
ІНФОРМАЦІЙНІ СИСТЕМИ І ТЕХНОЛОГІЇ. МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ

Вісник КрНУ імені Михайла Остроградського. Випуск 2/2013 (79).
25

UDC 255:29.1

IMPLEMENTATION OF SCHEDULING ALGORITHM IN HIGH-PERFОRMANCE
COMPUTER CLUSTER

J. Skrinarova, M. Krnac
Matej Bel University, Faculty of Natural Sciences, Slovakia
Tajovskeho 40, Banska Bystrica, 97401, Slovakia. E–mail: jarmila.skrinarova@umb.sk
P. Martincova
University of Zilina, Faculty of Management Science and Informatics, Slovakia
Univerzity 8215/1, Zilina, 010 26, Slovakia. E–mail: krtcom@gmail.com, Penka.Martincova @fri.uniza.sk
In our paper we introduce an optimization algorithm for scheduling jobs in high-performance computer cluster. The

scheduling approach is based on popular, widely used and efficient Hill Climbing algorithm. We compare two different
approaches to scheduling in parallel systems: queue-based and schedule-based scheduling. We implemented suggested
algorithm within TORQUE resource manager in real production system.

Кey words: HPC scheduling, resource manager, job scheduling, schedule-based scheduling.

ВПРОВАДЖЕННЯ АЛГОРИТМУ ОПЕРАТИВНОГО ПЛАНУВАННЯ
 ВИСОКОПРОДУКТИВНОГО ОБЧИСЛЮВАЛЬНОГО КЛАСТЕРУ

Дж. Скринарова, M. Крнак
Університет Матея Бела, Факультет природничих наук
ул. Тайовського, 40, Банська Бистриця, 97401, Словаччина. E–mail: jarmila.skrinarova@umb.sk
П. Мартинкова
Жилинський університет, Факультет науки управління та інформатики
Університет 8215/1, Жилина, 010 26, Словаччина. E–mail: krtcom@gmail.com, Penka.Martincova@fri.uniza.sk
Наведено розроблений авторами алгоритм планування завдань високопродуктивного обчислювального кла-

стеру. Методика, яка була взята за основу розробленого алгоритму, базується на ефективному та широко розпо-
всюдженому алгоритмі локального пошуку (Hill Climbing). Авторами проведено порівняльний аналіз двох під-
ходів до планування завдань у паралельних системах: за чергою та за завданням. Запропонований авторами
алгоритм було застосовано у менеджері ресурсов TORQUE в умовах реального виробництва.

Ключевые слова: планування високопродуктивних обчислень, планування завдань, планування за завданням.

INTRODUCTION. Parallel and distributed com-
puter architectures in recent time tend to have great field
of usage. They are widely used mainly in technical
science disciplines, physical, chemical or biological
research, astrophysics etc. Simple way how to use a
growing potential of multiple computers is to connect
them together with network and create a cluster. Clus-
ters can be divided into two groups according to com-
puting hardware and network components:

1. High-throughput cluster – created by large num-
ber of computers with low-end network components,

2. High-performance cluster – created by more
powerful computers with fast interconnections [1].

PROBLEM STATEMENT OF RESOURCE
MANAGEMENT AND SCHEDULING. High per-
formance clusters are primarily suitable for executing
parallel programs, which require multiple computing
machines or processing units. These computations often
need to exchange information during their runtime,
which creates the demand to minimize the amount of
communication between computing units by effective
mapping of tasks to available machines and their proc-
essing units. Resource mapping is provided by a sched-
uler, which is special software running on one of the
cluster computers. As shown in figure 1 it communi-
cates with another program, which is responsible for
monitoring all the computing nodes, communicates with
them and gathers information about their available re-
sources like architecture, number of processing units,
physical memory, current workload etc. Scheduler can

be either part of resource monitor (internal scheduler),
or external program which is able to interact with re-
source monitor.

Standard structures that are part of resource monitor
are:

– Server – acts like an entering point for users to
submit their tasks to the system.

– Working node – physical, or virtual machine
which runs part of the resource manager responsible for
executing tasks on that particular machine.

– Queue – list of jobs ready to be executed.
– Job – executable program with certain input and

output. It can consist of multiple tasks which are conse-
quently assigned to processing units of a working node.

– User – represents users of operation system
which can have different privileges defined by adminis-
trator.

Each job defines its resource requirements. Most
common resource requirements are: number of nodes,
number of processing units, amount of memory, time
required to finish the task. After submitting the job to
the system it is queued and waits to be executed. The
expectations of users, concerning the time of execution
of the job can be expressed by some of these metrics:

– Wait time – time, jobs spend in queued state.
– Turnaround time – time from the submission un-

til the completion of the job.
– Response time – time from the submission until

the response to the user.
– Makespan – maximum of total completion times

ІНФОРМАЦІЙНІ СИСТЕМИ І ТЕХНОЛОГІЇ. МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ

Вісник КрНУ імені Михайла Остроградського. Випуск 2/2013 (79).
26

of sequence of tasks, one of the most interesting pa-
rameter in parallel and distributed systems [2].

