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OPTIMAL HIDDEN LAYER NEURONS NUMBER IN TWO-LAYER PERCEPTRON
AND PIXEL-TO-TURN STANDARD DEVIATIONS RATIO FOR ITS TRAINING ON PIXEL-DISTORTED
TURNED 60x80 IMAGES IN TURNED OBJECTS CLASSIFICATION PROBLEM
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Purpose. To optimize the two-layer perceptron by its two parameters for turned objects classification problem. The
first parameter is the number of hidden layer neurons. The second one is ratio of pixel-to-turn standard deviations in
forming the training set. The general totality is of plane objects imaged monochrome, and thus the two-layer perceptron
is trained to classify turned 60x80 monochrome images. Results. The optimal hidden layer neurons number in the
two-layer perceptron has been found along with pixel-to-turn standard deviations ratio for training on pixel-distorted
turned 60x80 images. The pair of those optimal parameters, however, is not unique, and other versions of optimal
pairs are listed. Generally, for classifying turned objects, the optimal hidden layer neurons number shall be adjusted to
the set of 131 elements starting at 220 and ending at 350. The best pixel-to-turn standard deviations ratio is a value from

the segment [0.03; 0.1], although roughly. For 60x80 images, the most appropriate ratio is a value from the segment

[0.04; 0.06]. Originality. By the said parameters, the two-layer perceptron is trained optimally. Its performance over

turned objects with 4800 features is nearly the best. The mentioned quasioptimality is unavoidable because of very high
variance at the lower classification error percentage. Practical value. The averaged classification error percentage de-
creases down to 0,13 %. At the maximal intensity of turn distortion, the classification error percentage decreases down
to 0,85 %. References 10, figures 5.

Key words: turn distortion, classification, perceptron, training, performance, classification error percentage, optimi-
zation.

ONTUMAJBHE YACJIO HEMPOHIB IIPUXOBAHOI'O IIAPY JIBOIIAPOBOI'O TEPCENTPOHY
TA CHIBBIHOIEHHA CEPEJHBOKBAJIPATUYHUX BIXWJIEHD JIJISI MOT'O HABUAHHS
HA ITIOBEPHYTHX 60x80-30BPAKEHHSX 3 NIKCEJIbHUMU CIIOTBOPEHHSIMHU
B KJIACU®PIKAIIIL OB’EKTIB 3 IOBOPOTAMM

B. B. Pomaniok

XMeNpHUIBKIH HAIlIOHABHIHN YHIBEPCHTET

ByI. [HcTHTyTChKA, 11, M. XMenbuunbkuii, 29000, Ykpaina. E-mail: romanukevadimv@mail.ru

OnTUMi3yeThCS TBOIMAPOBHI MEPCENTPOH 3a HOro ABOMa MapaMeTpaMu IS 3a1adi kKiacugikarii 00’ €KTiB 3 MOBO-
poramu. IlepmiM napaMeTpoMm € YMciI0 HEHPOHIB y MPUXOBaHOMY IIapi. JpyriuM mapaMeTpoM € CIIiBBiJHOLIEHHS ce-
PEeIHBOKBAIPaTHYHAX BIAXMIICHH ITIKCEJFHUX CHOTBOPEHb 1 IOBOPOTIB IpH (HOpMyBaHHI HaBYAIBbHOI MHOKHHU.
3HaiiieHo onTHMalIbHE YHCIIO HEWPOHIB Y IPUXOBAHOMY MIapi JIBOIIAPOBOTO MEPCENITPOHA MOPS 31 CHIBBIIHOMICHHAM
CepeIHbOKBAIPATUYHUX ~ BIAXHMICHb MIKCEJBHUX CIIOTBOPEHb 1 IIOBOPOTIB Ui HAaBYaHHA Ha IOBEPHYTHX
60x80 300pakeHHSX 3 MIKCEIbHUMH CHOTBOpEHHAMH. [lapa Takux ONTHMaNbHHUX MapamMerpiB, BTIM, HE € €IMHOIO, 1
HaBOAATHCS 1HIII BapiaHTH ONTUMAJIBbHUX Map. J(BomIapoBuii mepcenTpoH 3a UMH NapaMeTpaMHi HaBUYAETHCS B ONITHMa-
JBHOMY pexnMi. Foro mpoyKTHBHICTb Ha TOBEPHYTHX 00’ekTax 3 4800 03Hakamu € Maibke Haitkpamoro. CepeHiit
BiJICOTOK MTOMIIIOK Kiacudikamii 3mermyetbes 10 0,13 %. 3a MakcMManbHOT iIHTEHCHBHOCTI CIIOTBOPEHb MTOBOPOTAMHU
BiJICOTOK MOMMJIOK Kiacuikaiii 3menHmyetsest 10 0,85 %.

