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Багато фізичних процеси і явища, з огляду на свою склад-
ність, не можуть бути описані аналітично. У таких випад-
ках застосовують емпіричне моделювання. Для побудо-
ви емпіричних моделей оптимальної складності, яка має 
вигляд полінома заданого степеня, в роботі використаний 
метод, в основі якого лежить генетичний підхід. Реалізація 
розробленого методу вимагає багаторазового розв’язуван-
ня системи лінійних алгебраїчних рівнянь. Розв’язування 
системи лінійних алгебраїчних рівнянь здійснюється шля-
хом приведення відповідної матриці до верхньої діагональної 
форми з одиницями на головній діагоналі. Аналіз алгорит-
му приведення матриці до верхнього діагонального вигляду 
показав, що така процедура володіє внутрішнім паралеліз-
мом. На основі створеної моделі обчислювального проце-
су у вигляді мережі Петрі розроблено стратегію побудови 
паралельного алгоритму для розв’язування системи ліній-
них алгебраїчних рівнянь. Суть стратегії в тому, що обчис-
лення здійснюються на декількох паралельних процесорах. 
Одному з них присвоєні координуючі функції, і він названий 
майстром. Інші процесори – робітники – знаходяться в під-
порядкуванні майстра. Поділ обсягу обчислень такий, що 
кількість рядків матриці, з якими оперує майстер, більша 
не менше ніж на одиницю, за відповідну кількість рядків, 
відведених робітникові. Для запропонованої стратегії оці-
нена ефективність паралельного алгоритму за критерієм 
сумарної кількості арифметичних операцій. Запропонована 
стратегія є складовою частиною процесу синтезу емпірич-
ної моделі оптимальної складності на основі генетичних 
алгоритмів. Поділ обчислювального навантаження між 
паралельно працюючими процесорами (майстром і робо-
чими) забезпечує прискорення обчислювального процесу 
в п’ять і більше разів
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1. Introduction

If there are comprehensive data about a certain system 
(object), it is possible to obtain a model that will adequately 
predetermine the behavior of such a system at assumptions and 
at specified parameters of the environment the system interacts 
with. Such models are called deterministic and are used to solve 
a variety of problems in different areas of human activity.

In most cases, systems (objects) are rather complicated, 
because there are many components that interact in complex 
ways. An example of such systems can be both technical and 
environmental objects [1, 2]. Empirical modeling is used in 
order to describe the interaction between the parameters of 
the system and the environment that directly influences the 
system and causes a change in its state. Mathematical models 
obtained as a result of empirical modeling are widely used for 
solving such problems as recognition of objects, prediction, 
automatic classification, and optimal control.

In paper [3], the method for synthesis of models of opti-
mal complexity based on the principles of genetic algorithms 
was developed. Implementation of the method showed that 
determining the structure and parameters of the model re-
quires using significant computational resources. That is why 
development and studying a parallel algorithm using a Petri 

net with the view to accelerating the computational process 
is a relevant scientific problem.

2. Literature review and problem statement

At present, to construct empirical models, one uses such 
methods as the classical least squares method (LSM), the 
Bayesian approach, the method of supporting vectors and the 
method of non-parametric nuclear estimation.

According to LSM, having the structure of a model, it 
is necessary, using observation of both input and output va-
riables, to determine the parameters of the model by the best 
approximation method, in the capacity of which the sum of 
squares of deviations of experimental data from calculation 
data is used. The specified criterion is internal [4] and its 
application leads to a controversial result: the more complex 
the model, the more accurate it is. As a rule, an observed 
output magnitude of an object is overlapped by an obstacle, 
which distorts an actually existing functional dependence 
between the input and output of an object.

The authors of papers [4, 5] use an external addition, 
which is a certain part from the obtained sample of expe-
rimental data in order to select the best model from the  
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assigned class of models (as a rule, regressive). The method 
for selection of the best approximation by external addi-
tion was called the inductive method of self-organization  
of models. 

Regarding the problem of synthesis of an empirical mo-
del, the use of an external criterion gives an opportunity to 
select unambiguously the structure of the model from the 
assigned class of models.

An implementation of inductive method of self-organiza-
tion of models requires significant computational resources. 
That is why in order to reduce such consumption of resour-
ces, the method for selection of the structure of a model from 
the assigned class of models based on the ideas of genetic 
algorithms was proposed in paper [3]. In this case, it was 
possible to reduce considerably the consumption of computer 
time, although this consumption is still quite high.

Currently, the possibilities of increasing the effectiveness 
of computational processes due to increasing the clock fre-
quency of processors are almost exhausted or economically 
inappropriate. One of the ways to solve the problem of in-
creasing the effectiveness of the computational process is its 
parallelization [6, 7].

Development of parallel computations led to the emer-
gence of a series of scientific works [7–9], where the parallel 
algorithms of solving the problems that require a significant 
amount of computer time were developed. The examples in-
clude the problems of digital filtering, assessment of the qua-
lity of functioning of complex dynamical systems, solution of 
systems of linear equations with rarefied matrices. Paper [10] 
gave the estimation of efficiency of parallel computational 
processes in solving the above tasks, based on the condition 
that the processors are loaded evenly. This situation occurs 
very rarely. Generally, the distribution of matrix blocks 
between processors is uneven. Thus, during the synthesis 
of empirical models of optimal complexity, the problem of 
development of the algorithm and studying its effectiveness 
for the case where computational powers are unevenly dis-
tributed between processors is unresolved.

3. The aim and objectives of the study

The aim of this study is to develop a parallel algorithm 
for the synthesis of empirical models of optimal complexity, 
which will make it possible to achieve the acceleration of the 
computational process compared to linear computations.

To accomplish the set aim, the following tasks were set:
– to algorithmize the problems of synthesis of empirical 

models of optimal complexity on the principles of genetic 
algorithms; 

– to develop the strategy of interaction of parallel proces-
sors using Petri nets; 

– to assess the effectiveness of the developed parallel 
algorithm for synthesis of empirical models of optimal com-
plexity.

4. The empirical polynomial model of optimal complexity 
based on genetic algorithms

The method for construction of empirical models based 
on genetic algorithms, like the methods of group accounting 
of arguments (MGAA) is based on external criteria for regu-
larity and shifting [5]. 

The use of the external criteria assumes that the sample 
of experimental data is split into two parts – learning NA and 
checking. Learning set NA is used for determining the pa-
rameters of the model, which in most cases has a polynomial 
structure:
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where n is the number of independent variables (input mag-
nitudes), on which the value of output of research object 
depends; ai , i M= −0 1,  is the coefficients of the model (1); 
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The number of terms in polynomial model (1) is calcu-
lated from formula [6]:
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The empirical model (1) that is optimal in relation to the 
structure is selected on test set NB by regularity criterion [5]:
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where y Ai( )( ) and y Bi( )( ), i N NA B= 1, ( ) are the values 
of output of model (1), computed on sets NA and NB; 
Y B i Ni

A
( )( ), ,= 1  are the experimental values of the output 

magnitudes, referred to the set NB; Y i Ni( ), ,= 1  is the sam- 
ple of data on observations of original magnitude Y.

