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Purpose. For furthering the known approaches to the Nash equilibria refinement, an approach should be suggested
that could exploit more than just one technique of operating over payoffs in bimatrix games. The payoffs must be
asymmetric as refining Nash equilibria with symmetric payoffs without additional information is impossible. For creat-
ing the new approach, initial denotations, a convention on payoff matrices, a convention on the players’ rationalism, and
a refinement mathematical problem are to be stated. Methodology. Values of entries in payoff matrices have identical
measurement units. Without loss of generality, we also presume the payoff matrices to be nonnegative. A number of
efficient Nash equilibria is presumed to be greater than 1. At least a pair of players’ payoffs in an efficient Nash equilib-
rium must have diverse payoffs. At least a pair of players’ payoffs in an efficient Nash equilibrium must be different
from other pairs/pair. The players are assumed to be not ultimately avaricious implying that some concessions/retreats
are admissible. Players may lose more without retreats but the retreat must be made by a single player. A minimal re-
treat must be chosen. An efficient Nash equilibrium corresponding to the minimal retreat is then focused on and called a
metaequilibrium. Findings. A two-criteria problem for the metaequilibrium is stated, wherein the collective utility is
maximized and the payoff parity loss is minimized. This problem is solved via scalarization with weighing the criteria.
Originality. A couple of collective utility and minimum payoff parity loss rules is used as for refining Nash equilibria,
as well as for ranking efficient Nash equilibria. Practical value. The metaequilibrium prevents the players from spring-
ing off equilibria themselves. Its applications are basically in law, economics, bioecological processes, where interac-
tion events need the equilibria. References 18, figures 4.
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TMAPA ITIPABHUJI KOJJEKTUBHOI KOPUCHOCTI I MIHIMAJIBHUX BTPAT TAPUTETY BUT'PAIIIIB
VI BIJBOPY PIBHOBAT HEIIA Y BIMATPUYHUX ITPAX 3 ACUMETPUYHUMU BUT'PAIIAMU
B. B. Pomaniok
BiiicekoBo-MOopchka Akanemist [Tombimi
Byi. llImunosuua, 69, M. I'muns, [onbmia, 81-127. E-mail: romanukevadimv@gmail.com
Jis BIOCKOHAJICHHS BIJOMUX IIAXO/IB A0 BinOOpy piBHOBar Hema Mae OyTH 3alpOonoOHyBaHUHN MiAXid, SKAH OU Mir
BHKOPHUCTATH OLITbIIE, HIK MPOCTO OJHY METOIWKY OIIEPYBaHHs HaJ BUTpallaMH B OIMaTpUYHUX irpaxX. Burpamri mo-
BHHHI OyTH acCHMETPHUYHUMH, OCKUTBKH Bi0ip piBHOBar Hemra 3 cuMeTpHYHHMU BUTpaIIaMu 0e3 T0JaTKOBOI iHpopMa-
il HeMOXJIMBUHM. [yl CTBOPEHHS TaKOro HOBOT'O MiAXOAY MalTh OyTH C(OPMYJIbOBaHI MOYATKOBI MO3HAYEHHS, KOH-
BEHI[iS 00 MATPHI(h BUIPAIIiB, KOHBEHIliS PO PAIliOHATI3M IPaBI[iB Ta MaTeMaTWYHA 3ajadya BimOOpy. 3HAYCHHS
€JIEMEHTIB MaTpHIlb BUIPALIIB MalOTh OJJHAKOBI OJMHMII BUMIpIOBaHHS. be3 BTpaTu 3arajibHOCTI MM TaKOX IIPHITyC-
Ka€eMo, LI0 MaTpHIli BUTPALIB € HEeBiJ eMHUMHU. [IpuryckaeTbesi, 0 KiNbKIiCTh eeKTHMBHUX piBHOBar Hema nepesu-
mye 1. IpunaiiMHi oiHa napa BUrpailiB rpaBiUiB y edekTuBHil piBHOBa3l Hemra moBuHHa MaTH pi3Hi Burpamis. [Ipu-
HaliMHI O/IHa TIapa BUTPALIiB I'paBiiB y edekTuBHii piBHOBa3i Helia moBuHHA Bipi3HATHCS Bix iHIINX nap/mapu. [Ipu-
ITyCKAETHCS, IO TPaBIli HE € CYTO XaIiOHUMHU, TOOTO JAEsKi MOCTYIKH/BIICTYIN € JOIMYCTUMHAMH. [ paBIli MOXYTh BTpa-
TUTH 0Oe3 BiACTYIIB OibIe, ale BIIACTYI MOBUHEH OYTH 3MiMCHEHHWH OJHUM TpaBieM. HeoOximHO BHOpaTH MiHIMAallb-
HU# BigcTymn. Biarak BimOyBaeThcs (okycyBaHHS Ha e(eKTHBHY piBHoBary Hemra, sika BigmoBigae MiHIMadbHOMY
BIZICTYITY 1 Ha3MBa€ThCS METapiBHOBaroo. BHUkiageHo IBOKpHUTEpialbHy 3a7ady Ui METapiBHOBArH, B SKil KOJICKTHB-
Ha KOPUCHICTh MaKCHUMI3Y€EThCSI, @ BTpaTa MapuTeTy BUIPaIlliB — MiHIMi3yeThcs. L[ 3aaua BUpilIyeThes MIIIXOM CKa-
ngpu3amii 31 3BaKyBaHHAM KpuTepiiB. [lapa mpaBmi KOJNEKTHBHOI KOPHCHOCTI Ta MIiHIMAJbHHX BTpaT HapUTETy
BHTpAIlliB BUKOPUCTOBYETHCA SK U BimOopy piBHOBar Hemra, Tak i /Ui pamxyBaHHA eQeKTHBHUX piBHOBar Hema.
MertapiBHOBara He J03BOJISIE 'PABIIAM 3iCTPHOYBATH 3 CAMHX PiBHOBAT. [1 3aCTOCYBaHHS B OCHOBHOMY CTOCYEThCS TIpa-
Ba, EKOHOMIKH, 010€KOJIOT1YHMX MPOIIECIB, /i€ SIBUIA B3a€EMOJIi] MOTPeOyIOTh THX PiBHOBAT.
Kurouosi cioBa: pisHOBarm Herra, BinGip, 6iMaTpudHi irpH, KOJEKTHBHA KOPHCHICTh, BTpaTa MapUTETy BUTPAIiB,
MeTapiBHOBara.

