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IIposedenumu docnioicennamu 6cmanosiena nepcnexmued 30io-
wWeHHsT NPOOYKMUGHOCMI 00UUCTIOBANLHUX KOMNOHEHMIE, 30KpeMa
Kombinauitinux 16-bit cymamopie, Ha 0CHOBI BUKOPUCMANHHA NPUHUU-
nie 00uUCTIeHHS UUDPPOBUX CUZHANIE AUUKIITUHOT MOOeJi.

3acmocyeannsn ayuxaiunoi modeai 0as cunmesy 16-bit napanens-
HUX CYMamopie po3paxoeamno na:

— npouec nocaid061020 (011 MOOOWMUX PO3PAVI6 CXeMU CYMAmo-
pa) ma napanenviozo (014 pewmu po3paoie) 06UUCAEHHA CUHATLE
cymu i nepenecenns. 3a60AKU 3A3HAUEHOMY NIOX00Y CMAE MOJNCAU-
UM, Y NIOCYMKY, 3MEHWUMU CKAAOHICMb ANApamHnoi Hacmuru npu-
cmpo1o ma He 30iTowUMU 2NUOUHY CXEMU;

— Qixcauiio (nranyeanns) enubunu cxemu cymamopa nepeo iiozo
cunmeszom. Ile 0ozeonse euxopucmosysamu noeziuny cmpyxmypy
MPAH3UMUEH020 NEPeHeceHts, W0 3a0e3neuyec ONMUMANLHY 2AUOUHY
cxemu cymamopa ma me 30ivmye ii ckaaonicmo.

Buxopucmanns awuxaiunoi modeni 0as nodyodosu 16-bit napa-
JIeSIbHUX CYMAMOPi6 euzioHiuLe Y NOPIGHAHHI 3 AHATI02AMU 34 MAKUMU
YUHHUKAMU:

— MEHWO010 6apmicmio Po3podKu, OCKIIbKU AUUKATMHA MOOeNb
eusnauae npocmiwy cmpyxmypy 16-bit cymamopa;

— 3ACMOCYBAHHAM OCMAHHIX PO3POOIEHUX NOZIMHUX CMPYKMYP
MPAH3UMUEHO020 NePEHECEHHS, W0 00380JI8€ 3MEHUUMU 3AMPUMKY
CUZHAJII6 CYMU MA NEPEHECEHNSL, NIIOUY, NOMYNCHICI® MA NIOBUWUMU
3azanviy npoodyxmuenicmo 16-bit cymamopie dinapnux xoois.

3asoaxu ybomy 3adesneuyecmovcs MONHCAUBICID OMPUMAHHA ONMU-
MANTbHUX 3HAMEHb NOKA3HUKIG CKAAOHOCMI CMpYKmypu ma 2audunu
cxemu yudposoi komnonenmu. Y nopiensanui 3 ananozamu ye 3aoes-
neuye 36invuenns noxasnuxa axocmi 16-bit ayuxaiunux cymamopie,
Hanpuxnao, 3a eHepzoCNONCUBAHHAM, NIOWEI0 HUNA, Y 3ALEHCHOCME
610 oopanoi cmpyxmypu, na 15-27 %, a 3a meuodxooieto na 10—60 %.

€ nidcmaeu cmeepoicysamu npo MoNCAUBICHL 301 TbUEHHS NPO-
OyKmueHocni 004UCTI08ANLHUX KOMNOHeHmis, 30kpema 16-bit cyma-
mopie Ginaphux x00i6, WAAXOM BUKOPUCMANNA NPUHUUNIE 00uuUCaeN -
HA YUPPOBUX CUHAIE AUUKITUHOT MOOei

Kantouoei crosa: onmumanvia mweuoxoois QuuKaIitHux cymamopis,
Ling Adder, Kogge-Stone Adder, Knowles Adder
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1. Introduction

Computer industry creates more and more productive
computing components using integrated circuits (IC). Better
production of chips is achieved through the development
of new computing architecture with the efficient use of
technological improvements. However, the improvement of
IC parameters, including the performance of its operation,
power consumption and temperature mode continue to be
a relevant task for designing and technology of manufactu-
ring integrated circuits. The performance and accuracy of
a processor or an information system depends on the efficien-
cy of the adder. Binary addition is a major arithmetic opera-
tion in the systems of super-large integrated circuits (SLIC).
Binary adders are among the most important elements in
processor chips, ALU, counters, methods of memory ad-
dressing, as a part of the filter, for example, the filter of DSP-
grid, etc. For this reason, the addition operation is the most
commonly used operation in digital circuits. As the adder
takes a critical position inside the ALU of microprocessors,
it remains relevant to ensure that its performance should be
adequate to meet assigned specifications of performance, area
and power consumption of different topologies of adders.

This paper deals with the architecture of the 16-bit pa-
rallel acyclic adder (PAA) [1, 2]. In addition, it presents the
latest designed logical structures of transitive carry, which
make it possible to reduce the delay of sum and carry signals,
area, power and improve the overall efficiency of digital
components.