In contrast to the algorithms of MGAA, where the basic 
functions in the form of regresses are included in the mo-
del (1) by the sort-out procedures, in the method of synthesis 
of empirical models of optimal complexity based on genetic al-
gorithms (GA-method), the selection of the regressions of the 
model (1) is carried out using the mechanisms of natural selec-
tion based on the criteria of selection (4) or (5). This approach 
implies the creation of an orderly sequence of unities and zeros. 
If unity is in the i-th place (ai ≠ 0), the i-th regress is included 
in model (1). In the case when the i-th regression is discarded 
(ai = 0), zero will be in the i-th place. Such an orderly sequence, 
the elements of which are unities and zeros, in the theory of 
genetic algorithms is called a chromosome and its atomic ele-
ment is gene. The set of chromosomes forms a population. Now 
the task of synthesis of empirical models of optimal comple-
xity can be stated in terms of genetic algorithms. Sequentially 
choosing the «best» chromosomes from the entire population, 
it is necessary to find the one, for which the fitness function (4) 
or (5) will take minimum values. The chromosome chosen in 
this way will determine the structure of the empirical model, 
which will be optimal in the class of models (1).
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Formally, the algorithm of the GA method can be descri-
bed as follows:

GA I CP SA SE NP= , , , , .  (6)

A tuple of operators (6) determines the sequence of their 
execution. 

Operator I randomly generates the initial population with 
I individuals, each of which is a chromosome of length M. 

Today, there are no theoretical prerequisites for choosing 
the number of chromosomes I in the population [11–13]. 
At a small number of chromosomes in the population, the 
algorithm quickly finishes its work and there is a danger that 
the fitness function reaches its minimum value. An increase 
in the number of chromosomes in a population causes an 
increase in computer time for implementation of the genetic 
algorithm. That is why value I is chosen following intuition 
of a researcher and based on the machine experiments.

Operator CP evaluates the adaptability of a chromosome 
in the population. For each chromosome, the criterion of 
selection (4) or (5) is calculated as follows: The original ma-
trix F, the elements of which are regresses of coefficients ai , 
i M= −0 1, , calculated on the set of values of the vector of 
input variables of an object, is divided into two separate ma-
trices FA and FB of sizes NA × M and NB × M, The i-th column 
is removed from matrices FA and FB, if there is zero on the 
i-th position of the chromosome; if there is unity, the cor-
responding column remains unchanged. As a result, we ob-
tain matrices FA and FB , from which c columns (according to 
the number of zeros in the chromosome) were removed.

The size of such matrices – NA × (M–c) and NB × (M–c).  
On the set of points NA, non-zero coefficients aAj, j M c= − −0 1, 

j M c= − −0 1,  of model (1) are calculated by solving normal 
Gaussian equation:

 M a F YF A A A A, ,= T  (7)

where a a a aA A A A M c= − −( , , , ),0 1 1

T is the vector of non-zero  
parameters of the model, which is associated with the 
next chromosome;   M F FF A A

T
A, =  is the Fisher matrix; Y Y Y YA

N A= ( , , , )( ) ( ) ( )1 2
 

Y Y Y YA
N A= ( , , , )( ) ( ) ( )1 2

  is the vector of experimental values of 
the object output on set NA.

Depending on what criterion of selection (4) or (5) will 
be used, by the derived coefficients aAj, j M c= − −0 1,  of the 
polynomial model (1) on the set of points NA and NB, the 
value is calculated:

y A F aA A( ) =   (8)

or 

y F aB A( ) .B =   (9)

Knowing y A( ) or y( ),B  the value of fitness func-
tion Δ j A B2( , )  or Δ j

2( ),B  j I= 1,  is calculated for every chro-
mosome from the original population from formula (4) or (5).

Operator SA checks the conditions of finishing the work 
of the algorithm of the GA-method. For each chromosome 
from the formed population I, selection criterion (4) or (5) 
is calculated. The selection of the best chromosome from 
population I, which will determine the structure of the em-
pirical polynomial model of optimal complexity, is carried out 
according to the following rule. One determines:

Δ Δm j j
2 2( ) min ( )B B=  (10)

or

Δ Δm j jA B A B2 2( , ) min ( , ),=  j I= 1, .  (11)

If the minimum value (10) or (11) of the selection crite-
ria (4) or (5) does not exceed an assigned value, computation 
stops. Computation can be stopped if, as a result of the algo-
rithm implementation, there is no significant decrease in the 
fitness function or when the assigned number of iterations 
are performed. 

After satisfaction of one of the three conditions, chromo-
some ch*, for which the condition (10) or (11) is satisfied, 
is chosen from the next population. This chromosome as-
signs the structure of the model of optimal complexity and 
forms matrix F* in such a way that the columns, which are 
associated with zero values of the corresponding genes of 
chromosome ch*, are removed from the original matrix F. 
Recalculation of parameters of model (1) is carried out on the 
entire set of points using the LSM.

When none of the enumerated three conditions is met, 
the execution of the next operator SE takes place. 

Operator SE carries out the selection of chromosomes. By 
calculated values of fitness function, operator CP performs 
selection from population I of those chromosomes that will 
participate in the creation of descendants for a new popula-
tion. Such selection is carried out according to the principle 
of natural selection, where the chromosomes with the best 
values of fitness function (4) or (5) have the best chances 
for creation of a new population. The most common method 
for selection is the roulette method and the tournament me-
thod [11]. The roulette method can be used when the fitness 
function is positive, which makes it suitable only for maximi-
zation problems. The tournament method can be used both in 
maximization problems and in minimization problems.

During tournament selection, all chromosomes are divi-
ded into sub-groups of z0 individual each. The best chromo-
some according to the selection criterion (4) or (5) is chosen 
from each subgroup. As a result, we obtain a new population 
of chromosomes, which forms the parent pool I(k). The num-
ber of individuals I in the population remains unchanged. 
Subgroups can have an arbitrary size, but most often the 
population is divided into subgroups of 2–3 individuals each. 

The number of chromosomes, which is generated by ope-
rator I must be multiple of the number of individuals z0 in 
the subgroups. This algorithm used the tournament method.

Operator NP generates new population of descendants 
from the chromosomes selected by operator SE. A new 
population of chromosomes is generated using the process 
of crossover and mutation. The probability of crossover Ph 
is selected from the interval [0.5; 1] and the probability of 
mutation is within [0; 0.1].