KoarouoBi ciioBa: crioTBOpeHHs MOBOpoTamHM, Kiacuikallisi, MepcenTpoH, HaBYaHHs, NPOJYKTHBHICTh, BiJICOTOK
MOMUJIOK Ki1acuikarii, onTHMizarlis.

PROBLEM STATEMENT. Twists, angulations, should be. For instance, if o, =m/2 then it is advisa-
swerves in objects and their classification. Classifica- ble to differ NDPR of the plane object, turned by a quar-
tion is a foundation for automatization and control. Be- ter of full turn, and the initial NDPR of this object

fore constructing a classification system, objects for
classification are considered with their features and dis-
tortions in them, what is needed to identify the classifier

(without any distortion, without turn). Thus N, is dou-
bled. If o, =2n in plane objects classification, that is

[1, 2]. These distortions are twists, angulations, swerves, the object can be turned arbitrarily around its center,

which are as frequent as shifts, scalings, feature distor- then it is worthwhile to put into 16 different classes the

tions [3, 4]. same object, turned at angle o, =nn/8 by n=0,15
Once the number of classes N, is determined within (figure 1).

the general totality (GT), containing non-distorted pure Another method of classifying arbitrarily turned ob-

representatives (NDPR) of all these classes (one NDPR jects consists in using 16 classifiers for objects, whose

for each class), the classifier identification starts. In NDPR originate from N, initial NDPR with the angle

classifying objects with their properties of turn (rotation
or twist, angulation, swerve), the number N, depends
on how hard the object may be turned. The greater the
maximal turn angle (MTA) o, is, the greater N,

a, (non-turned), subsequently turned at angles in the

set {anznn/8}io. Generally, there should be used
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2M classifiers if the (n+1)-th class object NDPR is
the initial (non-turned) NDPR of this object, turned at

angle

nr
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Figure 1 — The plane monochrome imaged object,
turned at angle a,, =nn/8 and put into the class n+1

by n=0,15

This clearly lingers the classification process. The divi-
sion by 2M classifiers with N, classes for each classi-
fier is accomplished when the objects data are prepro-
cessed [2, 5, 6], what slightly accelerates the classifica-
tion process in comparison to using the single classifier
with the increased number of classes 2MN, instead of
the initial N, .

Improving the classification process with the classi-
fier parameters optimization. Suppose that the classifier

has K el adjustable parameters {ap}l;1 by a, e A,

Y p =1 K and A, is the set of admissible values of the

parameter a,. There may be sets of linguistic variables
K

in {Ap}pzl'
The function of performance 8({ap}::1) is an ag-

gregate over output parameters of the classifier — clas-
sification error percentage (CEP), traintime duration
(TTD), hang probability, level of resources (memory)
consumption, etc. Usually, the aggregate performance is
a classifier property to be minimized. If

K
A= [ap]w EX Ay
p=1

then applying the vector

* * . K
A :[aP:LxK eargAEr;J(nA 8({ap}p=l)

@

P

of optimal parameters for the classifier improves its
functionality and the classification process on the
whole.

Some of those parameters relate to the classifier
structure, others are included into training sets for su-
pervised learning process (SLP). Forming the training
sets for SLP rationally is very important to identify the
classifier for the given GT in the best way [1]. However,
for solving the problem (2), there must be evaluated the

sets {Ap}'::l (commonly, with their boundaries) and the

function of performance S({ap}K ) This is pretty ro-

p=1
bust work on multivariate statistics, which gets compli-
cated as the quantity K increases [2, 6].

