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SAMPLING THE CONTINUOUS TWO-SIDED NONCOOPERATIVE GAME ON UNIT HYPERCUBE

AND MULTIDIMENSIONAL MATRIX RESHAPING FOR SOLVING THE CORRESPONDING BIMATRIX GAME
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There is suggested a method of obtaining the approximate NE-solution of continuous two-sided noncooperative
games on unit multidimensional cube with uniform sampling along each of dimensions. For that there are presented
requirements to sample the game kernels smoothly and relationships letting reshape multidimensional matrices into
ordinary two-dimensional ones with maintaining one-to-one indexing between their elements. The corresponding bima-
trix game NE-solution is checked for two types of consistency, whose being suggested requirements allow to predeter-
mine how this solution changes by changing the sampling step minimally.
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JTACKPETU3AIIA KOHTUHY AJIBHOI IBOCTOPOHHbLOI BE3KOAJIIIMHOI I'PU
HA OJUHUYHOMY T'IIEPKYEI I IEPETBOPEHHSI AT ATOBUMIPHOI MATPHIII
JIJISI PO3B’SI3YBAHHS BIIITOBIJTHOI BIMATPUYHOI I'PH
B. B. Pomaniok
XMeNbHUIBKHNA HAIllOHABHUH YHIBEPCUTET
ByIL. IHCcTHTYTCBKA, 11, M. XMenpHUIBKHH, 29000, Ykpaina. E-mail: romanukevadimv@mail.ru
[IportonyeThCst METO OTPUMAaHHSI HAOJIMKEHOTO PO3B’A3KY Y CMHCIII piBHOBaru 3a HeleM KOHTHHYaJIbHUX TBOCTO-
POHHIX Oe3KoaNiniiHKUX Irop HA OAMHHUYHOMY OaraTOBUMipHOMY KyOi 3a OIOMOTOI0 piBHOMIpHOI AMCKpeTH3amii y3-
JIOBX KO)KHOTO 3 BUMIpiB. CTaBIATHCS BUMOTH JIO TOTO, 1100 TIIaJKO AUCKPETU3YBATH sIIpa TPH, 1 CITiBBiTHOMIECHHS, 110
JIO3BOJISIIOTH 3JIIHICHIOBATH MEPETBOPEHHST OaraTOBUMIPHUX MaTpHIlh Y 3BUYalHI TIBOBUMIPHI 31 30epe)KEHHSIM B3aEMOO-
JTHO3HAYHOI 1HJeKcalii Mix 1x eixemeHTamu. Po3B’s130k y cMmucii piBHOBard 3a Hemlem BiInoBifHOI GiMaTpu4HOI Tpu
MepeBIpSEThCS HAa J[BAa TUIH Y3TOPKEHOCTI, NMPOIIOHOBAHI YMOBHU SIKMX JIO3BOJISIIOTH 3Ba)KaTH Ha Te, HACKIIBKU IIeH
PO3B’S130K 3MIHIOETHCS 32 MiHIMAIILHOT 3MiHU KPOKY AUCKPETH3aLlii.
Karou4osi cioBa: n1BocTopoHHI Oe3koaliliiiHi irpu, oAMHUYHUI Tinepky0, OaratoBumipHa Matpuist, NE-crparerii
(piBHOBaXkHI cTpaterii 3a HerreM), HaOMMKEHUI po3B’ 130K, Y3romkeHicTh NE-po3B’sa3Ky (p03B’sI3Ky Y CMHCITI PiBHOBA-
ru 3a Hemewm).

PROBLEM STATEMENT. One of the principal solution of two-sided noncooperative games. For finite
purposes of game modeling is resolution of conflict games, they are based on methods of linear program-
events or processes, springing up permanently under ming or linear inequalities, implying algorithms of
natural disproportion of resources and demands. In eco- Lemke — Howson [9, 10] or of Vorobyov [11] and
nomics, politics, military science, jurisprudence, social Kuhn [12]. When the game is infinite, there is no any
and ecologic processes, the conflict game model solu- universal method of solving, but just narrowly specified
tion allows to distribute resources mainly according to technique, oriented on particular cases [13, 14]. One of
Nash or Pareto equilibrium [1, 2]. Moreover, under spe- those particularities works on compact games, having
cific hard uncertainties, two-sided game solutions may solutions at least in mixed strategies [15]. It is worthy to
be applied to technological and technical processes, note that the procedure of defining the player’s pure
reducing their risks or losses on average [3]. strategies set as a compact in FEuclidean finite-