The processor evolution is a result of continuous optimi-
zation, so it remains relevant to study 16-bit adders of binary
codes, which are aimed, specifically, at the improvement of
such factors, as:

— manufacturing technology;

— structural implementation;

— performance and power consumption.

2. Literature review and problem statement

The use of parallel-prefix adders in the development of
SLIC was considered in [3]. The optimization of the logi-
cal structure of a 16-bit prefix adder Ladner-Fischer was
presented. The proposed system consists of three operation
stages — the pre-processing stage, the generation stage and
the post-processing stage. The pre-processing stage focuses




on expansion and generation, the generation stage focuses
on the performance of generation, and the post-processing
stage focuses on the end result. Computation performance of
logical structures of Ripple Carry Adder and Ladner-Fischer
Adder was compared.

The logical structure, which reduces power consumption
of SLIC, was proposed in [4]. The presented model of delays
of the computing track of the built-in SLIC system was
presented. The prefix 16-bit adder with reversible logic ele-
ments was developed using the PERES logic. The structure
of the adder has the minimal logical depth and complexity
of the circuit. The results of modeling revealed that the net
delay of the computing track for the 16 X16-bit prefix using
reversible logic is 20.828 ns, for Kogge Adder Stone, reading
isup to 17.247 ns.

A high-speed fault-tolerant parallel prefix adder was pro-
posed in paper [5]. Because the logical structure of Kogge-
Stone has inherent redundancy in the logical structure of car-
ry, a fault-tolerant parallel prefix adder can be implemented.
The Kogge-Stone structure can perform only correction of
faults, but does not detect them. Therefore, to achieve this
goal, it is proposed to use Sparse Kogge-Stone. The method
uses the Sparse Kogge-Stone adder, which is able both to
detect and correct problems. The synthesis and simulation
of fault-resistant structures for the FPGA platform were
performed.

Development and implementation of a hybrid parallel
prefix adder 16-bit Ling Adder were presented in paper [6].
The topology of a hybrid adder uses the Ladner-Fischer ap-
proach for even indices and the Kogge-Stone for odd indices.
An independent computation of carries for odd and even bits
directly enables reducing the branching of the logical struc-
ture of a prefix and thus reduces the signal delay. The area
effectiveness is achieved by calculating the real carry using
the modified Ling equations. The proposed adders are im-
plemented with the 16-bit and 32-bit size of a word based on
the modified Ling equations using the technology of CMOS
of 0.18 microns. The synthesis results demonstrate that the
proposed adders can reach up to 24 % and 35 % of power
saving and the time of digital device delay, respectively, com-
pared with the adders synthesized based on the conventional
Ling equations.

Optimization of the parameters of 16-bit prefix Kogge-
Stone Adder and Ladner Fischer Adder during designing
with the help of Verilog is considered in article [7]. The
code was implemented in Xilinx Spartan 3E100CP132. It
was noted that the changed structure of the parallel prefix
demonstrates the best efficiency indicators as compared with
the traditional prefix adders and can be widely used in the
industries to achieve the desired computation efficiency.

Designing and simulation of the prefix Brent Kung Adder
using CMOS logic and 45 nm technology are explored in [8].
The results of designing with the known structures of Ripple
Carry Adder and Carry Look Adder were compared. The
obtained results show that energy consumption and delay
in propagation of the sum and carry signals for Brent Kung
Adder are reduced compared with the Ripple Carry Adder or
the Carry Look Adder.

Comparison of the parameters of delay, power consump-
tion and area for logical structures Ripple Carry Adder
(RCA), Carry Look Adder (CLA), the Manchester Carry
Chain (MCC) and the Kogge-Stone Adder (KSA) was
performed in [9]. Modeling of these structures was carried
out using the 180 nm technology. It was noted that the KSA

architecture is the best when it comes to computation effi-
ciency. It was established that the RCA occupies the smallest
area of chips — 1,118 nm?.

The structure of the parallel prefix is a typical structure
of the adder of binary codes, which emphasizes concurrency
in transmission of carry signals [10]. This structure ensures
a compromise between complexity and the logical depth of
the adder circuit. In paper [10], the structural-decomposition
and procedure design of possible structures of the parallel
prefix was proposed. «Join», «paste» and <alternate» are
introduced as the main operations for the construction of
a possible parallel prefix diagram. In this work it is shown that
all of the well-known structures, specifically, the Sklansky
prefix-diagram, Kogge-Stone prefix-diagram, Han-Carlson
prefix-diagram, Brent-Kung prefix-diagram can be success-
fully represented using this method. The proposed approach
extends the apparatus for the synthesis of parallel prefix
structures that can be used to optimize the design of digital
components.

The adder with accelerated carry was presented with
a patent [11]. The adder includes: an input 2n-bit bus;
n/m m-bit adders; m-bit incremental adder; m+1-bit multi-
plexer with paraphrase control inputs; an output z+1-bit bus.
Hardware complexity of the proposed adder with accelerated
carry in relation to the nearest analogue is reduced twice,
while performance increases by 1.5 times.