Each chromosome selected by operator SE, which belongs 
to the parent pool, is subject to the crossover process. To do 
this, a pair of chromosomes is selected randomly from the 
population of individuals. Random number Pc is generated 
from the interval [0.5; 1] and if its value does not exceed Ph, 
the pair of chromosomes is subject to crossover. Otherwise, 
a pair of chromosomes remains unchanged. If there is cross-
over of chromosomes, the position of a gene (locus), which 
determines the point of crossover, is played for each pair. 
The chromosome of each parent has M genes and the point of 
crossover Lc is a natural number smaller than M. That is why 
the fixation of the point of crossover is reduced to a random 
choice of integer Lc from the interval [1, M–1].
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The crossover process results in creation of a new pair of 
chromosomes from a pair of parents. The first descendant in 
the pair of chromosomes on positions from 1 to Lc consists 
of genes of the first parent, and on positions Lc+1 to M – of 
the genes of the other parent. The second descendant in the 
pair of chromosomes on positions from 1 to Lc consists of the 
genes of the second parent, and on positions Lc+1 to M – 
from the genes of the first parent. 

The probability of mutation Pm can be assigned by se-
lection of a random number from the interval [0; 1] for each 
gene. The genes, for which the played number is less than or 
equal to Pm, are subject to mutation (by replacing unity with 
zero and vice versa). Mutation can be carried out both over a 
pool of parents and the pool of descendants.

After execution of operator NP, there is transition to ope-
rator CP. 

Implementation of the algorithm of the GA-method [2] sho-
wed a significant gain in time compared to the sort-out MGAA  
algorithm, although at increased dimensionality of a problem, 
computer time consumption to implement it increases.

5. Studying the algorithm of synthesis of the empirical 
model of optimal complexity using a Petri net

Analysis of the algorithm of GA-method showed [14] 
that the parallel form, which, along with other operations, 
includes the operation of solution of normal Gauss equa-
tion (7), corresponds to the value of fitness criterion (4)  
or (5), which is calculated for each chromosome. The dimen-
sionality of the latter is determined by power of polynomial 
(1) and by the number of input variables. 

Thus, in paper [15], the empirical model (1), in which 
n = 7  and m = 4, was synthesized In accordance with for-
mula (3), the maximum number of model parameters (1) 
M = 330. Such a large number of parameters lead to the fact 
that the solution of equation (7) (especially at the final stages 
of the algorithm operation) will require additional consump-
tion of computer time.

It is possible to reduce consumption of time to implement 
the algorithm of the GA-method if we parallelize additionally 
the Gaussian algorithm of the solution of the system of linear 
algebraic equations (7) in each parallel form. 

Normal equation (7) will be written down in the fol-
lowing form:


Aa bA = ,  (12)

where  A MF A= , ;  b F YA
T

A= .
Equations (12) will be solved using the method of 

Gaussian exception, reducing extended matrix A A be = [ ]
  

to the upper diagonal form according to the following for-
mulas [16]:
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In formula (13) aii

i( )−1  is called the leading element.
In the computational process, the cycle by index k is in-

ternal in relation to the external cycle by index i. The result 

of applying iterative procedures (13) and (14) is the upper 
diagonal matrix with unities on the main diagonal:
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where u ai j i j
i= ( ), i M c= −1, , j i M c= + − +1 1, .

Thus, equation (12) is converted into the equivalent sys-
tem of linear algebraic equations:

U a bA A= ,  (15)

where U  is the square matrix of dimensions of M–c, formed 
from the matrix by withdrawal of the last column; bA,i = 
= ui,M–c+1, i M c= −1, .

Equation (12) is solved by the method of reverse run, 
starting with the last equation. It is clear that:

a bA M c A M c, , .− −=  (16)

Other values of aA are calculated by the iterative pro-
cedure:

a b u aA i A i i j A j
j i

M c

, , , ,= −
= +

−

∑
1

 i M c= − −1 1, .  (17)

Unlike the classical Gaussian method [17], in the process 
of reducing the system of equations (12) to the form of (15), 
there is no operation of division by uii to calculate aA. As it is 
known, execution of the division operation takes more com-
puter time compared to other algebraic operations. So, cal-
culation of parameters of model (4) by recurrent ratios (16)  
and (17) gives tangible savings of computer time compared 
with the classical Gauss method.

All the above is also true for the LU-method, according to 
which matrix A  is represented as the product of two matri-
ces L and UR. The former is the lower diagonal with unities 
on the main diagonal, and the latter is the upper diagonal 
matrix. Then triangular system L bAγ = , U aR A = γ  are solved 
by direct and reverse run. 

Because, in the process of solving equations (12), most 
computer time is consumed for reducing matrix Ae to upper 
diagonal form, it is appropriate to parallelize the correspon-
ding algorithm in order to reduce these costs.

Let us assume that there are q parallel processes. One of 
them, called the master, performs the function of control of  
a parallel computing process. Other q–1 processes (slaves) 
are subordinated to the master.

The essence of the algorithm of parallelization is that at 
every computation step, the matrix, which is in the workspace 
of the master, is split into q sub-matrices with further compu-
tation of the values of their elements from formulas (13) and 
(14). As a result, sub-matrix A, which is located in workspace 
of the master, is reduced to the upper diagonal form with uni-
ties on the main diagonal. At the same time with the master, 
the slaves recalculate the elements of their sub-matrices from 
formula (14), and after finishing another cycle of computa-
tions forward them to their master. The master unites the 
sub-matrices received from the slaves into a single matrix 
that will be called a joint matrix and denoted as AU

i( ), i = 1 2, ,
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Let us choose the procedure of dividing the joint ma-
trix AU

i( ), which is in workspace of the master, into separate 
sub-matrices. Let us assume that at each stage of calculation, 
the rows of joint matrix AU

i( ), i = 1 2, , are divided into num-
ber q without residue. 

Before the first phase of computation, we will divide ma-
trix A AU e

( )1 =  into q equal parts. Then all q sub-matrices will 
have the same number of rows:

n z q1 = ,  (18)

where z = Ae.
After the end of the first stage of computation, the num-

ber of rows of the joint matrix AU
( )1  got decreased by magni-

tude n1.  That is why joint AU
( )2  with the following number 

of rows: z z n1 1= −  .  will be in the workspace of the master.
Taking into account value n1,  which is determined from 

formula (18), we will get:

z z
z
q

z
q

q1

1
= − =

−
.

At the beginning of the computation stage 2, the master 
divides joint matrix AU

( )2  again into q equal parts, which leads 
to the following result: n z q2 1= .

Considering value z1, we will obtain:

n z
q
q2 2

1
=

−
.  (19)

The result of finishing computation cycle 2 will be joint 
matrix AU

( )2  with z2 rows z z n n2 1 2= − −  .
With regard to values n1  and n2,  which were determined 

from formulas (18) and (19), we will obtain:

z z
q

q2

2

2

1
=

−( )
.

At the beginning of computation stage 3, the master again 
divides joint matrix AU

( )3  with number of rows z2 into q equal 
parts. As a result of such division in workspace of the master 
and slaves, there will be sub-matrices with the number of rows:

n z
q

q3

2

3

1
=

−( )
.  (20)

After completion of computation stage 3, we will obtain 
matrix AU

( )4  with the number of rows: z z n n n4 1 2 3= − − −   . Ta-
king into account n1, n2 and n3, we will obtain: 

z
z

q
q4 3

31= −( ) .