Thus discourse on defining and solving the problem
(2) is reasonable when classifiers have short TTD in
SLP and consume not much of resources. Perceptrons
are good in those two aspects. Theoretically, two-layer
perceptron (2LP) can fit any function, which maps the
being investigated objects into their N, classes [7]. For
that 2LP structure ought to be rationalized by adjusting
its hidden layer neurons number (HLNN) N,,. In
turned objects classification problem, 2LP has better to
be trained on turned objects, mixed with additional fea-
ture distortion (AFD). For plane objects, imaged mono-
chrome, this AFD is pixel distortion (PD), when the

pixel {u, v} code (value) v, €{0,1} of the image for-
matted U xV is converted to a real value ©,, ¢{0,1} at
Ue{l,_U} and VE{l,_V}. In degenerate cases, PD is

pixel inversion due to ©,, =1-v,,.
The intensity of PD can be measured (or preset) with
standard deviation (SD) o, [3]. If there is SD & that

defines the intensity of turn distortion (MTA o, ).
then pixel-to-turn standard deviations ratio (PTSDR)

©)

stands as one of the training process parameters from

I'=0p/C
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the set {ap};. The questions of this paper are the fol-

lowing. What is the most rational (optimal) HLNN for
2LP, classifying turned 60x80 monochrome images
(T6080MI)? And at what PTSDR shall 2LP be trained
to obtain its performance with lower CEP? Clearly, the-
se two parameters of 2LP are going to be optimized
simultaneously alike in (2).

The paper goal and tasks. Let 2LP performance

function 9(r, N, ) be an averaged CEP value
Pec (1, Ny ) - Then the problem (2) is

[r" Niuw Jargmin pec(r, Ny ) 4)

implicitly. For solving the problem (4) there are GT and
NDPR of the classes to be defined, whereupon a method
to train 2LP will be accepted. Based on a model of pix-
el-distorted turned 60x80 monochrome images
(PDT6080MI), boundaries for HLNN and boundaries
for PTSDR are to be evaluated that the global minimum
of HLNN and the global minimum of PTSDR would be
certainly enclosed within the corresponding ranges of
HLNN and PTSDR. The next stage is running through
the rectangle of HLNN and PTSDR values, what will let
minimize the averaged CEP due to (4). Inferences and
suggestions for further 2LP performance optimization
will conclude this work.

EXPERIMENTAL PART AND RESULTS
OBTAINED. GT and NDPR of the classes. If a plane
image is monochrome then it is modeled with 60x80
matrix of ones and zeros (MOZ). Hence GT of all mon-

ochrome 60x80 images is finite and has 2% ele-

ments, 2% those MOZ. To embody the plane mono-
chrome imaged object, NDPR of N, classes within this

GT should have some generalized properties like hori-
zontal and vertical lines, squares, circles, slants, curves
or serpentine lines. The enlarged English alphabet capi-
tal letter (EEACL) could be assumed for that (there are
downsized monochrome 60x80 images of all 26
EEACL in figure 1). There won’t be considered angula-
tions greater than a quarter of full turn, therefore
N,=26.

MATLAB function for training the perceptron. A lot
of methods to train 2LP are developed within MATLAB
Neural Network Toolbox [3, 4]. Basically, they are
grounded on backpropagation algorithm. Statistically
the best convergence in SLP is provided with the train-
ing MATLAB function “traingda” [3, 8, 9], which up-
dates weight and bias values according to gradient de-
scent with adaptive learning rate [10]. Henceforward,
“traingda” will be used in SLP to identify the classifier
on the ground of 2LP, which in MATLAB is initialized
as the function “feedforwardnet” (or “newff”, in obso-
lete  way). Let this 2LP be denoted by

9P(4800, N, 26) notifying that 2LP input layer has
4800 neurons, its SHL has N, neurons, and 2LP out-

put layer has N, =26 neurons.