The explored literary sources [3—10] prove that the
source objects to increase the efficiency of signals’ processing
in digital components are the models for computation of
parallel prefix, specifically, the architecture of Ling Adder,
Kogge-Stone, Ladner-Fischer, Brent Kung, Sklansky and
Han-Carlson.

Among the well-known prefix structures, the major ones
include the Ling and Kogge-Stone parallel prefix adder with
the structure of prefix carry. They are the end case of a large
list of circuits of adding binary codes, each of which is unique
for its property of minimum logical capacity.

These adders provide a theoretical base, forming the ta-
xonomy of the prefix adders (Fig. 1) [12]. However, the use
of such architectures is justified only by reaching compro-
mises in terms of delay, area and capacity in order to display
a wide range of services in the design. When trying to go
beyond these limits in order to increase the performance of
processing digital signals, there arise objective difficulties
associated with high complexity of the circuits and a huge
number of connecting wires (tracks) (for example, the
Kogge-Stone architecture).

Taxonomy always forms an encyclopedic list of some
objects. In terms of practical application, not all the objects
of an encyclopedia will be used. As the adder takes a criti-
cal position inside the ALU of microprocessors, it remains
relevant to ensure that its efficiency should be adequate to
meet the specifications of performance, area and power con-
sumption of the digital component, and preferably without
compromises.

A tool to ensure efficient operation of an adder and a digi-
tal component without compromises, to some extent, is the
protocol of dynamics of increasing the depth of the circuit of
an acyclic adder of binary codes with an increase in bit size
of its circuit (Fig. 2).

The dynamics of increasing the depth of the PAA circuit
is determined by the logarithmic dependence — doubling the
number of bits of # of an adder increases the circuit depth by
the constant magnitude — by two logical elements.
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Fig. 2. Dynamics of increasing the depth of the circuit
of acyclic adder (PAA), based on 2-input logical elements

An acyclic model of the adder [1, 2] was designed for a logi-
cal structure with the sequential-parallel way of computation
of a digital signal. The sequential method of carry is funda-
mental in relation to minimum consumption of the hardware
of digital components. Thus, the prefix and acyclic models are
different objects — they have different beginnings (principles)
of computation, and therefore have different capabilities with
respect to performance, chip area and power saving,

That is why there are certain reasons to believe that the theo-
retical base, which is represented by the prefix architectures,
including Ling Adder, Kogge-Stone Adder, Knowles Adder and
generalized by the taxonomy of prefix adders (Fig. 1) is insuf-
ficient to carry out the optimization of delay, area and power
without compromises. This causes the need for research into an
acyclic model of digital signals’ processing, including the proto-
col of dynamics of increasing the depth of the circuit of an acyclic
adder with an increase in the magnitude of its bit size (Fig. 2).

3. The aim and objectives of the study

The aim of the research is the synthesis of the optimal
structure of 16-bit parallel adders of binary codes with logi-
cal XOR elements in the last bit by using an acyclic model

of signal processing. This will make it possible to increase
performance, reduce energy consumption of 16-bit adders, in
comparison with the analogues, and to spread the principle of
synthesis on larger bit size of acyclic adders with the sequen-
tial-parallel way of carry.

To achieve the aim, the following tasks were set:

— to synthesize the optimum logical structure of the se-
quential-parallel transitive carry of unity to higher bits in the
circuit of the acyclic 16-bit adder of binary codes;

— to establish the dynamics of increasing the depth of the
circuit of the acyclic 16-bit Adder (PAA) based on 2-input
logical elements, compared to the 8-bit acyclic adder;

—to perform a comparable analysis of performance and
complexity of the structures of the 16-bit acyclic adder with
logical XOR elements in the last bit, and 16-bit adders of the
prefix model of calculation of the sum and carry signals. In par-
ticular, to carry out the analysis of the dependence of the circuit
simplicity according to the logical depth on adder’s circuit.

4. The logic of transitive carry

Operation of binary addition in the position system uses
such types of carry of unity to the higher bits: «kill», «gene-
rate», «<propagates» or transitive carry:

if a;=0;=0, then ¢;=0 (the <kill» carry),

if aj=b;=1, then ¢;=1 (the carry is «generated»).

However, if one of bits a; or b; is equal to 1, and another
is 0, then ¢; 1 has significant content for carry, that is,

if a;#b;, then ¢;=c;_{ (the carry propagates).



Each bit, therefore, corresponds to one of the three types
of carry statuses: k (kill), g (generate) or p (propagate). This
status is known, first of all, as it allows decreasing the time to
perform the addition operation.