If we divide matrix AU
( )4  into q equal parts, 

n
z

q
q4 4

31= −( ) .  (21)

Continuing the process of dividing the joint matrix after 
finishing the r-stage of calculations, we will obtain matrix 
AU

r( )  with the following number of rows:

z
z

q
qr r

r= −( ) .1

To continue the operation of the algorithm on the r+1 cyc-
le, the master divides matrix AU

r( )  into q equal parts, so that:

n
z

q
qr r

r= − −( ) ,1 1  r N z= −1 1, ,  (22)

where Nz the total number of computation stages.

In general case, the values of nr , r N z= −1 1,  are non-na-
tural numbers.

For each of q–1 workplaces, the capacity of each part 
(the number of rows) of the joint matrix AU

r( ), r N z= −1 1,  will 
be determined as a integer part of number nr , r N z= −1 1, . So,

n
z

q
qw r r

r
, ( ) ,= −











−1 1  r N z= −1 1, ,  

where [·] is the integer part of the number.
The number of rows nf,r of the sub-matrix which is in 

workspace of the master, will be calculated as the diffe-
rence between the number of rows zr , r N z= −1 1,  of joint  
matrix AU

r( ) and the number of rows, which were totally dele-
gated by q–1 slave:

n z n qf r r w r, , ( ),= − −1  r N z= −1 1, .  (23)

If in the process of such division of joint matrices AU
r( ) it 

will appear that nf,r < nw,r, then nw,r will gradually decrease by 
unity until the condition is satisfied:

n nf r w r, , .≥  (24)

In this case, after each such decrease, the value of nf,r is 
calculated from formula (23).

Bearing in mind the requirement (24), the number of 
rows in the sub-matrix that is in the workspace of each slave 
will be calculated from formula:

n
z

q
q vw r r

r
r, ( ) ,= −









 −−1 1  r N z= −1 1, ,  (25)

where vr  is the number of unities, by which magnitude nw,r 
decreased and other condition was met (24).

As a result of the chosen strategy of splitting joint ma-
trices, the sub-matrices with the number of rows nf,r , will be 
located in the workspace of the master, and each slave will 
get the sub-matrix with the number of rows nw,r. The values 
of nf,r and nw,r are calculated from formulas (23) and (25) on 
condition that inequality (24) is satisfied. 

Division of the joint matrices by the master continues 
until the size of the next layer that should be sent will not be 
larger than the number of processes:

z qs ≤ .  (26)

Then nf,s = zs, and in the workspace of each slave nw,s = 0.
Condition (26) determines the end of the process of re-

ducing the original matrix Ae to the upper diagonal form with 
unities on the main diagonal. 

After satisfying condition (26), the master reduces 
the remaining sub-matrix to the upper rectangular form 
with unities on the main diagonal. The final step is to 
unite all sub-matrices that were saved in the workspace  
of the master. 

Let us evaluate the number of computational stages Nz, 
needed to implement the algorithm of reducing matrix Ae to 
the upper diagonal form with unities on the main diagonal. 

Let us assume that at the last stage of run of the computa-
tional algorithm, condition (26) will be the following:

n qf s, .=  (27)

Capacity zr of joint matrix AU
r( ) at each stage of compu-

tation decreases by magnitude nf, j. That is why at the r-th 
computation stage we will obtain:
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z z n n n z nr f f f r f j
j

r

= − − − − = −
=

∑1 2
1

 , , .  (28)

After completing the Nz–1 stage of computations, capa-
city of joint matrix AU

N z( ) will be nf,s. Based on condition (27) 
and formula (28), we obtain:

n z nf s f j
j

N z

, , .= −
=

−

∑
1

1

Since there is assumption (27), then:

z n qf j
j

N z

− =
=

−

∑ , .
1

1

 (29)

In accordance with the chosen strategy of splitting the 
joint matrix into q sub-matrices, between powers of sub-ma-
trices of the master and each of the slaves, ratio (25) is true, 
based on which it can be argued that:

n n Rf j w j j, , ,− =  j N z= −1 1, ,  (30)

where 0 ≤ Rj ≤ q is an integer.
Powers of sub-matrices that are in the workspace 

of slaves will be represented as a whole part of number 
z

q
qj

j( ) ,− −1 1  taking into consideration that condition (25) 

should be satisfied:

n
z

q
q r vw j j

j
j j, ( ) ,= − − −−1 1  (31)

where 0 ≤ rj < 1 is the discarded fractional part of number nj .
In follows from formulas (30) and (31) that:

n
z

q
qf j j

j
j, ( ) ,= − +−1 1 δ  (32)

where δ j j j jR r v= − +( ), j N z= −1 1, .
Substituting the obtained value nf, j in formula (29), we 

will obtain:

z
q

q qj
j

j

N z

1
1

1 1

1

1

− −






− =−

=

−

∑ ( ) ,Δ

where Δ =
=

−

∑ δ j
j

N z

1

1

.

Expression in the brackets will be represented in the 
following form:

1
1 1

1

1

1

−
−





−

=

−

∑q
q

q

j

j

N z

.

Magnitude 
q

q

j

j

N z −





−

=

−

∑ 1
1

1

1

 is the sum of geometric pro-

gression, in which the first term is unity, and denominator 
is (q–1)/q; the number of terms of geometric progression  
is Nz–1. After calculating the sum of the geometric progres-
sion, we obtain:

1
1 1 1

1

1

1 1

−
−





=
−





−

=

− −

∑q
q

q
q

q

j

j

N N
z z

.

The calculated value of the sum allows us to write down 
formula (32) as follows:

z
q

q
q

N z−





− =
−

1
1

Δ .  (33)

From ratio (33), we will determine the number of stages 
to complete in order to reduce matrix Ae to the upper dia-
gonal form:

N
q

z
q

qz = + +





−





1
1

ln ln
Δ

.  (34)

Value of Nz also takes into account the last stage, which 
will take place after satisfaction of condition (26). At the 
final stage, the master reduces the last part of matrix Ae to 
the upper diagonal form, and slaves have already finished 
their work.

 Formula (34) determines the number of stages required 
to complete the work of the algorithm with a certain error. 
The error occurs because the work of the algorithm ends 
when at the last computation stage, the matrix of capacity q  
will be united in the workspace of the master. In fact, the 
algorithm stops running after condition (26) is satisfied.

Fig. 1 shows the result of determining the number of cal-
culation stages necessary to reduce matrix Ae to the upper dia-
gonal form. The following input data were used: dimensions 
of square matrices A i ie( ), ,= 1 8  were formed as a vector – 

z = [ ]10000 8000 6000 4000 2000 1000 500 300       ;  

the number of processors q = 6. For each matrix A ie( ), i = 1 8, . 
The number of stages was calculated from formula (34) and 
the number of stages as a result of satisfaction of condi-
tion (26) was recorded. 