Games in Euclidean finite-dimensional subspaces of dimensional subspace is similar to normalization, con-
non-single dimension. While stating the problem of cerning a payoff function or components of the pure
noncooperative game modeling, there are sets of the strategy. Without loss of generality, further normaliza-
players’ pure strategies to be defined, whereupon the tion drives at two-sided noncooperative games on unit
game kernels (the players’ payoff functions) are defined hypercubes of Euclidean finite-dimensional spaces, let-
on the Cartesian product of these sets. For a lot of ting identify the game class and its solution way effec-
events the player’s pure strategy is an action, featured tiveness, comparing to others. However, even two-sided
with a sequence of parameters. And often these parame- noncooperative games on unit square in R” are solvable
ters cannot be aggregated into a single value [4, 5]. So if only for “good” (for instance, without discontinuities)
one or more parameters belong to some intervals of payoff functions of players, not speaking about games
their acceptable values, the player gets a continuous set on unit cube in R? or hypercubes [16, 17].
of one’s pure strategies. This set can be equivalent to a Goal and tasks. 1t is clear that there is no algorithmic
Euclidean finite-dimensional subspace of non-single approach to solving two-sided noncooperative games on
dimension [6, 7]. And even two-sided noncooperative hypercubes of Euclidean finite-dimensional spaces with
games on such subspaces’ product are pretty difficult to continuous players’ payoff functions [2, 10, 18]. Thus
be solved analytically [2, 8]. there is a goal to develop a way of solving them approx-

Solutions of two-sided noncooperative games on imately via sampling the players’ payoff functions. For
compacts. There is a few ways for obtaining the exact attaining the goal there are three tasks. Primarily the
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conditions of acceptance of the sampled payoff func-
tions must be declared. The players’ sampled payoff
functions are multidimensional matrices, which are to
be reshaped into ordinary matrices (flat arrays) of the
same format with maintaining one-to-one indexing of
their elements. In an assumed solution of the bimatrix
game there should be conditioned the consistency of the
players’ NE-strategies supports: it will allow to prede-
termine whether the bimatrix game solution changes
vastly by changing minimally the sampling step. An
enough stable game solution is going to be suggested as
the approximate solution of the initial continuous two-
sided noncooperative game.

EXPERIMENTAL PART AND RESULTS
OBTAINED. Let’s consider a two-sided noncooperative
game

(Uy- Uy, K (X, Y), K, (X, Y)) (1)
with the players’ pure strategies sets
M
v, =X [0:1]cR" )
m=1
and
N
U, =X [0:1]cR", (3)
n=1

and the players’ payoff functions K (X,Y) and

K,(X,Y), defined on (M +N)-dimensional unit
hypercube

U, xU, ={>M< [0; 1]}><{>N< [0; 1]}:

m=1 n=l1
{MHV
k=1

M

X=[x,].,, e X[0:1]=U, cR" and

m=1

[0; 1]} c RM* 4)

by

N

v=[n], e X[:1]=U, <R

n=1
at MeN, NeN. (5)
It is assumed that each of the functions K, (X, Y) and

K,(X,Y) is differentiable with respect to any of va-

riables {{xm}:?:l, { yn}:l:l}. Also there exist mixed de-

rivatives of each of those functions by any combination
of variables, where every variable is included no more
than just once.

Conditions of sampling the game kernels smoothly.
Obviously, it’s impossible to find all the solutions of the
game (1) on the hypercube (4). Therefore consider uni-
form sampling along each of M dimensionsin U,, and

each of N dimensions in U, with a constant step,

where endpoints of unit segments are included into the
sampling necessarily. If S is a number of intervals be-
tween the selected points in each of dimensions then the

sampling step is S™', and SeN for the vaguest sam-

pling. In m -th dimension the first player instead of the
segment [0; 1] of values of m -th component of its pure
strategy X now possesses the set of points

o (s)={x} o]

(6)

In n-th dimension the second player instead of the

m

by x<5>=sT_1 Vm=1,M.

segment [0; 1] of values of n -th component of its pure
strategy Y now possesses the set of points

S+l
DM (s)= { y,<f>}S:1 <[o;1]

n

() -5 72

by y/ = Vn=1N.