Carry statuses for the 1-bit (full) adder (Fig. 3) are given
in Table 1.
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Fig. 3. Full adder of binary codes:
a — for logical element 2-In XOR (complexity of 10 elements);
b — on complicated logical element MUL «2 in 1»
(complexity of 9 elements)

Table 1
Carry status of the 1-bite adder of binary codes

A B Cinput Counput S Carry status
0 0 0 0 0 kill

0 0 1 0 1 kill

0 1 0 0 1 propagation
0 1 1 1 0 propagation
1 0 0 0 1 propagation
1 0 1 1 0 propagation
1 1 0 1 0 generation
1 1 1 1 1 generation

Logical equations of the 1-bit adder in Fig.2 are the
following:

G=AB;

P=A®B,

K:ZE

S=Ae®B®C,, =POC,,,;

Cpup =AB+AC, +BC,  =G+PC, .

The main carry is the «propagation» status, on which
the performance and complexity of the device circuit de-
pends. The logical equation that determines the carry of
«propagations status (transitive carry) in most cases is
as follows:

pi=(a,+b)c

in’

where the sign «+» means the logical OR operation. It is pos-
sible to determine the «propagation» type using the logical
XOR operation:

pi=(a;9b)c,,

The logical structure of the adder that repeats the arith-
metic result should take into consideration not only the carry
of «propagation» status, but also to ensure and implement
the condition of propagation of the signals of carrying the
unity to higher bits. The logical equations of the carry condi-
tion are the following:

pi=a;vb, or p,=a,+b, (1

If p;=1, transitive carry to the next bits will be possible,
in the case p;=0 transitive carry to the next bits is impossible.

We will demonstrate the condition of carrying unity to
the higher bit using the example of operation of addition
of 1-bit numbers to the column (Table 2).

Table 2
Addition of 1-bit numbers to the column
Possible variants of addition
Unity from lower bit (Cippu) 1 1 1 1
Number A 0 0 1 1
Number B 0 1 0 1
Sum 01 10 10 1

Considering the variants of the addition of 1-bit binary
numbers shown in Table 2, we see that if AvB=1, the unity
from the lower bit Ciyy, is carried to higher (second) bit of
the sum (Coumpue=1). If AvB=0, the sum remains 1-bit, the
unity from the lower bit Cjyp, is not carried to the higher
(second) bit of the sum (Couppue=0). A similar logic of car-
rying the unity to the higher bit is also retained when adding
n-bit binary numbers.

Example. Conduct arithmetic addition of binary codes:
A=0110101100 and B=0010010100 (Fig. 4).

Carry 1)1 1111

CodeA| O |1 |1 |01 |O0O|1]1]0]O
@ DD D D D DD DD

CodeB| 0| 0|1 ]0[O0O|1]O0O]1]0]O

SumS |1 [0 O |1 ]0]0O[0]0OJO]O

Fig. 4. Addition of binary codes

When adding binary codes, the carry that appeared in the
bit with index i=3gy=agbop=1A1=1 carries to the bit with
index i=6, the carry that appeared in the bit with index i=7:
gs=asbs=1A1=1 carries to the bit with index i=9.

The procedure of arithmetic addition is, in fact, a descrip-
tion of the operation of binary addition. In turn, the circuit of
the adder, which implements binary addition is the method,
therefore, the condition of carry of the «propagation» sta-
tus (1) must be represented with the corresponding logical
structure (Fig. 5-9).

Logical equations of the 3-bit adder in Fig. 6 are the
following;
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+ a @ ayh, + B bayb, + b aa, b, + &t _% o _mDDszD.B
by b, a,b,+b, a,a,b+a,b,b,a, b, i+1 _ — - = &5
+ a,b,+b,a,a,b+a a,b,+ a+ — .
01 27270 1772 0707172 72 bi+1 1 | ,?I =1 Si+1
+ a,b,a,a,b,+a,b,b,a,b,+ o [ | &
+ a()b()a1a2b2 +ag1a2g+ 671171572172 * o
+aba,b,+aba,b,. Fig. 7. Sequential structure of transitive carry on elements DD1 DD2 DD3 DD4

Logical structure «OR-AND» for a number of cases
makes it possible to organize the carry using fewer logical
elements in comparison with «AND-OR», which in this way
reduces the complexity of the digital device.
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Fig. 5. The structure of transitive carry «<AND-OR»
on elements DD 1, DD2
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Fig. 6. The structure of transitive carry «OR-AND»
on elements DD1, DD2

Logical elements, DD1 DD2 DD3 DD4 in Fig.7 de-
monstrate a sequential structure of the carry of unity to the
higher bit. A sequential structure, compared with the parallel
one, requires a smaller number of logical elements, which in
the end reduces the device circuit complexity.

ai-1

The structure of carry with logical XOR and MUL ele-
ments, which make up the Ling logic (Fig. 8), ensures the
optimal logical depth of the adder circuit for neighboring
bits, beginning with the 8-bit circuit of the device.
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Fig. 8. Optimal transitive carry on the logical Ling structure
for neighboring bits of adder

Logical equation of the 3-bit adder in Fig. 8 are the fol-
lowing:

S, =a,b, +ayb,;
S, =aybya, b, +a,a,b +a,ab +abyab, +byab, +b,ab,;

S, =a,ba,b,+a,a,a,b,+a,b a,b,+a,a,ab,+
+ b, ba,b, +b,a,a,b,+ b, b, a,b,+b,a,a,b+
+ a,bba, b, +a,b,a,a, b, + ab,ba,b,+ab,a,a,b, +

+a,ba,b,+a,bab,+aba,b,+aba,b,.