PROBLEM STATEMENT. Importance of refining Thus NEa must be refined for obtaining a single equilib-
Nash equilibria. Noncooperative games (NCGs) fit to rium, otherwise an uncertainty, for removing which the
model interactions amongst subjects having dissimilar game is intended, will stay and thus the game solution
goals and awards for realization of their strategies. Tra- will have no reason [3, 4].
ditionally, those subjects are called players assumed to Known approaches to refining NEa. Every known
be rational in making choices of their strategies. Ration- approach to refine NEa exploits only some single tech-
ality is a primary assumption of game theory, which is a nique, which aims at receiving greater payoffs or lesser
normative theory as it just pinpoints decisions that play- losses. This may concern as individual payoffs/losses
ers should choose [1, 2]. For a lot of game models, these (or, in general, utility), as well as group or coalition
decisions constitute Nash equilibria (NEa). Often the utility [5, 6]. It is impossible to get always a perfect
NCG suggests for the player more than one NE strategy. refinement in such a way. Neither concepts of strong
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NE [5, 6], Mertens-stable equilibrium [7], trembling
hand perfect equilibrium [8], proper equilibrium [9, 10],
nor concepts of sequential [11, 12] and quasi-perfect
equilibria [10, 13, 14] guarantee a single refined NE
(SRNE) even in finite NCGs or, moreover, in bimatrix
games (BMGs). Here, refinement falls on only pure
strategy NEa because mixed strategy approaches require
that the game be repeatable [15, 16]. Repeatable NCGs
are really very rare due to payoffs cannot be still stable
for a long period of time, even if the game repeatability
happens.

The paper goal and tasks. For furthering the known
approaches to the NEa refinement, an approach should
be suggested that could exploit more than just one tech-
nique of operating over payoffs in BMGs. Surely, the
payoffs must be asymmetric as refining NEa with pay-
offs {B,v} and {y,B} without additional information is

impossible. For creating the new approach, initial deno-
tations, a convention on payoff matrices (PMs), a con-
vention on the players’ rationalism, and a refinement
mathematical problem are to be stated.