()

Number S shall clearly not be assigned arbitrarily,
because the sampling mustn’t erase specificities of the
players’ payoff functions. These specificities consist in
local extremums and gradient over hypersurfaces

K, (X,Y) and K,(X,Y). Formally, the head condi-

tion of the number S assignment is that V s = LS

6M+NK,‘ (X, Y) S0 or
0x,0% ...0X,, 00,00, ...0py -
6M+NK,‘ (X, Y) <0

0x,0% ...0X,, 00,00, ...0py
Y x, e[xi‘?; xﬁf”q and

Vy,€ [yf;‘>; yf,s+]>] , refl,2}. (8)

Requirements (8) mean that if extremums of the
players’ payoff functions exist off the boundary of the
hypercube (4), then they must be reached at points, hav-
ing only components

S

Of course, this is too severe condition that can be hardly
satisfied, unless the game kernels are artificially confi-
gured before. So, an alternative condition of sampling

the game kernels smoothly is that V s = LS
| MK(XY) |
|6x]8x2 ...0x,,0v,0v, ...8yN|

and ¥y, e[ 0], refn2), @
where parameter o> 0 is a tolerable unsteadiness of the
players’ payoff functions. Requirements (9) shall substi-
tute requirements (8) almost in every two-sided non-
cooperative game with the pre-assigned parameter o . It
is pre-assigned on some practical reasonings, concern-
ing the value

<a Vx, e[xi‘?; x<s+l>]

v, = max maxmax K, (X, Y)—
re{l,Z} XelUy, YeUy

(10)

Roughly speaking, the players’ payoff functions are
sampled sufficiently smooth in points (6) and (7) if, say,
a<0.0l-v, or a<0.001-v, 11

for (9). It is more convenient if values of the game ker-

—min minminK, (X, Y).
re{l,Z} XeU,, YeUy
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nels are normalized, when v, =1. Then it is expedient
to accept o €{0.001, 0.005, 0.01} conventionally. Nev-

ertheless, the parameter oo may be lowered as it de-
pends upon whether the game approximate solution is
stable enough, what is going to be spoken about later on.

Reshaping the multidimensional matrix into two-
dimensional matrix. After having sampled the hypersur-

faces K,(X,Y) and K,(X,Y) there are (M +N)-
dimensional matrices P, = [ p_<,]>LT and P, = [ p§2>J(g

M+N
of the format &# :X

k=1

(S+1) instead of them, whose

elements
P =K (X, Y) by x,=85"(j,~1) Ym=1,M
and y,=S"(jy,~1) Vn=L N (12)
have their indices
J = {jk }
Inasmuch as first M indices in the sequence (13) of the
element (12) of matrix P, = |: p.<,'>lg

M+N
k=1

. e €{LS+1} VEk=L,M+N.(13)

correspond to

components of the first player pure strategy, and the last
N ones correspond to components of the second player

pure strategy, then (M +N)-dimensional matrix

P = [ p.<,"> LT can be reshaped into ordinary flat matrix
=[g 14
G, [g“w :|(S+1)”x(5+1)” (14)
of the format (S +1)M x(S +1)N with elements
gfn? = py) by re{l, 2}, whose indices are

M

u= Z(S“‘l)m_l '(jM-m+| —sign(m _l)) (15)

m=1

and

W= Z(SH)”" (spowons —sign(n=1)).  (16)

n=1
Surely, some pure strategy Z§x> (S) by its number (15)

of the first player is unrolled back to the M -
dimensional point of hypercube (2) through indices

b
T = (u, S+l)+(S+l)(l—sign[\u(u, S+1)]) ,

m—1

u-j, —Z(SH)'"‘ (Jurow 1)
Jum =14V T ,S+1
(S+1)
Vm=1,M-1, (17)

where function (a, b) returns the fractional part of

w

the ratio %. And some pure strategy z<,y>(S) by its

number (16) of the second player is unrolled back to the
N -dimensional point of hypercube (3) through indices

N

{jM+n}zz:1 :