 
Fig.	1.	Result	of	the	computation	experiment

Fig. 2 helps visualize the distribution of capacities of 
sub-matrices of the master and of the slaves when completing  
the i i, ( , )= 1 8 -th computation stage. It shows that condi-
tion (26) was always satisfied, and the following original 
data were used in this case: z = 300; q = 6.

To assess the effectiveness of the computational process, 
first and foremost, we need the working model that ade-
quately characterize the structural and dynamic properties  
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of the process and reflect the parallelism of the algorithm of 
reducing matrix Ae to the upper diagonal form. 

 
Fig.	2.	Distribution	of	capacities	of	sub-matrices		
of	the	master	and	of	slaves	by	calculation	stages

The Petri nets [18, 19], which adequately reflect the in-
teraction of the basic parts of the process and the information 
exchange between them, became widely used in modeling 
parallel computational processes. 

Fig. 3 shows the Petri net, which is the model of the 
computational process of reducing matrix Ae to the upper 
diagonal form.

Position ps contains the marker that activates transition ts,  
causing the completion of calculation stage 1. Position pA

( )0  is 
identified as the process of sending sub-matrices A i

0
( ), i q= −1 1,   

by the master to the slaves. Sub-matrices A i
0
( ), i q= −1 1,  have 

identical sizes and the number of their rows is determined 
from formula (25). Sub-matrix A0

0( ) of the size of nf1 × (M–c+1)  
remains in the workspace of the master, where the number of 
rows of the sub-matrix is calculated from formula (23).

Subsequently, computations will be performed like at 
stage 1. After the k-th step of calculations, sub-matrix Ak

( )0  
with the number of rows, calculated from formula (23), will 
be in the workspace of the master, and sub-matrices Ak

i( ), 
i q= −1 1,  will have the size nw1 × (M–c+1), in which the 

number of zero columns P nw k f k
j

k

, , .=
=

∑
1

 After calculation by  

the master of the components of vector ak• and sending  
out their values to slaves, transitions ti

k , i q= −0 1,i q= −0 1,  are activa-
ted. Transformation of sub-matrices Ak

i( ), i q= −1 1,  on the k-th 
step of calculations is modeled by positions pk

i( ),  i q= −1 1, .
Completion of computation stage 1 occurs on condition 

that the master reduced his matrix Am
( )0  to the upper diag-

onal form. Then matrices Am
i( )  are united into joint matrix:

A AU
i

q

m
i( ) ( ),1

1

1

=
=

−



which is mapped by position psum.
Positions pD, pc and pf generate the conditions to com-

plete the work of the algorithm of reducing matrix Ae to the 
upper diagonal form 

Position pe has a constant marker. Transition tsz will 
work in the case when the number of rows of sub-matrix Am

s( ), 
which was reduced to the upper diagonal form (a maker will 
appear in position psz), will not exceed the value of q. After 
that, all sub-matrices that are in workspace of the master are 

joint to matrix U (position pU) and the process of reducing 
the matrix to the upper diagonal form is completed. 

In case condition (26) is met, transition tF is activated. 
A marker appears in position pc, which leads to the start 
of transition tsum and, as a result, the marker transfers to 
position ps.

Fig.	3.	Modeling	the	algorithm	of	reducing	the	matrix		
to	the	upper	diagonal	form	using	a	Petri	net

In the process of reducing the original matrix Ae to the up-
per diagonal form, the master and slaves work in parallel, with 
the ratio of (25). The time consumed to solve the original 
problem will be determined by the number of arithmetic ope-
rations, performed by the master and slaves, both at each stage 
of computation, and on the whole until the problem is solved. 

For the case where distribution of computational load 
between the master and the slaves ae arbitrary, the problem 
of finding the number of arithmetic operations at each step of 
the algorithm is solved in [20].

At first, we will calculate the number of operations at 
each step of the computation executed by the master, assu-
ming the number of rows of the sub-matrix in the workspace 
of the master are calculated from formula (23).
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Execution of the operation of normalizing the first raw 
(Fig. 3) of sub-matrix A0

0( ) according to formula (13) by the 
master demands z = M with division operations (diagonal 
elements of sub-matrix A0

0( )  are assigned the value of unity. 
(nf1–1)z operations of multiplication and (nf1–1)z operations 
of subtraction will be executed to enumerate the elements in 
the rest nf1 rows of sub-matrix A0

0( ) from formula (14). The 
total number of operations performed by the master at stage 
1 made up Nf1 = (2nf1–1)z.

As a result of completion of computation step 1, original 
sub-matrix A0

0( ) is modified to sub-matrix A1
0( ), in which the 

first column contains zero elements, except for the first one, 
which is equal to unity. Sub-matrices A i

0
( ), i q= −1 1, ,  that 

are in workspaces of slaves will be transformed to sub-matri-
ces A i

1
( ),  i q= −1 1,  with zero columns.

At computation step 2 (Fig. 3), the master normalizes 
the second row of sub-matrix A1

0( ) , after executing z–1 ope-
rations of division. Other rows of matrix A1

0( ) are recalcula ted 
from formula (14). In this case, (nf1–2)(z–1) operations of 
multiplication will be performed and the same number of 
operations of subtraction. So, at calculation stage 2, the mas-
ter will execute Nf2 = 2(nf1–2)(z–1)+(z–1) = 2(nf1–3)(z–1) 
arithmetic operations. In this case, modified matrix A2

0( )  will 
be obtained (Fig. 3). 

At computation stage 3, the master norms the third row 
of matrix A2

0( ) (Fig. 3), having executed z–2 operations of 
division. Starting from the fourth row, the master enume-
rates all the elements of sub-matrix A2

0( )  by formula (14),  
spending the following number of operations of division, 
multiplication and subtraction: Nf3 = 3(nw1–5)(z–2). As  
a result, modified matrix A3

0( )  will be in the workspace of the 
master (Fig. 3).

Generalizing the obtained results, it is possible to argue 
that at the k-th computation step, the master will execute the 
following number of operations of multiplication, division, 
and subtraction. 

N n k z kf k f1 12 0 5 1, (( ) . )( ).= − + − +  (35)

Stage 1 of parallel computations is over when condition 
k = nf1, is satisfied, i. e., in formula (35) k nf= 1 1, .

Thus, after computation stage 1, we will obtain the upper 
rectangular matrix Anf 1

0( ) with unities on the main diagonal 
in the workspace of the master. The size of such matrix  
is nf1 × (z+1).

After uniting q–1 sub-matrices by the master, sub-ma-
trices Anf 1

0( )  and united matrix AU
( )1  (Fig. 3), in which there 

are nf1 zero columns, will be stored in its memory. The size  
of the latter is (z–nf1) × (z–nf1+1).

The master splits the united matrix AU
( )1  into q layers 

according to formulas (23) and (25). Sub-matrices AΣ ,
( )

1
0  with 

nf2 rows will be in the workspace of the master, and slaves 
will obtain sub-matrices AΣ ,

( ),1
1  each of which will have nw2 

rows that are calculated from formula (25) at r = 2.
The number of operations of division, multiplication, 

and subtraction, which the master executes at step 2 of the 
algorithm run will be calculated using formula (35), given 
that the number of nonzero columns of the sub-matrix, loca-
ted in the workspace of the master is equal to z–nf1+1. This 
means that in formula (35), it is necessary to substitute z 
with z–nf1, and nf1 with nf2. As a result of such substitution, 
we will obtain:

Nf1,k = 2((nf2–k)+0.5)(z–nf1–k+1).