Model of PDT6080MI. The training set with
PDT6080MI is formed in F € N phases. Number F is
an indicator of smoothness in  SLP  of

(4800, Ny . 26). The greater its value is, the
smoother 92(4800, N,

HLN?>

LN>*

26) is trained, acquiring bet-

ter performance properties. However, increasing ex-
ceedingly the number F delays SLP. That’s why

F =8 what is far enough for 22(4800, N, . 26).
SD, defining the intensity of turn distortion at
the k -th phase, is
6, =6, F*k Vk=1F
by 6, >0. Every NDPR from GT is turned at angle
180 _
B(k):T'Gki(k) (6)
in degrees around the center point of the image, where
F;(k) is a value of normal variate (NV) with zero ex-

pectation and unit variance (ZEUV), raffled at the
k -th phase. The ¢-th class NDPR as 60x80 MOZ

NG - i
H, _(huv )SOXSO is processed into T6080MI

®)

H, (k)=1-p(1-H,.B(k). M, S) at q=1,26 (7)
by the map p, turning the input ¢ -th class NDPR neg-

ative 1-H, at angle (6), where the interpolation meth-

od with the handle M is applied, and the size 60x80
of the returned negative T6080MI of the q-th class is

specified with the handle S [3]. The map p in (7)
along with handles {M,S} is implemented by
MATLAB function “imrotate” [4]. NDPR is turned in
counterclockwise direction if PB(k)>0, and for
B(k)<0 NDPR is turned clockwise; of course, NDPR
remains itself for B(k)=0.

At the k -th phase PDT6080MI is 4800x 26 matrix

H(k)=H(k)+c})) -2 ®)
by SD
okl =™ .Fl.k Vk=1F 9)

and matrix H(k):[ﬁjq(k)J whose ¢ -th column
4800x26

is 4800-length-single-column-reshaped matrix (4800-
LSCRM) H, (k) in (7), where Z is 4800x26 matrix
of values of NV with ZEUV. Maximal intensity of PD
ot >0 is connected to the similar one &, >0 in
(5) across PTSDR (3). This PTSDR is constant
v k=1 F and so there is more strict statement

r=oin™ /s (10)

max

for PTSDR. PTSDR (10) varies as o™/ changes on
some constant o, , being definition-maker for
T6080MI. Henceforward, for presetting PTSDR there is
SD o™ is just required.

For training on PDT6080MI the input of
P(4800, Ny . 26) is fed with the training set

fimiz (Aol |

replicas of all 26 classes NDPR, where
4800x26 matrix H s

(1)

by ReN
the g-th column of
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4800-LSCRM H, at q=1 26. Number of replicas

of H slightly influences on SLP smoothness,
and R=2 is far enough for 92(4800, N, 26).

HLN *

The set (11), being 4800x 26( R+ F) matrix, is passed
through  @2(4800, N,,. 26) with R+F identifiers

{1}™F on identity 26x26 matrix 1 for Q,,, times.
Thus the PDT6080MI-trained 92(4800, N, . 26) can
be denoted by

P (4800, Nyyx» 26:6,,. 1 ROFL O, ). (12)

To obtain
(4800, Ny 26,6, 7 2.8, 0,..)

with high performance quality in classifying T6080MI
or PDT6080MI, it is required to preset Q. =>75.

Therefore, after fixing some &

max !

P (4800, Ny, \, 26; G

s r;2,8,75) (13)

max *

will be tested as the classifier of T6080MI and

PDT6080MI through the line (or striped, because HLNN

are integers) rectangle of HLNN and PTSDR values.
Boundaries for HLNN. The range of HLNN values is

[Né”ﬁ:", ]ﬂN by its boundaries N{™ and

N (max) min (min)

un - Left boundary NHLN is that by N <N\
2LP Z2(4800, Ny, . 26) is trained too slow or cannot

HLN >
be trained at all. Right boundary N/

is that by
Ny > NG 2LP - 22(4800, N,y ., 26) can be over-

trained or SLP hangs and buzzes even while it is trained
on NDPR with their 4800x26 matrix H . Empirically,

there are most likely N[ =150 and N{™) =400
independently of PTSDR (10) for sensible SD o, -
Now, 2LP (13) shall be run through batch testing by

Ny €[150; 400]N under some G, and PTSDR.
can be

Boundaries for PTSDR. It is clear that G,

assigned according to the restriction on angulations for
T6080MI within a quarter of full turn. Again empirical-
ly, with being generated angles (6) value o . =0.2 is

max

suitable for that restriction [3]. The lowest value of
oim™) cannot be zero, inasmuch as at r=0 there is no