MATERIAL AND RESEARCH RESULTS. Initial
denotations. Consider a BMG with PMs

A:(akj)MxN and B:(bkj)MxN @

of the first and second players, whose sets of pure strat-
egiesare X ={x},, and Y ={y;}7 , where M eN\{I},
NeN\{l}, respectively. Let values of entries in PMs
(1) have identical measurement units. Without loss of
generality, we also presume PMs (1) to be nonnegative.
Negative payoffs are surely possible in some NCGs, but
PMs can always be made nonnegative by adding some
positive number to them (zeros may be left for conven-
ience in calculations). That will not change NEa, and
true payoffs are returned by subtracting the added posi-
tive number [1, 2].

Let E={zo}, be a set of efficient NEa (ENEa),
where 1<Q<M-N and

2o={X3,Yq} by xgeX and yzeY . 2

At ENE (2) players get payoffs {awjw, b} . This

implies that neither a couple of inequalities
Ay i) < Ao j1) and bkﬁq)j*(q) <bk§5)jis’ (3)

nor a couple of inequalities
Qi <Aoo and by w Kby o 4

is possible for any se{L, Q} by k¥ e{l, M}, j¥ e{L N}.
Convention on payoff asymmetry and diversity. As it
has been mentioned above, payoffs
Q
{ak’gq)j*(q) ) bkgq)qu) }q:1
must be asymmetric. Formally, if
{akg)jy) s bkir)j£r>}={[3, ’Y} Vre RC{]., Q} by R+
and
(a0 B =B vteT={{LQJ\R} by T

then such payoffs are symmetric, and refining those
ENEa will not be considered here. Besides, at least a
pair of players’ payoffs in an ENE must have diverse
payoffs, i. e. a case

o =P and bk*m)j*m) =B Vq=1,_Q

will not be considered here. Another diversity concerns

the payoff pairs: at least a pair of players’ payoffs in an

ENE must be different from other pairs/pair, i. e. a case
A jo =B and bk£q>j5u> =y Vvg=10Q

will not be considered here. Factually, the diversity in

payoff pairs includes the diversity in payoffs.

Default collaboration. The rational players are as-
sumed to be not ultimately avaricious. This implies that
some concessions are admissible (e. g., see [15]) in cas-
es when E=& or |[E[>1. It relies on some retreat from
eager individuality as in those cases it either gives noth-
ing or does not stop the game (a few ENEa generate a
new BMG). Clearly, the retreat is measured in the pay-
off that is lost. Let this principle be called a default col-
laboration, which is turned on for the cases when |E|>1
and a refinement is required. By the default collabora-
tion, the player tends to improve also the collective utili-
ty possible by one’s losing a little. This does not contra-
dict the principle of NCGs “not to cooperate” because
without the retreat the player may lose more.

As an example, consider a 2x2 BMG with PMs

A=@ gj and B:G) gj ©)

In BMG with PMs (5) we have two ENEa: they are sit-
uations z;={x, y»} and z, ={x,, y:} with the respective

payoffs {4,4} and {3,5}. At first glance, the first player
here should tend to use just X, hoping for payoff
a;, =4 rather than payoff a,; =3. In the same time, the
second player would use y; hoping for payoff b, =5
rather than payoff by, =4. If it was so, the players’ ac-
tions would make situation {x, y;} in which their pay-
offs are just {2,1} . Therefore, eager individual reason-
ing is just non-profitable here.

In a generalization case of 2x2 BMGs whose PMs

A:( e “j and B:( b 0‘) 6)

a—9 ado o+d b22

by
a—8>max{ay, a, b, by} and a>0, §>0,
the same eager individual reasoning is non-profitable
for both players. If a and & are much greater than di-
agonal entries of PMs (6), then the corresponding nega-
tive result becomes dramatic. It is so if even just o it-
self is much greater than those diagonal entries. A local
example to the said is, say, a BMG with PMs
a;; 10ay; by 10ay

A [73-11 an ) and B (133-11 b2, j’ ™
where the first player, if without the default collabora-
tion, loses six parts of one’s payoff in the worse ENE.
The second players loses at least 10ay; —by; .