The second stage of calculations will finish when condi-
tion k = nf2.is satisfied.

After completion of calculation stage 2, rectangular 
matrix A A AU

nfΣ Σ,
( ) ( )

,
( )

2
0

1
0

1
=   of size (nf1+nf2)(z+1), on the main 

diagonal of which there will be unities, will be stored in  
memory of the master.

At the beginning of calculation cycle 3, the master 
unites the q–1 sub-matrix in one matrix AU

( )2  of the size of  
(z–nf1–nf2) × (z–nf1–nf2+1), which does not contain zero ele-
ments. The master splits the obtained matrix into q sub-ma-
trices. The first sub-matrix AΣ ,

( )
3

0 , which has nf3 rows, remains 
in the workspace of the master and other sub-matrices AΣ ,

( )
3

1  
with nw3 rows are sent to q–1 slaves.

By analogy with stage 2, the number of operations of 
division, multiplication and subtraction executed by the 
master at stage 3 will be calculated from formula (35), after 
substitution of z with z–nf1–nf2. In this case, it is necessary 
to take into account that capacity of sub-matrix AΣ ,

( )
3

0  makes 
up nf3 rows. Thus,

N n k z n n kf k f f f3 3 1 22 0 5 1, (( ) . )( ).= − + − − − +  (36)

Stage 3 is completed on condition that k = nf3.
Let us assume that r stages of calculation were completed. 

As a result, a rectangular matrix A rΣ ,
( )0  of size n zf j

j

r

=

−

∑






× +

1

1

1( ), 

with unities on the main diagonal will be stored in the memo-
ry of the master. In the workspace of the master there will be 

joint matrix AU
r( )  of the size of z n z nf j

j

r

f j
j

r

−






× − +






=

−

=

−

∑ ∑
1

1

1

1

1  

with non-zero elements, which the master splits into q layers. 
As a result, we will obtain sub-matrix A rΣ ,

( )0  of capacity of nf,r, 
which is found in the working space of the master. Each of the 
sub-matrices of the slaves A rΣ ,

( )1  has capacity nw,r.
Based on the results of formula (36), we can assert that at 

the k-th step of the r-th stage of calculations the master will 
perform the following number of operations of multiplica-
tion, division, and subtraction:

N n k z n kfr k f r f j
j

r

, , ,. .= −( ) +( ) − − +





=

−

∑2 0 5 1
1

1

 (37)

The finish of the r-th stage is meeting the condition k = nf,r.
If in formula (37) we take into account value nf,j from 

formula (32), we obtain:

N n k

z
q

q
q

fr k f r

j

j

r

r

, , .= −( ) +( ) ×

× −
−













 −

−

=

−

−∑

2 0 5

1
1 1

1

1

1

Δ 11 1− +










k ,

where Δ r j
j

r

−
=

−

= ∑1
1

1

δ .

After calculating 
q

q

j

j

r −





−

=

−

∑ 1
1

1

1

 from formula of geometric 

progression, we derive:

N n k z
q

q
kfr k f r

r

r, , . .= −( ) +( ) −





− − +










−

−2 0 5
1

1
1

1Δ  (38)
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Now let us calculate the number of division, multipli-
cation, and subtraction operations executed by the master 
during the r-stage of calculations:

N NM r fr k
k

nf r

, ,

,

,=
=

∑
1

 r N z= −1 1, .  (39)

If we consider operations on sending aij
ν( )  element at each 

k-th computation step, the maximum number of parallel 
arithmetic operations, which rut the r-th stage will be:

N N nr M r f r= +, , ,  r N z= −1 1, .  (40)

Let us calculate the value NM,r . If we consider formu-
la (38), expression (39) will take the following form: 

N n k z
q

q
kM r f r

r

r
k

nf r

, , . .
,

= −( ) +( ) −





− − +










−

−
=

∑2 0 5
1

1
1

1
1

Δ

Taking into account [21], that:

k
n

nf r

k

n

f r

f r

= +
=

∑ ,
,

,

( )
2

1
1

 and k
n

n nf r

k

n

f r f r

f r

2

1 6
1 2 1= + +

=
∑ ,

, ,

,

( )( ), 

we will obtain:

N n

n z n

n
M r f r

f r
r

r f r

f r

, ,

, ,

,

.

=
+( ) − − −( )





−

− +( )

−
−

2

0 5
1
2

1

1
1

1
1α Δ

22
1
3

11
1z nr

r f rα −
−−( ) − −( )





















Δ , )

, (41)

where α = (q–1)/q.
To calculate the total number of arithmetic operations 

executed by the master, it is necessary to take the sum by all 
operations for each of r computation stages:

N N nsum M r
r

N

r
r

Nz z

= +
=

−

=

−

∑ ∑, f, .
1

1

1

1

It is clear that:

n z nr
r

N

f s

z

f, , .
=

−

∑ = −
1

1

 

That is why:

N N z nsum M r
r

N

f s

z

= + −
=

−

∑ , , ,
1

1

 (42)

where nf,s is the capacity of the last joint matrix in the wor-
king space of the master which is not subject to subsequent 
division among the slaves. 

At the last stage when condition (26) is satis-
fied, the master reduces sub-matrix A sΣ ,

( )0  of the size of 

z n z nf j
j

r

f j
j

r

−






× − +






=

−

=

−

∑ ∑, ,
1

1

1

1

1  to the upper diagonal form ac-

cording to formulas (13) and (14).
We will calculate the number of operations of multipli-

cation, division and subtraction performed by the master 

after the last computation. We will introduce the following 
designations:

z z nf j
j

r

α = −
=

−

∑ , .
1

1

Matrix AU
s( )  can be regarded as a joint square matrix of 

size zα, to which a column of free members of the system of 
algebraic linear equations is attached. Reduction of such  
a matrix to the upper diagonal form with unities on the main 
diagonal requires [22]:

N
z z z

f s, ,=
+ −4 3

6

3 2
α α α  (43)

operations of division, multiplication, and subtraction.
Considering formula (43), the number of operations 

executed by the master in parallel computation, will be as 
follows:

N N
z z z

z nsum M r
r

N

f s

z

= +
+ −

+ −
=

−

∑ , , .
1

1 3 24 3
6

α α α  (44)

Formula (44) allows analyzing the effectiveness of the 
parallel algorithm in comparison with the sequential algo-
rithm of reducing a square matrix to the upper diagonal form 
with unities on the main diagonal. 

After reducing the diagonal matrix to the upper diagonal 
form directly from formulas (13) and (14), it is necessary to 
execute the number of arithmetic operations that is com-
puted from formula (43) after substituting zα with z.