Juen =v(w, S+1)+(S+l)(l—sign[\u(w, S+1)]) ,

jM+N—n =1+

n—1

W= Jyren _Z(S +1)n] (jM+N—n, _1)
+y n= ,S+1
(S+1)"

Vn=l,N-1. (18)

Hence, instead of the continuous game (1) by re-
quirements (9) for its kernels on hypercube (4) there can
be considered the approximation of this game in the

form of bimatrix (S + l)M (S + I)N -game
(S+l)w (S+l)w
<{z£x> (S)}uzl A=Y (S)}m .G, G2> . (19)
The games (1) and (19) are connected due to the follow-
ing. In the game (19) pure strategy Z§x> (S) of the first
player corresponds to its strategy X in the initial game
(1) with components {xm =5"(J _1)}M,[ , and pure

strategy Y (S) of the second player corresponds to its

w

strategy Y in the initial game (1) with components

—_ . N
{3, =5" (yn =)}
Consistency of supports of the players’ NE-strategies.
Denote by

[AERE A EIE e
an NE-solution of the game (19), where p*(zf,x>(S))
(v)

w

n=1 ’

and g. (z (S )) are probabilities of applying the strat-

egies z<x>(S) and z\Y

u w

(S) correspondingly. And let

the support of NE-strategy of the first player in the
game (19) be the set

{=4% (S)}:(S) u ()Y e {1, (s+1)" } 21)

and the support of NE-strategy of the second player in
this game be the set

(L] e s e

Then, returning to the support definition, players within
their NE-strategies in the solution (20) possess sets

{p (= (s ))}:(S) (23)

and
W.(S)
e (20 9)), @9
of nonzero probabilities. Then let v} (S) and v (S)

be payoffs of the first and second players correspon-
dingly in the game (19):
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(25)

It is apparent that there can be selected such a num-
ber S e N, for which the payoffs (25) of the game (19)
will be significantly different from the payoffs in the
game (1), taken by NE-situation, whose approximation
is (20). Another difference is that NE-situations in the
game (19) will have structure, being hardly comparable
to the corresponding structure of NE-situations in the
game (1). So, for acceptance of the game (19) solution
as an approximate solution of the game (1) there is
needed a sufficient closeness of the players’ NE-
strategies, being obtained by different versions of the
number S . Surely, it is impracticable to sweep the
players’ NE-strategies in a wide range of S . Therefore
first of all it should be conditioned the sufficient close-
ness of the one player’s NE-strategies when the number
S is changed minimally.

The spoken closeness may be called the consistency
of the players’ NE-strategies supports. For its definition

consider a piecewise linear hypersurfaces #, (u, S ) and
h,(w, S), where the hypersurface % (u, S) vertices are
in points

{{s-‘ A A (s))} (26)

in R**", and the hypersurface h,(w, S) vertices are in

(15" G 1) (2(9))

in R""'. Additionally will mark out the nonzero vertic-
es among (26) and (27) as points of hypercubes U,, and

U, , matching the sets (21) and (22). For this, having
unrolled {u,(S)}Z(S) and {w, (S)}Zl(s) by (17) and (18)

back to multidimensional indices, the index u,(S) is

points

27)

matched to the point
X,(8)=[x(5)]  =[s"(i($)-1)] ev,
Vi=1U.(S)
and the index w, (S) is matched to the point
Yi(8)=[3 ()], =[5 (4 (9)-1)] ev,
VI=1,W.(S).
Furthermore, let the points  {X,(S)]""" and

be sorted into sets

{Y/ (S)}j:(S)
U.(s)

X5},
s -] -

i=1

and

that the value

[,e{[+1,.UA(s)} \/Z(z’?> (S) - 7n<z[]> (S))Z

min
m=1

(28)

is reached at iy =i+1 for each i =1, U.(S)-1, and the
value

(29)

N
. =(1) _ =) 2
l,e{lf—ll‘l,ll/g(s)} \/Z(]M+n (S) JMn (S))

n=l1

is reached at /, =/+1 for each /=1, W.(S)-1. Thus

here is the definition of the most primitive consistency
for the approximate solution of the game (1).