PDT6080MI (8), 92(4800, N, ., 26) is trained solely

max
HLN

~ F
on F portions {H(k)} of T6080MI, and SLP is de-
k=1

layed unwantedly. Besides, 2LP (13) should classify
PDT6080MI, having admittedly its own PTSDR for
testings (it’ll be argued against in the next section). This
is workable if r>0. Thereupon the lowest value of

is 0.002 as by o™ <0.002 PD in PDT6080MI

(max)

(8) is hardly tangible, and the uppermost value of oy,

(max)
Opp

1

pEC(r’ NHLN) 7‘“ ||S”

c=S

is 0.2 as by GPD )'>0.2 PDT6080MI (8) become over-
distorted (visually they are percelved as pure grayed
noise). Consequently, range of PTSDR (10)

has boundaries r,,, =0.01L and r_, =

Running through the rectangle of HLNN and PTSDR.
The line rectangle of HLNN and PTSDR values

e o D21 000 =

=[0.01; 1]{[150; 400] N}

mm
HLN »

m.ix

(14)

is to be covered with evaluations of the averaged CEP
values pg.(r, N,y ) for solving the problem (4)

[r* N ;LN J €
< arg[[r ;\JH,}]Q[O‘OTIi]Ix]{[ISG: 400]ﬂN}{p e (72 Ny )} J (15)

For solving the problem (15), 2LP

P (4800, Ny, 26: 0.2, 75 2,8, 75) (16)
shall be run through batch testing by
[r NHLN] €[0.01; 1]x{[150; 400]ﬂN} . @n

The batch testing implies that 2LP (16) is tested with
T6080MI at
6€[0; 6, ]=[0; 0.2]
and with PDT6080MI under
6 €(0; G | =(0; 0.2]
at the testing PTSDR 1, (5)<(0;1] by (3). The up-

permost value of r.,(5) has been suggested for AFD
wouldn’t be more than just the turn intensity. Stating it
generally, at an SD 68 by a distortion type T ©®
and a testing PTSDR 1, (6)e R(5) 2LP (16) pro-
duces CEP

Prc (r, Nyix: 6, T, lg (5)) (18)

at (17). InCEP (18) S isarange of SDand R(c) is

a range of the testing PTSDR by a fixed point from S
(here, the range of the testing PTSDR won’t be varied).
The set ® is either of linguistic variable values, label-
ing distortion types (like wvalues “T6080MI”,
“PDT6080MTI”, etc.), or of numeric values. Reasonably
to put it ®@cN and then T=1 means “T6080MI”,
T =2 means “PDT6080MI”, 7=3 could have meant
some else distortion, engaging SD 6€S . For =1

the testing PTSDR r,,(6)=0 YceS, for 1=2 the

testing PTSDR 1., (0)=0. Then that averaged CEP

value under minimization operator in (15) is a convex
combination

I Pre (h Nijix 65 1, 0)d6}+
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1 1
+l(2) Tl J. - J- pEC(r’ N]lLNﬂ 6» 2, Kest (6))drlesl (6) do (19)
||S ceS HR(G)L‘N(é]ER(é]
by A(1)>0, A(2)>0, A(1)+1(2)=1. In generality, combination in (19) designates involvement of the dis-
tortion type T into the averaged CEP value. If the set
x(1)>0 v 1e® and Zx(r)=1 . (20) &' includes the point =0, in which 2LP works on
p—r- NDPR, then the second integral in (19) is brought to

where coefficient k(‘r) in (20) for the convex zero according to the norm ”R(C})”>O voeS. On

local simplification, combination (19) is re-stated as

1 i i
Pec (1 Ny ) =2(1) 55— J' Pec (F Nyy: 6,1, 0)d5 |+

5€0;0.2]

1 - - ~ -
+A(2) —— j -0 I pEc(I’, Nyin: G, 2, rtest(G))drtest(G) do |=

5¢(0;0.2] Test(5)€(0:1]

~ 50 (1) j Pec (1 Ny: 6, 1 0)dG+54(2) I J' Pec (1, Ny 6, 2, Ty (8))drg () [d5 . (21)