The default collaboration must primarily help play-
ers not to spring off ENEa. Besides, it particularly must
help in selecting amongst ENEa. In simple words, the
player should be aware of the plain disequilibrium of
ENEa. As a consequence, an equilibrium within ENEa
is to be found. Finding such an equilibrium is only pos-
sible with a retreat made by one of the players. The re-
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treat must be made by a single player. Otherwise, if they
both retreat, ENEa will be lost (the players will spring
off ENEa).

What is the core of the default collaboration? For not
violating the principle of NCGs “not to cooperate”,
probable retreats of the players are compared. Each
player compares one’s retreat/retreats to retreat/retreats
of the other players. Eventually, a minimal retreat must
be chosen. An ENE corresponding to the minimal re-
treat is then focused on. This ENE might be called a
metaequilibrium.

Why should that metaequilibrium be as it has been
said? Because we know that the equilibrium is that what
is attractive to players. The player cannot improve one’s
payoff or just lose some part of one’s equilibrium pay-
off if leaving the equilibrium. The same thing with the
metaequilibrium. Retreats are unavoidable, so if a play-
er who made one’s retreat springs off a metaequilibrium
implying a minimal retreat, then this player will lose
just more. The other player who made no retreat does
not have a reason to spring off the metaequilibrium.

An obvious example of the said metaequilibrium is
in BMG with PMs (5). The collective utility here (the
sum of payoffs in an ENE) is identical being equal to 8.
For now, we do not know yet how to find a metaequilib-
rium. But assume that situation {x, y.} is the metaequi-
librium (by some reasoning). In this situation, the sec-
ond player retreats decreasing one’s payoff from 5 to 4.
Springing off strategy vy, to strategy y; makes no

sense. The first player will surely hold at strategy x;
and the same payoff (which is maximal for the first
player). If situation {x,, y1} is the metaequilibrium, then
the first player retreats decreasing one’s payoff from 4
to 3. Springing off strategy x, to strategy X, makes no
sense. The second player will surely hold at strategy v,
and the maximal one’s payoff.

A two-criteria problem for the metaequilibrium. For
finding the metaequilibrium, the collective utility must
be maximized. On the other hand, difference between
players’ payoffs in the metaequilibrium should not be
much great. Therefore, it would be good to maximize
players’ collective payoffs and minimize their differ-
ence (a loss of payoff parity) simultaneously:

max (&, @ @ +b,@:@) and an|a @@ —B@i@]. (8)
q:l,Q( ke® g ke j ) 41,0 ke j ke j

Problems (8) are formulated practically as to find the
corresponding indices at which extrema (8) are reached:
Gual €arg m%(akiq) o +Bw 0 ) =arg maxu(q),  (9)

g=L 9=l

=argmli%l(q). (10)
=L,

Collective utility function u(q) in (9) is always pos-
itive, and payoff parity loss function 1(q) in (10) is
nonnegative. Indeed, the case u(q)=0 is impossible due

to our convention on the nonnegative PMs and the di-
versity in payoffs. The same convention is followed by
that at least one ENE exists with different payoffs.
Tasks (8) or (9) and (10) factually constitute a two-
criteria problem whose solutions are generally different:
Quil = 0ioss - This is not acceptable as we obviously need

always that they be identical: Oyt =0ioss -

ioss €arg Eli%|akgq)qu) _bk*(u)j*(q)

Scalarization. For solving two-criteria problem (9)
and (10), a scalarization can be invoked. Before unify-
ing problems (9) and (10) into one (single-criterion)
problem, a normalization is required. Note that the col-
lective utility function u(q) and payoff parity loss func-

tion 1(q) cannot be normalized independently [17]. The

losses are less than the payoff sums, so we normalize
them to the grand total of all the payoff sums:

G(a)=u(a) iU(S) and 1(q)=1(q) i”(S)- (11)

The normalization allows having the following proper-
ties:

0<0(q)<1 and 0</(q)<ii(g9)<l Vq=1Q
but 3goe{LQ} such that I(qo)>0.  (12)

Then each point {U(q),r(q)} can be considered on the
half-open square on a plane whose point {1,0} is the

unreachable maximum of the normalized payoffs and
minimum of the normalized parity losses. The usual

distance between points {G(q),r(q)} and {1,0} is (e.
g., see Figure 1)

(1-())° +12(q) by q=1,Q (13)

that is a direct way of scalarizing two-criteria problem
(9) and (10). Therefore, the two-criteria problem is

solved as
- earg mli% (1-a(q))*+12(q) -
=1,

(14)

I(q)

0.11

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02

0.01

0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

1
u(q)
Figure 1 — Distances (13) shown as line segments be-
tween points {Gi(q),1 (q)} and {1,0} fora 7x6 BMG

with 4 ENEa (the shortest distance is not seen clearly,
and it is roughly 8 % shorter than the longest one)

A case of weighing the criteria. Distance (13) con-
siders components u(q) and I(q) as equally weighted.