Definition 1. Solution (20) of the game (19) is
called weakly consistent for being the game (1) approx-
imate solution if

U.(S+1)=U.(S), W (S+1)=W.(S), (30)
Wi (8) =i (S| <k (5 -1) =ik (S)
by re{l, 2}, 3D
\ Tl ’
e - \/Z(] S+1)=7i " (s+1)) 1<
N (s
(i t+l
< e Z(/( -7y
5
max {3 (7, (s+1)-F2 (s +1) <
1ef1 w.(s+1)-1} e
{ Titen(S) =T (S } (32)
n=l1
maxh . S)—hy(u, S+1)
<n}%x\hl(u,S—1) h(u, S),
n?je:x‘hz(w, S)—hy(w, S+1)‘
<r?/e:x L (w, S=1)=hy (w, S), (33)
I (2. )=y (. S +1)| <
<|m (. S=1)=n (u, )| in L,(U,).
[, (., )=y (w, S +1)| <
<[m (w. S=1)=hy(w, )| in L,(Uy). (34)

According to (30) — (34) the meaning of the weak
consistency for each of the players’ NE-strategies in the
solution (20) includes five claims. Namely, with the
minimal decrement of the sampling step the cardinality
of the support of NE-strategy will not decrease due to
(30). Also due to (31) the players’ payoffs in the new
bimatrix game will change no more than if the sampling
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step was increased minimally, where those payoffs are
taken only by NE-situation, whose approximation is
(20). And due to (32) with the minimal decrement of the
sampling step there is no decrement in density of points
with nonzero probabilities of their selection on the cor-
responding hypercube. Moreover, due to (33) and (34)
with the minimal decrement of the sampling step the

piecewise linear hypersurfaces # (u, S) and h,(w, S)

approximating the supports of the players’ NE-
strategies, will change no more than if the sampling step
was increased minimally.

The primitiveness of Definition 1 can be obviated
with adding conditions of the minimal increment of the
sampling step at (30) and (32). Thus the “weakness”
disappears.

Definition 2. Solution (20) of the game (19) is
called consistent for being the game (1) approximate
solution if

w.(S-1),

> UL (
e { (79(5)-75"(5)) <

m=1
\ maX {
maX { J M +n

}{\/2(7&"(&1) T - ))2} (36)

n=l1

\ W.(S)= (35)

(70 (s-n-FL"(s-1) ¢,

2
)= (5)) <

m=1
n=l1

< max

IefT (=111
along with (30) — (34).

The consistency is apparently a particular case of
weak consistency, reinforced with (35) and (36). The
weak consistency reinforcement implies that, firstly,
according to (35) with the minimal increment of the
sampling step the cardinality of the support of NE-
strategy will not increase. Secondly, due to (36) with the
minimal increment of the sampling step the density of
points with nonzero probabilities of their selection on
the corresponding hypercube mustn’t increase. Speaking
generally, the player’s NE-strategy support is consistent,
if it is weakly consistent and in the minimal vicinity of
the sampling step the NE-strategy support cardinality
changes monotonously, as well as the density of points
with nonzero probabilities of their selection on the cor-
responding hypercube. Nonetheless, one should remem-
ber that any consistency of the player’s NE-strategy
support does not mean necessary any consistency of the
other player’s NE-strategy support.

Certainly, consistency of the game (19) solution (20)
does not always refer to unambiguous eligibility of the
approximate solution of the game (1). Once again, one
should remember that the players’ genuine payoffs in
the game (1), taken by NE-situation, whose approxima-
tion is (20), stay still unknown. And requirements (31)
imply just that discrepancies in the players’ payoffs
would change monotonously (but not to increase with
the minimal decrement of the sampling step), although

the limits lim Wi () and lim Vi) (S) existence is non-

asserted. Besides there may be many other NE-
situations, giving diverse payoffs for players. Neverthe-
less, after requirements (30) — (34) are satisfied there
appears a preference of applying the approximate solu-
tion (20) of the game (1). And if those requirements are
supplemented with (35) and (36) then it only reinforces
the preference, where monotonicity in the approximate
solution (20) becomes “wider”.