These requirements often get in contrast with the
aims of administrators, who try to effectively use all the
resources in the system, thus minimize the total costs of
cluster operation. The scheduler which maps the jobs to
available machines has to consider many requirements,
which makes this process quite difficult.

Figure 1 – Resource manager and communication

between users and nodes

COMPARING SCHEDULE APROACHES. Gener-

ally there exist two different models of mapping jobs to
available working nodes: queue-based mapping and
schedule-based mapping

Queue-based mapping. Queue-based mapping of
jobs to nodes uses queue as basic structure. It is a list of
jobs submitted to system by users usually sorted by their
submission time. Another sorting strategy can be cho-
sen by system administrator and the most common are:
Shorted Job First, Longest Job First, Shortest Execution
Time First etc. After submitting the job to a queue it
stays there until next scheduling cycle when scheduler
selects the job from the queue and tries to determine the
best node for running the job. If it succeeds the job is
send to be executed on that node and its state is changed
to running. Finding the best node is based on certain
scheduling policy, configured by administrator. It is a
complex process that involves several configurable
parameters which can affect the resulting decision. If
more queues exist, this algorithm can be modified by
selecting and running one job from each queue before
trying to assign another job from the same queue.
Scheduler with one queue is shown in figure 2.

Figure 2 – Queue-based cluster scheduling

Resource manager sends a request to the scheduler
in several situations: after new job submission, after job
termination or in specified time intervals. This or simi-
lar scheduling is used in many production systems such
as PBS Pro [3], LSF [4], Sun Grid Engine (SGE) [5],
Condor [6], Maui a Moab [7].

Schedule-based mapping.
Opposite to queue-based scheduling system, another

approach uses so called schedule, which is basically a
list of tasks which are assigned to each computing node,
containing information of estimated start and finish time
and other characteristics. Creating and sustaining such a
schedule is possible in two different ways. First method
creates new schedule every time a job is submitted. The
schedule can be consequently evaluated and optimized
in order to create the most optimum solution for our
requirements. Second method creates schedule in the
moment of first job submission and every other job is
only integrated into this list provided that it stays in the
most optimal state after the job becomes part of this
schedule.

Both these methods have some advantages and dis-
advantages. Generating new schedule after each sub-
mission can result in increased time consumed by
scheduler to find the optimal solution. Especially when
dealing with large number of jobs. On the other hand
starting from scratch can result in finding even better
solution which might not be possible to achieve if keep-
ing the previous schedule. The efficiency of the sched-
ule can be evaluated it by using some of the indicators
mentioned above mostly by calculating the makespan. It
can be easily calculated based on the schedule and esti-
mated start and end times of the jobs. Schedule-oriented
approach to mapping tasks to machines is shown in figure
3.

Figure 3 – Schedule-oriented approach

CUSTOM SCHEDULING ALGORITHM

IMPLEMENTATION. One of the aims of our research
was to implement own scheduling algorithm suitable for
the high-performance cluster at our facility. The re-
source manager used on the cluster called TORQUE [3]
includes default scheduler, but can also be extended by
compatible external programs. Default scheduling algo-
rithm used in this production system is FIFO with sev-
eral configurable options.

This algorithm can be efficient for smaller computer
clusters which do not require difficult planning and

ІНФОРМАЦІЙНІ СИСТЕМИ І ТЕХНОЛОГІЇ. МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ

Вісник КрНУ імені Михайла Остроградського. Випуск 2/2013 (79).
27

prediction of system behavior. This mostly concerns the
resource utilization based on analyzing the schedule and
prediction of future system state. Different schedule can
result in differently efficient resource utilization there-
fore it is desirable to optimize the schedule as much as
possible. The number of possible scheduling solutions
grows rapidly with the increase of input parameters
(mainly number of jobs and number of available nodes).
Finding the optimal solution is the problem that can be
classified as NP-complete [8] thus its resolving can take
unrealistically long time using deterministic algorithm
searching over all solution space. However many heu-
ristic algorithms were designed to solve this problem
often inspired by nature phenomenon like genetic algo-
rithm, particle swarm optimization, ant colony, or many
other: hill climbing, simulated annealing, taboo search
etc.