Ge[O; 0.2] Ge(O; 0.2] r,est(&)e(o; 1]

Ranges [0;0.2] and (0;0.2] are going to be run a rough mesh (23) of the surface (21) above the point

. rectangle (where each point is the average of seven 2LP
through with the step 0.02 what lets evaluate the aver- gle ( P g )

aged CEP (21) numerically:

(1) 10
pEC(r’ NHLN)= 11 E pEc(r, Ny, 0.02s,1, 0)+
s=0

10 10

A2
. 15) O)ZZ Pec (1, Nyyn, 0.025, 2, 0.1w)  (22)

s=1 w=l
for each two-component point (17), where norms |S|

and |R(5)| have been substituted with cardinalities of
the sampled subsets

{0.02s} <[0;02], {0.02s} <(0;0.2],

0w}’ <(0;1].

Involvement of T6080MI and PDT6080MI could be
considered closely equal. And it might have been put
A(1)=2(2)=05 in (22). However, testing with
PDT6080MI takes longer periods, and it does not cor-
rect evaluations of the averaged CEP much (see, for
instance, [3, 4]).

The rectangle (14) is sampled differently from sides
of PTSDR and HLNN. For the first time, HLNN is tak-
en with some gaps:

Ny € {150, {200+10q}° . 400} .

The range (side) [0.01; 1] of PTSDR is sampled into
the discrete subrange

{{o.ot+00uy {00}, } <[0.011]. : | \%\<7® | E—

The corresponding 342 sampled estimation values of ﬁ
CEP 047, N,

150 200 250 300 350 400 THLN

10
Pec (1) Ny ) = —Z Pec (1, Ny, 0.025,1,0) (23) Figure 2 — A rough mesh (23) of the surface (21)
114 by A(1)=1 above the point rectangle (24)
on 400 batch testings of 2LP (16) allow to see (figure 2)
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{{o.0r+o.0u)] o}’ |~

x{150, {200-+10q}", , 400} (24)

The rough-watched minima of the surface (21) allow
narrowing the point rectangle (24) to 238-pointed one

{{o.0t+00u} , {o.u};, fx{{200+10q}7 . 400}. (25)

Pec (1) Nogy)

0.23—
0.2275—
0.225—
0.2225—
0.22—

Now the refined mesh (23) of the surface (21) above the
point rectangle (24) is seen (figure 3) more scrupulous,
where each point is the average of 10 2LP. Further,
HLNN 360 is included, and PTSDR greater than 0.1 are
cut off. Figure 4 represents the locally re-refined mesh
(23) of the surface (21) above the 170-pointed rectangle

{{o.0u} }x{{200+10a}7 .} .
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Figure 3 — The locally refined mesh (23) of
the surface (21) by A(1)=1
above the point rectangle (25)

Need we further narrowing the 170-pointed rectangle
(26)? For instance, it might have been taken for

{{o.05+0.0u}; }x{{220+100}},}.

Proceeding from those 35 2LP used for averaging over
badly volatile local evaluations, the answer is negative:
CEP is too small and it is at about the variance. This is
why taking HLNN with the unit step is senseless here.
The averaged CEP minimization due to the problem
(15) and its verification. After having analyzed the sur-

210 220 230 240 250 260 270 280 290 300 310 3200 330 340 350 360 N HLN

Figure 4 — The locally re-refined mesh (23) of
the surface (21) by (1) =1 above the point rectangle (26),
where each point is the average of 35 2LP

face (21) meshes for T6080MI classification problem,
the problem (15) numerical solution looks like to be in a
series of untied points, whose CEP is less than 0.2 (fig-
ure 5). The smallest CEP is at the point

[r Na]=[01 320], @7)

but the point
[r Npn]=[0.06 350] (28)

is much the same.