To assess the effectiveness of the developed algorithm 
of reducing a square matrix to the upper diagonal form, the 
number of arithmetic operations was calculated from formu-
las (41) and (44) and number of Ns operations from formu-
la (43) (after substituting zα with z). The efficiency of the 
algorithm was estimated as the ratio of Ke = Ns/Nsum. 

Fig. 4 shows the result of this assessment. The following 
source data were taken:

z = [ ]10000 8000 6000 4000 2000 1000 500 300       ,

the number of processors q = 6. The analysis of obtained re-
sults shows that the application of the parallel algorithm al-
lows reducing the number of arithmetic operations needed to 
reduce the original matrix Ae to the upper diagonal form by 
more than nine times. It should be noted that the efficiency 
of the developed algorithm slightly decreases at a decrease in 
the size of matrix Ae.

All Nr operations in the r-th computation cycle are 
performed in parallel. Suppose that all operations of multi-
plication, division and subtraction at the r-th computation 
stage take τr  units of time and the sending operations take 
τt r,  units of time. Then the overall time consumption to im-
plement the parallel algorithm of reducing matrix Ae to the 
upper diagonal form should be computed from the following  
formula:

T N n TM r r t r f r
r

N

f

z

= +( ) +
=

−

∑ , , , ,τ τ
1

1

 (45)

where Tf is the time spent by the master to reduce his matrix 
to the upper diagonal at the last computation stage:
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Fig.	4.	Dependence	of	coefficient	Ke	on	the	size		
of	matrix	Ae

Given the value of Nf,s, we will write down formula (45) 
in the following form: 

T N n NM r r t r f r
r

N

f f s

z

= +( ) +
=

−

∑ , , , , ,τ τ τ
1

1

 

where τ f  is the time consumed to execute arithmetic opera-
tions at the final stage of computations.

After reducing matrix Ae to the upper diagonal form with 
unities on the main diagonal, parameters of model (1) are 
determined in the reverse order from formulas:

a uA z z z, , ,= +1  a u u aA i i z i j
j i

z

A j, , , ,= −+
= +
∑1

1

 i z= −1 1, .  (46)

Let us analyze algorithm (46) of solution of the system 
of linear algebraic equations with triangular matrix U by the 
method of reverse substitution. The physical sense of the 
problem of synthesis of the optimum structure of the empiri-
cal model is that U is not a degenerated matrix. 

Formula (46) does not determine the algorithm unambig-
uously, since the order of finding the sum is not determined. 
Consider a sequential operation of determining the sum held 
in the right-hand side of ratio (46). The corresponding recur-
rent procedure will be as follows:

a a uA z A z z z,
( )

, , ,0
1= = +  

a a u aA z i
j

A z i
j

z i z j A z j
j

,
( )

,
( )

, ,
( ) ,− −

−
− − + − +

−= −1
1 1

1  a uA z i z i z,
( )

, ,− − +=0
1  

a aA z i A z i
i

, ,
( ) ,− −=  i z= −1 1, ,  j i= 1, .  (47)

The procedure of finding solutions to equation (15) from 
formulas (47) has internal parallelism. Therefore, in order to 
save computer time, we will synthesize the corresponding 
parallel algorithm. 

Loads between the master and the slaves will be distri-
buted by the principle that was used when reducing ma-
trix Ae to the upper diagonal form. 

At computation stage 1, the last but one z column of ma-
trix U, which has z–1 elements that are different from zero 
(not considering element uzz = 1), will be divided equally be-
tween q processors so that the master will have hf,1 elements 
and the slaves will have hw,1 elements each. From formu-
la (47), we will calculate the value of aA z i,

( ) ,−
1  where i hf= 1 1, ,  

for the master; i h hf w k= +, ,
( ),1
11  for k = 1 and

i h hw k w k= + +,
( )

,
( ), ,1

1
11  k q= −1 2,  

for the slaves. The slaves sent their values aA z i,
( )

−
1  to the  

master, where the set of values aA z, −1  and aA z i,
( ) ,−
1  i z= −2 1, , 

which are stored in the workspace of the master, are generated.
At stage 2, z–2 elements of the z–1 column will be equally 

divided between q processors. As a result of this division the 
master obtained hf,2 elements, and the slaves – hw k,

( ),2  elements. 
After this the master, including himself, sends the correspond-
ing number of elements aA,z–1 and i z= −2 1, , to each proces-
sor. Subsequently, from formula (47) we calculate the va- 
lues of aA z i,

( ) ,− −1
2  where i hf= 1 2, ,  is for the master; i h hw k w k= + +,

( )
,

( ), ,2
1

21  
k q= −1 2,  – for processors, in this case a aA z A z, ,

( ) .− −=2 2
2  Stage 2 is 

completed by generation in the workspace of the master of the 
set of values aA,z–2 and aA z i,

( ) ,−
2  i z= −3 1, .

Subsequent computation steps will be according to the 
presented circuit and at the r-th step, the master divides 
z–r elements of the z–r+1 column between q processors in 
the following way: the master will have hj,r elements and 
the slaves will have hw k

r
,

( ),  k q= −1 1,  elements each. From for- 
mula (47), the values aA z i r

r
,

( ) ,− − +1  where i hf r= 1, ,  is for the  
master; i h hw k

r
w k

r= + +,
( )

,
( ), ,1 1  k q= −1 1,k q= −1 1,  are for the slaves. As a result 

of calculation, the workspace of the master, there will be the 
set of values aA,z–r and aA z i

r
,

( ) ,−  i r z= + −1 1, .
The process of solving the algebraic equation (15) by the 

method of reverse run with the use of the parallel algorithm 
is completed by the last computation step when condition 
z–r = q is satisfied. Then the master calculates all values of 
aA,z–i, where i r z= −, 1  from formula (47).

In the general case, the size of each column of matrix U 
can appear to be not multiple of the number of processors. 
That is why as before, the number of elements that will be 
in the workspace of slaves will be determined as the integer 
portion of the number:

h
z i

qw k
i
, ,( ) =

−







  i r= 1, ,  k q= −1 1, .  (48)

Because each slave at the i-th computation step gets the 
same number of elements, then:

h h h hw
i

w
i

w q
i

w i, , , , .1 2 1
( ) ( )

−
( )= = = =

The number of elements of the z–i+1 column that the 
master obtains at the i-th step will be calculated from the 
following formula:

h z i h qf i w i, , ( ),= − − −1  i z= −1 1, .  (49)

After condition z–i = q is satisfied, the values hw j, , 
j q= −1 1,  are reset and the values hf, j should be calculated 
according to the following recurrent procedure:

h hf j f j, , ,+ = −1 1  j z q z= − −, ,1  (50)

where hf,z–q = q.
We will show that the chosen method of distribution of 

the computational load between the master and the slaves 
always ensured the satisfaction of inequity:

h hf i w i, , .≥  (51)

The value of magnitude hw,i, which is calculated fron for-
mula (48), will be represented in the following form:
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h
z i

qw i i, ,=
−

− ρ  i r= 1, ,  (52)

where 0 1≤ <ρi  is the discarded fractional part of number 
( ) .z i q−

Substituting the obtained value hw,i in (49), we will have:

h
z i

q
qf i i, ( ) .=

−
+ −1 ρ

Since h h qf i w i i, , ,− = ≥ρ 0  there is also ratio (51).
Therefore, the distribution of elements between the 

master and the slaves of z–i+1 column is carried out in 
accordance with formulas (48) and (49). In this case, condi-
tion (50) is always satisfied. 