Optimization of the depth of the adder circuit not only
within neighboring bits of a digital device, but also for some
interval of bits, is provided by the structure with two XOR
elements and one MUL elements (Fig. 9).

The application of the logical structure with two XOR
elements and one MUL element to ensure optimal transitive
carry for the interval of bits of the adder circuit is demon-
strated by the circuit of an acyclic 16-bit PAA (p. 5).
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Fig. 9. Optimal transitive carry with two XOR elements and one MUL element for the interval of bits of adder circuit



3. Results of application of acyclic a0
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The dynamics of an increase in the depth of the circuit of
acyclic 16-bit adder based on 2-input logical elements, com-
pared to the 8-bit acyclic adder [2], is two logical elements.
This corresponds to the protocol of dynamics of an increase
in the depth of the acyclic adder circuit based on 2-input
logical elements and shown in Fig. 2.

Fig. 10. Acyclic 16-bit PAA with the depth of the circuit

of 10 typical 2-input elements

6. Comparative analysis of 16-bit acyclic and
the prefix adders of binary codes

The prefix of 16-bit Ling Adder [13-15] with logical
XOR elements in the last bit and the depth of the circuit of
11 typical 2-input logic elements with improvement of the
logical structure of the adder, which reduces the circuit com-
plexity, is shown in Fig. 11. Given that XOR is composed of



four elements [2], the complexity of the circuit
in Fig. 11 is 281 of 2-input elements.
Computation process of the 16-bit Ling
Adder PPA (Fig. 11) uses the following logical
operations: XOR — 15, AND — 115, OR - 75,
Inventor — 31. The 16-bit adder PAA (Fig. 10)
uses: XOR — 15, AND - 80, OR - 61, Inventor —
20. Given the fact that the logic of the XOR
element uses four logical elements, including
Inventor, it is possible to estimate the quality
indicator S (for example, in terms of energy
saving) of operation of the 16-bit adder PAA
(Fig. 10), compared with the adder in Fig. 11:

T, 281

L,

221

=1.2715=27.15 %,

where Ty, Ty are the number of 2-input logi-
cal elements of the 16-bit Ling Adder PPA
(Fig. 11) and 16-bit PAA (Fig. 10), respec-
tively.

Quality indicator V in terms of compu-
tation performance of PAA (Fig. 10), com-
pared to the 16-bit Ling Adder PPA (Fig. 11)
makes up:

N, 1t

=1.1=10%,

N, 10

where Nj, Ny are the depth of the circuit of
16-bit Ling Adder PPA (Fig. 11) and 16-bit
PAA (Fig. 10), respectively.

The prefix 16-bit Kogge-Stone PPA [16,
17] with logical XOR elements in the last bit
is shown in Fig. 12. Taking into consideration
the depth of three XOR elements, complexity
of four elements [2], the depth of the 16-bit
Kogge-Stone PPA (Fig. 12) will be 11 typical
2-input logic elements, the circuit comple-
xity is 256 elements. One of the variants of
the depth of the circuit of the 16-bit Kogge-
Stone PPA in Fig. 12 is highlighted by bold
line, along which the numbering of logical
elements is accompanied by the figures, high-
lighted in red.

The computation process of the 16-bit
Kogge-Stone PPA (Fig. 12) uses such logical
operations: XOR — 15, AND - 115, OR - 65,
Inventor — 16. The 16-bit adder PAA (Fig. 10)
uses: XOR — 15, AND — 80, OR - 61, Inventor —
20. Considering that the logic of the XOR
element uses four logical elements, the quality
indicator S (for example, in terms of power
saving) of operation of the 16-bit adder PAA
(Fig. 10), compared with the adder in Fig. 12,
is as follows:

L 256 ssao15.84 %,
221

T,

where Ty, T, are the number of 2-input logi-
cal elements of the 16-bit Kogge-Stone PPA
(Fig. 12) and 16-bit PAA (Fig. 10), respec-
tively.
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Fig. 11. Prefix 16-bit Ling Adder PPA with depth of circuit of 11 typical
2-input elements [13—15]
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Fig. 12. Prefix 16-bit Kogge-Stone PPA with the depth of circuit of 11 typical 2-input elements [16, 17]

Quality indicator Vin terms of computation performance
of PAA (Fig. 10), compared to the 16-bit Kogge-Stone Adder
PPA (Fig. 12) is:

N, 11

== o11=10%,
N, 10

where Nj, N; are the depth of the circuit of the 16-bit Kogge-
Stone Adder PPA (Fig. 12) and of 16-bit PAA (Fig. 10),
respectively.