HILL CLIMBING OPTIMIZATION.We present a
schedule-based approach to mapping jobs to nodes with
Hill Climbing algorithm as an optimization technique. It
is a fast-converging method that works with random
initial solution which is continually changed to a better
solution until it cannot be improved any more. In each
step surrounding solutions are examined and the one
that improves the current solution the best is chosen and
proclaimed the actual best solution. One of the known
disadvantages of this algorithm is the chance to get
trapped in local extreme of the function. This problem
can be solved or at least its effects can be minimized by
modifying the algorithm to include random restarts, or
some other stochastic behavior. It is shown that it is an
effective method for finding local optimal solutions of
scheduling problems [9].

Figure 4 – Simple hill climbing algorithm flowchart

Each job j has several attributes:
pj – processing time. For processing time on ma-

chine i it is pij, dj – due date. Time when job execution
stops, even if the job is not finished, wj – job weight.
Express the importance of the job. It can represent the
priority of local job before global or the user prefer-
ences, sj – set up time. Time necessary for all the opera-
tions required for successful job execution (loading
libraries, managing input and output etc.), Mj – machine
eligibility restriction. Describes the nodes that can proc-

ess job j. Sj – start time. Time of actual execution start,
Cj - completion time. Time when the job execution
stops. pij = Cj - Sj.

Times dj and Cj represent real times, pj and sj are
CPU times. For given schedule we can easily calculate
these values for every job Ji. Another indicators that can
give us information on how the system behaves are time
of completion of job on node Ci, latency Lj = Cj – dj and
positive latency Tj = max {0, Cj– dj}.

The most often used optimum criterion can be de-
termined asCmax = MAX { ∑ (Cj – Sj) }where Cmax is
the maximum time of completions (makespan). We can
easily calculate this value and so we can evaluate the
schedule.

CONSIDERING PARALLEL JOBS. In order to be
able to effectively create a schedule for parallel jobs we
need to design the structures for our scheduler. Graphi-
cal representation of schedule that takes parallel jobs
into consideration is in figure 5.

Figure 5 – Example of schedule with parallel jobs

Each node contains one or more processing ele-

ments, which can be the same as the actual processors
or cores. User can specify their request when submitting
job into system either by providing number of required
nodes and processing elements, or specifically stating
the name of requested node and number of processors.
Other requests, which are available to the users, can be:
architecture of the node, physical memory, hard disk
space, special software required and so on.

The scheduler has to take all these requirements into
consideration. Basic structure in our scheduling algo-
rithm is node request which contains information about
requested node - name, number of processors, architec-
ture etc.

Each job contains list of node requests which is con-
structed from user submission requirements. Unless
specific hostname of node is provided we assume that
job can run on any node that fulfills other criteria. If no
value is provided for number of processing units default
value of 1 is assumed. Default value for graphical proc-
essors is 0.

Proposed algorithm works as follows:
1. Get the list of jobs and construct the node request

list for each of them
2. Based on this each jobs node request list assign

each node request to specific node. If some information
is not provided choose first best suitable node.

ІНФОРМАЦІЙНІ СИСТЕМИ І ТЕХНОЛОГІЇ. МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ

Вісник КрНУ імені Михайла Остроградського. Випуск 2/2013 (79).
28

3. Evaluation algorithm:
– For each job j create a list of previous jobs that

must finish before job j.
– Count estimated start time for each job by recur-

sively count estimated completion times for each job in
its previous job list.

– For each node which has some running jobs
count estimated remaining time to finish running jobs.

– Calculate maximal completion time Ci on each
node.

– Count maximal completion time Cmax for current
schedule.

4. Try to optimize the schedule using Hill Climbing
algorithm. Search all neighboring solutions of initial
solutions. Neighboring solution can be obtained by
swapping two jobs in original list of jobs.

5. Evaluate schedule and store it if better makespan
value was found. Continue from step 2 until no im-
provement can be found.

ALGORITHM PERFORMANCE. We ran 2 test
suites each containing several test series on 2 different
clusters to determine the efficiency of proposed algo-
rithm. Technical information about the testing clusters
are shown in table 1.

Table 1 – Technical information about testing clusters

Cluster Cluster1 Cluster2
Architecture of
nodes x86_64 x86_64

OS Ubuntu Server Debian 4.0
RAM/ node 512MB 1GB - 4GB
HDD 6GB / node 100GB /

node
Nodes/cpus 4/1 5/2, 2/1

Each cluster uses TORQUE 3.0.6 as resource man-

ager and has MPI implementation with TORQUE sup-
port installed in order to be able to run parallel pro-
grams.

We ran 2 suites of tests on each of these clusters.
First suite – suite1- consisted of 6 test series of 10, 20,
30, 40, 50 and 60 jobs of different length and node re-
quirements randomly sorted. In each series all the jobs
were submitted to the system before the scheduler was
started.

After the scheduler startup the initial schedule was

generated and remained valid for the whole test. We
recorded time necessary for generating this schedule
and measured the time needed to complete all jobs sub-
mitted in one test series. We also recorded the average
and maximum turnaround time for each job and for each
test series.