We will calculate the number of the operations of multi-
plication and subtraction, which are carried out as a result of 
the implementation of the parallel algorithm of calculation 
according to formula (47). At the r-th computation step, 
the master will perform N hr

f r0 2( )
, ,=  and every i-th slave 

will perform N hi
r

w r
( )

,= 2  operations of multiplication and 
subtraction. 

Since parallel computations are carried out by columns 
of matrix U, r z= 1, , and there is ratio (51), the total number 
of operations when implementing the parallel algorithm is:

N N Nr
f

r

z q

= +
=

−

∑ 0
1

( ) ,

where Nf is the number of the operations of multiplication 
and subtraction at the last stages of computations.

At transition from one computation step to another, 
the number of the elements of the next column is decreased  
by unity, so at a certain calculation stage, there will be 
condition z–i = q. Given the condition of completing of the 
calculation process, as well as formula (51), we come to the 
conclusion:

N h Nf r f
r

z q

= +
=

−

∑2
1

, .  (53)

Now let us calculate magnitude Nf. Final computation 
steps begin with condition hf,s = q. The master performs fur-
ther calculations of the parameters of the model according to 
formula (47). That is why the total number of operations of 
multiplication and subtraction at the last computation stage 
will be as follows:

N q i q qf
i

q

= − = +
=

−

∑2 1
0

1

( ) ( ).

Considering the value of Nf, formula (53) will take the 
following form:

N h q qf r
r

z q

= + +
=

−

∑2 1
1

, ( ).

Since between the loads of the master and that of every 
slave there is ratio (51),

h h qf i w i i, , .− = ρ  (54)

it follows from equation (54) that h h qf i w i i, , .= + ρ  Conside ring 
formula (52), the value:

h
z i

q
qf i i, ( ) ,=

−
+ −1 ρ  i z q= −1, .

Knowing hf,i, we can calculate the value of N from for-
mula (54):

N
z r

q
q q

r

z q

=
−

+ + +
=

−

∑2 1
1

Λ ( ),

where 

Λ = −
=

−

∑( ) .q r
r

z q

1
1

ρ

Having calculated the value of ( ),z r
r

z q

−
=

−

∑
1

 we come to 

conclusion:

N
z q

q
z q q q=

−
+ − + + +( ) ( ) .1 1 Λ

Realization of the sequential algorithm of computation of 
coefficients of mathematical model (1) after having received 
matrix U requires [22] N z z= −( )1  operations of multiplica-
tion and subtraction. 

Fig. 5 gives an idea of efficiency of the parallel algorithm 
of computation of coefficients of empirical models (1) from 
formula (47) compared to the sequential algorithm.

Efficiency of the parallel algorithm was evaluated by 
magnitude of multiplicity K N Ns =  . Analysis of the ob-
tained results shows that at an increase in dimensionality 
of matrix Ae, efficiency of the parallel algorithm falls almost 
exponentially. For example, at z = 100 and q = 6, multipli-
city Ks = 5.3. Because in the algorithm of the synthesis of 
empi rical models that are optimal by structure based on 
genetic algorithms, the procedure of solving the system of 
equations must be repeated М–с times, the gain in compu-
tation time will be noticeable even at relatively small sizes  
of matrix Ae. 

Fig.	5.	Efficiency	of	the	parallel	algorithm	at	q = 6

The total number of arithmetic operations that are exe-
cuted during the implementation of the parallel algorithm 
will be determined by the number of operations to reduce 
matrix A  to the upper triangular form and number of opera-
tions to solve equation (15).
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6. Discussion of results of studying the parallel  
algorithm using a Petri net

Construction of empirical models of optimal complexity 
based on the principles of genetic algorithms requires multiple 
solution of the system of linear algebraic equations with subse-
quent calculation of the model output. This procedure requires 
significant consumption of time. That is why there arose the 
need to develop an algorithm of parallel computation, which 
greatly accelerates the process of synthesis of the empirical 
model of optimal complexity. Previously, the stated task was 
solved on condition that the computational loads between 
processes are distributed evenly, which is rare in practice.

We proposed the new procedure for distribution of the 
computational load between the coordinating processor 
(master) and other processors (slaves), when computational 
load of the master is somewhat more that the computational 
load of each slave. For uneven load between parallel compu-
tational processes, the acceleration of the computational pro-
cess as compared to the conventional algorithm was assessed. 

The efficiency of the parallelized algorithm increases 
at an increase in dimensionality of a problem. In fact, the 
efficiency of the parallel algorithm will be slightly below the 
theoretical one due to the fact that operations of sending and 
interruptions were not taken into consideration.

To assess the real efficiency of the proposed parallel al-
gorithm for synthesis of models of optimal complexity, it is 
necessary to conduct additionally a whole number of compu-
tational experiments.

7. Conclusions 

1. Unlike the inductive method for self-organization 
of models, the authors propose to synthesize the empirical 

model in the form of a polynomial of a given degree. «1» or 
«0» is matched to each coefficient of the model (1 – the co-
efficient exists in the model; 0 – coefficient was withdrawn 
from the model). As a result, the structure of the model is en-
coded by the sequence, consisting of unities and zeros, called  
a chromosome. A set of chromosomes is generated – the pop-
ulation, the number of chromosomes of which is determined 
by the structure of a complete polynomial. The sequence of 
operations, the main of which are crossing and mutation, 
are performed on the obtained population. The use of the 
adjustment function allows selecting the most «adapted» 
chromosome, which determined the structure of an empirical 
model of optimal complexity.

2. Implementation of the method for synthesis of empir-
ical models of optimal complexity indicated that, compared 
to the inductive method for self-organization, the proposed 
method requires less CPU time. For complex models with 
a large number of variables and a high polynomial po- 
wer (m ≥ 3), the consumption of computer time may be 
significant (up to one hour or more). To identify the ways 
to reduce such time consumption, the model of the compu-
tational process in the form of a Petri net was developed. 
Analysis of the model revealed that the process of synthesis 
of the empirical models of optimal complexity has internal  
parallelism.

3. The strategy of distribution of computational opera-
tions between the master and slaves, in which all slaves are 
loaded evenly, and the load of the master is always more than 
the load of slaves, was developed This strategy of separation 
made it possible to determine explicitly the required number 
of arithmetic operations for implementation of the parallel 
algorithm. It was shown that the developed strategy of load 
distribution between processors working in parallel (master 
and slaves) ensures the acceleration of the computational 
process by five or more times.
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