However, if to consider all
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170-35=5950 2LP for figure 4, there are 16 2LP
(contoured elliptically and highlighted in figure 5)
whose CEP occurred to be less than 0.13, although

001 002 003 004
200 0.2149 0.2152 0.2105 0.2145
210 0.2061 0.2142 0.2100 0.2086
220 0.2078 0.2108 0.2070 0.2140 <0.
230 0.2017 0.2094 0.2091 _ 0.2045
240  0.2084 0.2041 <0.2070> 0.2182
250 0.2166 0.2052 0.2177 0.2140
260 0.2108 0.2132 <0.2100> 0.2151

Ny 270  0.2059 0.2100 0.2051 0.2046
280 <0.2002> 0.2089 <0.2162: 0.2172
290 0.2253 0.2031 0.2076 0.2071
300 0.2135 0.2052 0.2140 0.2093
310 0.2164 0.2141 0.2105 0.2032
320 0.2007 0.2092 0.2144 <0.2096
330 0.2097 0.2040 0.2127 0.2092
340 0.2079 0.2098 0.2145 0.2193
350 <0.2038> 0.2080 10.2061::10.2080
360 0.2028 0.2138 01975 0.2039

points (27) and (28) don’t belong to the list
of those 16 ones. Hence, the best 2LP is searched
within this list.

0.06

0.2146
0.2110
6> 0.2124
0.2197 ¢
0.2189
0.2120
0.2049
0.2051
0.2151
0.2102
0.2170
0.2092

0.07

0.2162
0.2137
0.2057

0.1

0.2229
0.2152
> 0.2099
0.2235
> 0.2097
0.2153
0.1978
0.2128
0.2149
0.2168
0.2110
0.2022
0.1958
0.2151
0.2067
> 0.2127
0.2032

0.1967
02078 0.217
0.2143 <0,2110
0.2095
0.2110
0.2066
0.1975
0.2108

5, 0.2024

________ 3 0.2002

0.2044 0.2202

031960 0.2014

02176 0.2118

Figure 5 — CEP values of the mesh (23) above the point rectangle (26), where nine less-than-0.2 values are highlighted

It is revealed that 2LP is trained best at

[r" N |=[004 320]. (29)

In this point the averaged-rounded-upward CEP
Pec (", Niin ) = Pec (0.04,320) = 0.13

appears to be minimal within the line rectangle (14). Is
it really minimal and does the point (29) indeed mini-
mize the averaged CEP over T6080MI, tolerating some
PDT6080MI? Yes, this is successfully verified with
1000 batch testings. Noteworthy, at the maximal inten-
sity of turn distortion, i. e. at 6=0,, =0.2, CEP over

T6080MI decreases down to 0.85 %. This confirms that
the point (29) is a solution of the problem (15). None-
theless, this solution is not unique, and other optimal
(or, rather, quasioptimal) pairs of PTSDR and HLNN
are right-above-starred in figure 5.

CONCLUSIONS. The mentioned quasioptimality is
understood clearer when watching meshes in figure 4
and signs in figure 5. This “quasi” is unavoidable be-
cause of very high variance at the lower CEP. The most
rational HLNN for 2LP to classify turned objects with
4800 features lies between 220 and 330. An exact num-
ber cannot be specified, though an HLNN from 320 to
330 is strongly recommended. A quasioptimal PTSDR

should be selected from the segment [0.03; 0.1], espe-

cially if number of features is comparable to a few thou-
sands, but it’s not 4800. For T6080OMI or PDT6080MI,
the most appropriate PTSDR is a value from the seg-

ment [0.04; 0.06]. Generally, for classifying turned

objects, HLNN shall be adjusted to the set {220, 350}

of 131 elements (see this range in figure 5 vertically),
and the best PTSDR is r" €[0.03; 0.1], although rough-

ly.

Inferences and suggestions for further 2LP perfor-
mance optimization. The described procedure of opti-
mizing the performance of 2LP (12) in its two parame-
ters for a turned objects classification problem can be
applied to other 2LP

P (N, Nins Nos T) (30)

format >

with the sequence T of SLP parameters, when 2LP
(30) has to classify objects with their N features.

The structure of this paper is a template for such optimi-
zation. The prime stage is to define GT and NDPR of
the classes in it, whereupon 2LP and turn objects distor-
tion are modeled. Subsequent stages are: to evaluate
boundaries for 2LP parameters, which are to be opti-
mized; to run 2LP through the set of values, what would
let minimize the averaged CEP; to verify the determined
minimum, testing the performance of 2LP heavily.