The prefix 16-bit Knowles PPA [18, 19] with logical XOR
elements in the last bit is presented in Fig. 13. Taking into
consideration that the depth of the XOR is three elements,
complexity is four elements, the depth of the 16-bit Knowles
PPA (Fig. 13) will make up 11 typical 2-input logic elements,
the circuit complexity is 256 elements. One of the variants
of the depths of the circuit of the 16-bit Knowles PPA in
Fig. 13 is highlighted in bold line, along which the numbering
of the logical elements is accompanied by the figures, high-
lighted in red.
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Fig. 13. Prefix 16-bit Knowles PPA with the depth of circuit of 11 typical 2-input elements [18, 19]

The computation process of the 16-bit Knowles PPA  (Fig. 10) uses: XOR — 15, AND - 80, OR - 61, Inventor — 20.
(Fig. 13) uses the following logical operations: XOR — 15,  Taking into consideration that the logic of the XOR element
AND - 115, OR - 65, Inventor — 16. The 16-bit adder PAA  uses four logical elements, quality indicator S (for example,



in terms of power saving) of operation of
the 16-bit adder PAA (Fig. 10), compared
to the adder in Fig. 13, is as follows:

s=Ti 2564 584-1584 %,
T, 221

where Ty, T, are the number of 2-input
logical elements of the 16-bit Knowles PPA
(Fig. 13) and of 16-bit PAA (Fig. 10), re-
spectively.

Quality indicator Vin terms of compu-
tation performance of the PAA (Fig. 10),
compared with 16-bit Knowles Adder PPA
(Fig. 13) is:

N0,
N, 10
where Ny, Nj are the depth of the circuit of
the 16-bit Knowles Adder PPA (Fig. 13)
and 16-bit PAA (Fig. 10), respectively.

The 16-bit Knowles Adder PPA (Fig. 13),
compared to 16-bit Kogge-Stone Adder
PPA (Fig. 12) has a smaller length of con-
necting tracks. The values of other parame-
ters of these adders are the same.

The prefix 16-bit Sklansky Adder [18,
20] with the logical XOR elements in the
last bit and the depth of the circuit of
12 typical 2-input elements is shown in
Fig. 14.

Circuit complexity in Fig. 14 makes up
204 2-input elements.

Quality indicator V in terms of calcu-
lation performance of the PAA (Fig. 10),
compared to the 16-bit Sklansky Adder
PPA (Fig. 14) makes up:

y=NM 12 40 0y,
N, 10

where Nj, N; are the depth of the circuit of
the 16-bit Sklansky Adder PPA (Fig. 14)
and of the 16-bit PAA (Fig. 10), respectively.

The prefix 16-bit Han-Carlson Ad-
der [18, 21] with the logical XOR ele-
ments in the last bit and the circuit depth
of 13 typical 2-input logical elements is
shown in Fig. 15.

The complexity of the circuit in Fig. 15
is 205 2-input elements.

Quality indicator V in terms of calcu-
lation performance of the PAA (Fig. 10),
compared to the 16-bit Han-Carlson Adder
PPA (Fig. 15) makes up:

V=&=§=1.3=30%,
N, 10
where Ni, N, are the depth of the cir-
cuit of the 16-bit Han-Carlson Adder PPA
(Fig. 15) and 16-bit PAA (Fig. 10), respec-
tively.

[e]]e]n] [o]~]e]-]

[e] = o]~]

[=]-]

L] =]

[o] = [e]~ ]

[e][=] [=]~]

[e]~] [=]~]

1] 513

=i
[=[=]

(] =]

=1| 514

(=] =]

. 14. The prefix 16-bit Sklansky PPA with the circuit depth

of 12 typical 2-input elements [18, 20]
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Fig. 15. Prefix 16-bit Han-Carlson PPA with the depth of circuit of 13 typical 2-input elements [18, 21]

The prefix of the 16-bit Ladner-Fischer Adder [18, 22] N, 14 .
with the logical XOR elements in the last bit and the depth V= N0 1.4=40%,
of the circuit of 13 typical 2-input logical elements is shown :
in Fig. 16. Complexity of the circuit in Fig. 16 is 190 2-in-
put elements. Quality indicator V in terms of computation ~ where Ny, Ny are the depth of the circuit of the 16-bit Lad-
performance of the PAA (Fig. 10), compared to the 16-bit  ner-Fischer Adder PPA (Fig. 16) and 16-bit PAA (Fig. 10),
Ladner-Fischer Adder PPA (Fig. 16) is: respectively.



The prefix 16-bit Brent-Kung Adder [17, 23] with the lo-  of 16 typical 2-input logical elements is shown in Fig. 17. The
gical XOR elements in the last bit and the depth of the circuit ~ complexity of the circuit in Fig. 17 is 187 2-input elements.
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Fig. 17. Prefix 16-bit Brent-Kung PPA with the circuit depth of 16 typical 2-input elements [17, 23]

Quality indicator Vin terms of computation performance
of PAA (Fig. 10), compared with the 16-bit Brent-Kung Ad-
der PPA (Fig. 17) is:

y=NM 1646 g0,
N, 10

where Nj, N, are the depth of the circuit of the 16-bit Brent-
Kung Adder PPA (Fig. 17) and of 16-bit PAA (Fig. 10),
respectively.

