: https://vjpai.github.io/Publications/majumder-lacsi04.pdf

8. Gilfeather P., Maccab A. B. An Extensible Message-Oriented Offload Model for High-Performance Applications // Los

Alamos Computer Science Institute SC R71700H29200001. URL: http://citeseerx.ist.psu.edu/viewdoc/download?-

doi=10.1.1.217.1085&rep=rep1&type=pdf

9. Veeraraghavan M., Jukan A. A hybrid networking architecture // University of Virginia. 2010. URL: https://pdfs.semanticscholar.

org/62bb/a7fcb0e97adbf623a569c160d20843022b08.pdf

10. Aydin S., Bay O. F. Building a high performance computing clusters to use in computing course applications // Procedia – Social

and Behavioral Sciences. 2009. Vol. 1, Issue 1. P. 2396–2401. doi: https://doi.org/10.1016/j.sbspro.2009.01.420

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/2 (99) 2019

42

11. Pratt I., Fraser K. Arsenic: a user-accessible gigabit Ethernet interface // Proceedings IEEE INFOCOM 2001. Conference on

Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat.

No. 01CH37213). 2001. doi: https://doi.org/10.1109/infcom.2001.916688

12. Fenech K. Low-latency inter-thread communication over Gigabit Ethernet. University of Malta, 2005. 180 p. URL: http://citese-

erx.ist.psu.edu/viewdoc/download?DOI=10.1.1.192.2018&rep=rep1&type=pdf

13. Ethernet Networking Interface // Techopedia. 2019. URL: https://www.techopedia.com/definition/24959/ethernet-network-

ing-interface

14. Stream Control Transmission Protocol / Stewart R., Xie Q., Morneault K., Sharp C., Schwarzbauer H., Taylor T. et. al. // 2000.

doi: https://doi.org/10.17487/rfc2960

15. Sockets API Extensions for Stream Control Transmission Protocol (SCTP) / Stewart R., Xie Q., Yarroll L., Wood J., Poon K.,

Tuexen M. // IETF Internet Draft. 2005. URL: https://tools.ietf.org/pdf/draft-ietf-tsvwg-sctpsocket-06.pdf

16. Melnyk V. Modeling of the messages search mechanism in the messaging process on basis of TCP protocols // Naukovyi zhurnal

«Kompiuterno-intehrovani tekhnolohiyi: osvita, nauka, vyrobnytstvo». 2017. Issue 28-29. P. 20–24.

17. Liyanage M., Ylianttila M., Gurtov A. Fast Transmission Mechanism for Secure VPLS Architectures // 2017 IEEE International

Conference on Computer and Information Technology (CIT). 2017. doi: https://doi.org/10.1109/cit.2017.46

18. Performance analysis of asynchronous Jacobi’s method implemented in MPI, SHMEM and OpenMP / Bethune I., Bull J. M.,

Dingle N. J., Higham N. J. // The International Journal of High Performance Computing Applications. 2014. Vol. 28, Issue 1.

P. 97–111. doi: https://doi.org/10.1177/1094342013493123

19. Implementation of the simplified communication mechanism in the cloud of high performance computations / Melnyk V., Bahnyuk

N., Melnyk K., Zhyharevych O., Panasyuk N. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 2 (86).

P. 24–32. doi: https://doi.org/10.15587/1729-4061.2017.98896

20. Obzor nekotoryh paketov izmereniya proizvoditel’nosti klasternyh sistem. URL: https://www.ixbt.com/cpu/cluster-benchtheory.

shtml

21. Computer Network & TCP Congestion Control. URL: https://www.geeksforgeeks.org/computer-network-tcp-congestion-control/

22. 7 Steps Needed for Successful Benchmarking, using the COMPARE Method. URL: https://www.compare2compete.com/en/

blog/7-steps-needed-for-successful-benchmarking-using-the-compare-method/

23. HTTP Definition. URL: https://techterms.com/definition/http