The further performance optimization in 2LP (12)
with its two optimized parameters in the point (29) or in
right-above-starred ones in figure 5 may concern 2LP

P(4800. Ny 26,02, R FL Q) (31)

with its averaged CEP pec (R, F, Q) to be mini-
mized on integer parallelepiped of values of the ternary
{R, F, Qug} - It’s worth to mind that any spotted mini-

mum may move as the function is extremized on other
variables. Nevertheless, the ternary minimum for 2LP
(31) here could make CEP lower, and the couple

{r*, N,:LN} wouldn’t have been nonoptimal then due to
quasioptimal ranges of PTSDR and HLNN. Note that in
this case the optimized Z2(4800, Ny, 26) can be

HLN >

trained with PTSDR r” so, that gains in further minimi-
zation of the performance of 2LP (31) may appear too
insignificant.
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ONTUMAJBHOE YU CJIO HEMPOHOB CKPBITOI'O CJIOS JIBYXCJIOMHOI'O HEPCENITPOHA
U COOTHOUIEHUE CPEJIHEKBAJIPATUYHBIX OTKJIOHEHUM /)15 ETO OBYUEHUS
HA MTOBEPHYTBIX 60x80-U30BPAKEHUAX C MUKCEJbHBIMU UCKAXKEHUAMUA
B KITACCU®UKAIIUN OBBEKTOB C IOBOPOTAMMA

B. B. Pomaniok

XMeNbHUIIKUNA HallUOHAJIbHBIN YHUBEPCUTET

yi. Mucruryrekas, 11, r. Xmensauikuit, 29000, Yipauna. E-mail: romanukevadimv@mail.ru

Ontumusupyercs ABYXCIOWHBINA EPCENITPOH 10 €0 ABYM MapaMeTpax Uil 3a7adi KIacCU(PHUKAUU 0OBEKTOB C I10-
BopoTaMu. IlepBbIM MmapaMeTpoM SIBISETCS YHUCIO HEMPOHOB B CKPBITOM cJo€. BTOpBIM mapamMeTpoM SBISIETCS COOTHO-
LIEHHE CPEHEKBAJAPATUUHBIX OTKJIOHEHUH NMHUKCENbHBIX MCKKEHWH WM MOBOPOTOB IpHU (pOpPMHUPOBAHMU 0OYYAIOIIETro
MHOXkecTBa. HaiiieHo onTHManbHOE YHCI0 HEHPOHOB B CKPBITOM CJIO€ JIBYXCJIOHHOTO MEPCENTPOHAa BMECTE C COOTHO-
IIEHHEM CpEIHEKBaJPAaTHIHBIX OTKJIOHECHWH IHMKCEJIBHBIX MCKaKCHWH M MOBOPOTOB Ul OOYYEHHsS Ha IMOBEPHYTHIX
60x80 -n300pakeHNX ¢ MUKCEIbHBIMHI NCKaKEeHNSIMH. [1apa TaKMX ONTHUMabHBIX TApaMETPOB, BIPOUEM, HE SIBISIETCS
€IMHCTBEHHOW, U IPUBOJATCS APYTHE BapHAaHTHl ONTUMAIIBHBIX Hap. J[ByXCIOIHBIN MepcenTpoH NpH 3TUX MapaMeTpax
oOyuaeTcs B ONTHMAJIBHOM pexrMe. Ero mpon3BoauTeIbHOCTD Ha MOBEPHYTHIX 00bekTax ¢ 4800 mpu3HaKamMu sBIACT-
cst nouty Hawityuuieil. CpeiHuid MpoeHT omMboK kinaccudukanuu ymensiaercs 10 0,13 %. [Ipu MakcuManbHON WH-
TEHCUBHOCTHU MCKa)XEHHI TTOBOPOTAMH IMPOLIEHT OMIMOOK Kiaccudukanuu ymenbiaercs 10 0,85 %.

KaioueBble ciioBa: McKaXeHHE TIOBOPOTaMH, KiIacCU(UKALMS, TIEPCENTPOH, 00ydeHne, MPOAYKTUBHOCTb, TPOIIEHT
OmMOOK KiTacCH(UKaNH, ONTUMHU3AIINS.

Crarrs magiimuia 30.10.2015.
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