Quality indicators of the 16-bit acyclic adder (PAA)
(Fig. 10) and of the 16-bit prefix adders (PPA) (Fig. 11-17)
of performance are shown in Table 3.



Table 3 Thus, the architecture of the 16-bit acyclic adder (Fig. 10)
Quality indicators of performance of 16-bit acyclic adder shows the optimization of .the circuit parameters in terms of
— delays, area and power without compromises. That is, the
Parallel adder of binary codes with | Circuit quahltty mdlcatog structure of the specified adder has both the better compu-
parallel carry depth |° zlijccrc(l)irgzilrzlicro tation performance and less power consumption, compared
Y with the architectures of Ling Adder PPA, Kogge-Stone
PAA Fig. 10 | 10 - Adder PPA and Knowles Adder PPA which are the end case
Ling Adder PPA Fig. 11 11 10 % of a large list of circuits of addition of binary codes, each of
Kogge-Stone Adder PPA | Fig. 12 1 10 % which is unique for its property of minimal logical capacity.
Knowles Adder PPA Fig. 13 11 10 %
Sklansky Adder PPA Fig. 14 12 20 % 7. Discussion of results of application
Han-Carlson Adder PPA | Fig. 15 13 30 % of acyclic model of signal processing for synthesis
Ladner-Fisher Adder PPA | Fig. 16 14 40 % of 16-bit adders of binary codes
Brent-Kung Adder PPA | Fig 17 16 60 % Hardware complexity of an adder depends on the orga-

Considering Table 3, we see that the smallest depth of the
circuit of the 16-bit parallel adder with a parallel way of carry
belongs to the 16-bit acyclic adder.

Quality indicators of the acyclic adder compared with
prefix adders in terms of power consumption are shown
in Table 4. Here is the comparison of the 16-bit acyclic
adder (PAA) with the circuit depth of 10 logic elements
and the 16-bit prefix adders (PPA) with the circuit depth of
11 logical elements.

Table 4
Quality indicators of power consumption
of the 16-bit acyclic adder
Parallel adder of binary codes Circuit | Quality 1nd1cato.r of
ith parallel carry com- | power consumption
W plexity of acyclic adder
PAA Fig. 10 221
Ling Adder PPA Fig. 11| 281 27.15%
Kogge-Stone Adder PPA | Fig. 12| 256 15.84 %
Knowles Adder PPA Fig. 13| 256 15.84 %

Considering Table 4, we see that despite a smaller depth
(10 logic elements) of the parallel 16-bit acyclic adder,
compared with the depth of the circuit of the parallel 16-bit
prefix adders (11 logical elements), the lowest complexity of
the circuit belongs to the 16-bit parallel acyclic adder (PAA)
with the circuit depth of 10 logic elements.

nization of the computation process in its logical model. The
prefix model of calculation of the sum and carry signals is
shown in Fig. 18 [18].

Considering Fig. 18, we see that:

— the process of parallel computation of prefix starts with
lower bits of the adder circuit (this is actually the way (me-
thod) of the prefix), which will give in the end the excessive
accumulation and complication of the device hardware part;

—the adder circuit depth increases by the extent of an
increase in the magnitude of the adder bit, which eventually
will also give excessive accumulation and complication of the
device hardware part.

In turn, the application of the acyclic model is designed for:

— the process of sequential (for lower bits of the adder
circuit) and parallel (for the rest of the bits) computation of
the sum and carry signals, which allows decreasing the com-
plexity of the device hardware part and does not increase the
logical depth of the circuit;

— fixation (planning) of the adder circuit depth before its
synthesis. This makes it possible to use the logical structure
of transitive carry, which provides the optimal depth of the
adder circuit and does not increase its complexity. An exam-
ple of such a structure is shown in Fig. 7. The specified logi-
cal structure of transitive carry uses the sequential style of
relations of logical elements, so the circuit depth increases ra-
pidly. The maximal depth of the adder circuit can be reached
at lower bits. However, such process of synthesis decreases
the overall complexity of the hardware of the 16-bit digital
component, because the structure of transitive carry, like in
Fig. 7, is optimal by a number of their elements.

(15 14 13 12 11 10 9 8

|15:014:O13:012:011:010:0 9:0 8:0 7:0 6:0 50 4.0 3:0 2.0 1:0 0:0

Fig. 18. Prefix 16-bit Kogge Stone Adder [18]



Thus, the use of the acyclic model, compared with the
prefix model for the synthesis of the 16-bit circuits of adders
of binary codes makes it possible to increase the computation
performance by digital components. In particular, the se-
quential parallel principle of calculation of the acyclic model
and fixation (planning) of the depth of the adder circuit be-
fore its synthesis ensures the construction of the combining
parallel 16-bit adder with the circuit depth of 10 typical
2-input logical elements (Fig. 10). The analog of the specified
adder does not exist in the case of the circuit synthesis using
the prefix model.