Second test suite – suite 2 – contains 7 test series
with randomly sorted jobs with various time and re-
source requirements similar to the ones in test suite 1.
We continuously kept submitting these jobs in random
intervals and again recorder the total completion time,
maximum and average turnaround time and other statis-
tics like the time of schedule generation after each job
submission. The result of these test are shown in figures
6, 7 and 8.

TI
M

E
(m

, s
)

 Test series

Figure 7 – Average turnaround time for each series

Both these test suites were tested with default FIFO

scheduler and proposed Hill Climbing optimization
algorithm. The results show that both of these schedul-
ers are able to make equally good scheduling decisions
in various situations and hardware configurations.

TI
M

E
(m

, s
)

 Test series

Figure 8 – Maximal turnaround time

CONCLUSIONS. The scheduling algorithm that we

implemented can replace original FIFO algorithm re-
leased with TORQUE resource manager. It can effec-
tively run user-submitted jobs in acceptable time. One
of the disadvantages of this scheduling approach is
inability to promptly react to hardware changes in clus-
ter architecture. In case of temporary or permanent node
outage scheduler still keeps the old schedule in memory
until the request for next job comes. Then it gathers
information about the cluster nodes and performs new

TI
M

E
(m

, s
)

 Test series
 Figure 6 – Schedule makespan

ІНФОРМАЦІЙНІ СИСТЕМИ І ТЕХНОЛОГІЇ. МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ

Вісник КрНУ імені Михайла Остроградського. Випуск 2/2013 (79).
29

schedule generating cycle if necessary. However inter-
nal structures of the scheduler allow easy expansion
with new, maybe more efficient heuristic algorithm.
Another advantage of scheduling-based approach over
queue-based is that user can get easily get information
about the estimated start time of their job.

REFERENCES

1. Iqbal S., Gupta R., Fang Y. Job scheduling in
HPC clusters, Dell Power Solutions, February 2005.

2. Parsa S., Entezari-Maleki R. A queuing network
model for minimizing the total makespan of computa-
tional grids, // Computers and Electrical Engineering
38, April 2012.

3. Jones J.P. PBS Professional 7, administrator
guide, Altair, April 2005.

4. Xu M. Q. Effective metacomputing using LSF
multicluster, // Proceedings of the 1st International
Symposium on Cluster Computing and the Grid, pp.
100–105. IEEE, 2001.

5. Gentzsch W. Sun Grid Engine: towards creating
a compute power Grid, // Proceedings of the First
IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, pp. 35–36, 2001.

6. Thain D., Tannenbaum T., Livny M. Condor and
the Grid, // Berman F., Fox G., Hey T., editors, Grid
Computing: Making the Global Infrastructure a Reality.
John Wiley & Sons Inc., 2002.

7. Adaptive Computing Enterprises, Inc. Moab
workload manager administrator’s guide, version 6.1.4,
February 2012 http://docs.adaptivecomputing.com/

8. Sotskov Yu.N., Shakhlevich N.V. NP-hardness
of shop-scheduling problems with three jobs // Discrete
Applied Mathematics 59 (1995) 237–266.

9. Duvivier D, Preux P, El-Ghazali Talbi. Climbing
Up NP-Hard Hills. //Parallel Problem Solving from
Nature IV, pages 574–583, Springer, 1996.

ВНЕДРЕНИЕ АЛГОРИТМА ОПЕРАТИВНОГО ПЛАНИРОВАНИЯ

ВЫСОКОПРОИЗВОДИТЕЛЬНОГО ВЫЧИСЛИТЕЛЬНОГО КЛАСТЕРА
Дж. Скринарова, M. Крнак
Университет Матея Бела, Факультет естественных наук
ул. Тайовского, 40, Банска Быстрица, 97401, Словакия. E–mail: jarmila.skrinarova@umb.sk
П. Мартинкова
Жилинский университет, Факультет науки управления и информатики
Университет, 8215/1, Жилина, 010 26, Словакия. E–mail: krtcom@gmail.com, Penka.Martincova@fri.uniza.sk
Представлен разработанный авторами алгоритм планирования заданий высокопроизводительного вычисли-

тельного кластера. Взятая за основу методика планирования базируется на эффективном и широко распростра-
ненном алгоритме локального поиска (Hill Climbing). Авторами проведен сравнительный анализ двух подходов
к планированию заданий в параллельных системах: в порядке очередности и в порядке задания. Предложенный
авторами алгоритм был задействован в менеджере ресурсов TORQUE в условиях реального производства.

Ключевые слова: планирование высокопроизводительных вычислений, планирование заданий, планирова-
ние в порядке задания.

Стаття надійшла 13.03.2013.