CONCLUSIONS. The suggested sampling for solv-
ing approximately the continuous two-sided noncooper-
ative game (1) on unit hypercube (4) is fulfilled in three
stages. Primarily the conditions of sampling the game
kernels smoothly in (9) are checked out. This is helped
with the value (10) and one of the conditions (11). Then,
having got the points in sets (6) and (7) for the assigned

number S, (M + N) -dimensional matrices

p=[pfl], amd B =[p]
(12) and indices (13) are reshaped into ordinary flat
matrices G, and G, in (14), whose indices are (15) and
(16). At the third stage the game (19) solution (20) is
checked out for its consistency. If the solution (20) ap-
pears nonconsistent even weakly, then the number of
intervals S between the selected points should be in-
creased.

The defined consistency is a particular case of weak
consistency, wherein controlling the conditions (36) will
take increasingly more time on hypercubes of greater
dimensions and hundreds-order S . This is because of
the additional sorting of elements of the sets

{Xi(S—l)}Z(S_l) and {YZ(S—I)}ZV:(S_U into the sets

{)_(,.(S—l)}:(s_l) and {?Z(S—l)}?;(s_l) within solving

the problems alike in (28) and (29). Consequently,
“multidimensional” games with very scrupulous ap-
proximation are better to check out for weak consisten-
cy, what is much faster. All the more so since consisten-
cy of the one player’s NE-strategy doesn’t guarantee
even weak consistency of the other player’s NE-strategy
support. And, generally, consistency isn’t necessarily

with  that lim 7y (u, S)

;im hy(w, ) exist (anyhow, this unfortunately is not

with their elements

followed limits and

proved yet) and how they are close (in sense of the cor-
responding functional spaces metrics) to the genuine
NE-strategies in the game (1).

Hence, solving the game (1) approximately needs at
least the weakly consistent NE-solution. And the appro-
priate approximation lets solve even games without NE-
situations [19, 20]. But shall one player use its (weakly)
consistent NE-strategy if the other player’s NE-strategy
isn’t consistent (or just weakly consistent)? And is it
possible to determine (weak) consistency of the other
player’s NE-strategy if the one’s has been determined?
These questions are motives for further work on sam-
pling the continuous games. Furthermore, the way with
generalization in sampling hypercubes U,, and U,

non-uniformly is going to be stated, where also sampling
on open and semi-open hypercubes will be discussed.
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[Ipemtaraercss MeToA MOJIYYCHUS MPHONIKEHHOTO PEIICHHS B CMBICIC paBHOBecus 1Mo Helly KOHTHHYaJIbHBIX
JBYXCTOPOHHHUX OCCKOATHIIMOHHBIX WIP HA CIUHHYHOM MHOTOMEPHOM KyOe C IOMOIIBI0 PaBHOMEPHOM JUCKPETH3AINN
BIIOJIb KXKIOTO U3 u3MepeHuil. IIpeasaBisaioTcs TpeOOBaHHUS K TOMY, YTOOBI IIAJKO JUCKPETU3UPOBATh SApa UIPhI, U
COOTHOIIICHUSI, TTO3BOJISIOIIAE OCYIIECTBIIATh MPEOOpa3OBaHUE MHOTOMEPHBIX MATPHIL B OOBIYHBIC TBYXMEpPHBIC C CO-
XpaHCHUEM B3aMMHOOIHO3HAYHON MHACKCAIUK MEXIY UX dJIeMeHTaMu. Perrenue B cMbIciie paBHoBecHs o Hemry co-
OTBETCTBYIOIICH OMMATPHUYHON WTPHI MIPOBEPSETCS Ha JBa THIA COIJIACOBAHHOCTH, IPEJIaraeMbIe YCIOBHS KOTOPBIX
MTO3BOJISIFOT CYIUTh O TOM, HACKOJIBKO ATO PEIICHHE U3MEHACTCS PYU MUHUMATIHHOM M3MEHCHHUH IIara JUCKPETU3aINH.

KiroueBble ci10Ba: IByXCTOPOHHUE OCCKOAIUITMOHHBIC UTPBI, AMHUYHBIN THIEPKY0, MHOrOMepHas MaTpuiia, NE-
cTpaTteruu (paBHOBECHBIE cTpareruu 1o Hemry), npubmmkEHHOE perienne, coriacoBanHoCTh NE-penreHus (pemeHus B
cMBICIIe paBHOBecus o Hemry).
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