Because the acyclic model demonstrates the 16-bit PAA
with the circuit depth of 10 typical 2-input logical elements
(Fig. 10), the analogue to which was not found for the struc-
ture of the PPA, the principle of enhancing the efficiency
of the computations of digital components moves from the
prefix to the acyclic model. And therefore, the prospect of
further research of digital circuits can be the reassessment of
the method of parallel expansion of the calculation process
in modern digital devices, re-assessment of the algorithms of
adding in the nanometer range, re-assessment of the struc-
ture of adders, implemented with memristors, etc.

The weak point of the considered technology of the syn-
thesis of the adder of binary codes is associated with small
practice of application of the acyclic model. Negative internal
factors that are inherent to the process of designing an adder
using the acyclic model are related to the need for additional
time costs of making the technological map and equipment of
the digital component.

8. Conclusions

1. The optimal logical structure that implements the con-
dition of transitive carry of unity to higher bits in the circuit
of the acyclic 16-bit adder of binary codes ensures the least
depth of the adder circuit. The specified logical structures are
shown in Fig. 6, 7, 9. Such structures make it possible to per-
form fixation (planning) of the adder circuit depth before its
synthesis, which eventually enables a decrease in the general
complexity of hardware of the digital component.

That is why the presented examples of logical structures
of transitive carry give grounds for the expediency of their
application in the processes of synthesis of arithmetic devices
for digital data processing, as these structures are able:

— to increase the computation performance in compari-
son with the analogues;

—to decrease power consumption and heat release of
a digital device and the integrated circuit.

2. It was found that the logical depth of the circuit of the
acyclic 16-bit adder, synthesized on 2-input logical elements,
compared to 8-bit acyclic adder [2] increases by two logical

elements. This is proved by the assumption that the protocol
of dynamics of increasing the depth of the circuit of the acyc-
lic adder, synthesized on 2-input logical elements is deter-
mined by a logarithmic dependence — doubling of bit size of
the adder circuit increases the logical depth of the circuit by
a constant magnitude — by two logical elements.

3. The effectiveness of the 16-bit acyclic adder with
logical XOR elements in the last bit is demonstrated by
the examples of the synthesized 16-bit parallel adders, bor-
rowed from the papers of other authors for the purpose of
comparison:

— for the circuit of the acyclic 16-bit parallel adder on
2-input elements with the circuit depth of 10 elements
(Fig. 10), the analogue of the PPA was not found;

— of the circuit of the prefix Ling Adder (Fig. 11) [13—15],
Kogge-Stone PPA (Fig. 12) [16, 17], Knowles PPA [18, 19]
(Fig. 13) and the circuit of the acyclic 16-bit parallel adder
with the circuit depth of 10 elements (Fig. 10). Power con-
sumption of the 16-bit adder PAA (Fig. 10), compared to
Ling Adder (Fig. 11) decreases by 27, 15 %; compared to the
adders Kogge-Stone PPA and Knowles PPA (Fig. 12, 13),
it decreases by 15.84 %. Performance of the 16-bit adder PAA
(Fig. 10), compared with Ling Adder (Fig. 11), Kogge-Stone
Adder (Fig.12), Knowles Adder (Fig. 13) increases by
10 %; compared with Sklansky Adder (Fig. 14) it increases
by 20 %, compared with Han-Carlson Adder (Fig. 15) it
increases by 30 %; compared with Ladner-Fisher Adder
(Fig. 16) it increases by 40 %; compared with Brent-Kung
Adder (Fig. 17) it increases by 60 %.

Despite the lower depth of the circuit of the 16-bit acyclic
adder (10 logic elements, Fig. 10), compared with the circuit
depth (11 logical elements) of parallel 16-bit prefix Ling Ad-
der PPA (Fig. 11), the Kogge-Stone Adder PPA (Fig. 12) and
Knowles Adder PPA (Fig. 13), the lowest circuit complexity
belongs to the 16-bit parallel acyclic adder with the circuit
depth of 10 logic elements. Thus, the 16-bit acyclic adder
(Fig. 10) in terms of delay, area and power demonstrates the
optimization without compromises. That is, the specified ad-
der has both better computation performance and less power
consumption compared to the architectures of Ling Adder
PPA, Kogge-Stone Adder PPA and Knowles Adder PPA.
The dynamics of increasing the circuit depth of the acyclic
adder (PAA), synthesized on 2-input logical elements, shown
in Fig. 2, is a tool to control the synthesis of parallel acyclic
adders of binary codes.

Taking into account the specified examples of the parallel
16-bit adders, the acyclic model gives grounds for feasibility
of its application in the processes of synthesis of 16-bit arith-
metic devices of digital data processing, as these circuits can:

— enhance performance;

— decrease power consumption and heat release by a digi-
tal device and an integrated circuit.
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