But sometimes collective utility is nonetheless more
important than losses in payoff parity. The opposite case
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is not excluded as well. For supporting those possibili-
ties, let pu be a weight of the collective utility function,

where pe(0;1) . Then a weighted distance
V-11(@)° +1-w’T2(@) by 9=1Q

between points {G(q),1 (q)} and {10} might have

been used instead of distance (13) allowing two-criteria
problem (9) and (10) to be solved as

g- carg ggll% J@-pa(g))* +@-p)’T2(q)

(15)

(16)

instead of (14). However, it is easy to see (e. g., in Fig-
ure 2 but keep in mind that the lines are as zoomed as
those ones in Figure 1 because the ordinate axis have
been stretched) that setting u=0.5 makes no linear pro-

portion between distances (13) and (15). Thus, problem
(16) by pn=0.5 is not equivalent to problem (14) —

scaling the axes in that manner scales distances nonline-
arly. This is pretty inconvenient in practice [17].

I(q)

011

0 1 1 1 1 1 1 I ! M— B
0 01 02 03 04 05 06 07 08 09 1
u(g)

Figure 2 — The example of the 7x6 BMG with those 4
ENEa mentioned in Figure 1, where setting u=0.5 for
weighted distance (15) distorts the proportions between
those 4 distances (the starred dots) as now the shortest
distance is only 3.2 % shorter than the longest one

Hence, the weight of the collective utility function
should be applied in another way — to its squared dis-
tance to the unreachable maximum of the normalized
payoffs. Then distance

d (g w)=n(-0(@))" +L-wI() by 9=1Q (17)
and problem
g-carg lei%\/u(l—ﬁ (@))° +(1-p)2(q) =
=argmind (g, )

(18)

are the general case of weighing the criteria. Now prob-
lem (18) by u=0.5 is equivalent to problem (14).

Setting weight p is a special task. If the collective

utility appears more important for both players, then
p>0.5 (a principle of utilitarianism). Otherwise, if it is

more important that the payoffs be close to each other,
without great differences between them, then setting
u<0.5 is appropriate (a principle of egalitarianism). An
inappropriate magnitude of p can cause a wrong results
because minimum index (18) can change as p changes
(see an example of such a change in Figure 3).

d(q, 1)
0.74 -
0.72
07
0.68
0.66
0.64
0.62
0.6
0.58
0.56
0.54
0.52
0.5
0.48
0.46
0.44
0.42
0.4
0.38
0.36
0.34
0.32
0.3
0.28
0.26
0.24
0.22
0.2
0.18
0.16

o
]
1]

o
1Y
B

071

4
i
\

T T T T T T T T T T T T T T T T T T T T T T T T T T T1T
o
]
[N

0.14
0 005 01015 02025 0.3 0.35 0.4 045 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.8

Figure 3 — Setting p for the example of the 7x6 BMG

with 4 ENEa mentioned in Figure 1, wherein the index
g- of the SRNE (the best/refined ENEa), at which the

shortest distance is reached, unexpectedly changes
(from the circled point to the squared one)

If we are uncertain about greater importance of ei-
ther the collective utility or the minimum payoff parity
loss, then u=0.5 is the most appropriate choice. Never-

theless, if distance (17) is too sensitive to changes in p

in a vicinity of that half, then a justification for choosing
pn=0.5 is required. This is because, say, by n=0.45 we

may have one solution (18), and by n=0.55 we may

have a different solution (18). The same concerns any
magnitude of p at whose vicinity solution (18) changes.

Ranking of ENEa. With distance (17), ENEa are eas-
ily ranked. The first rank is at the best/refined ENE cor-
responded to the minimum of (17). The last rank is at
the worst ENE, giving the players unsatisfactory collec-
tive utility and “tearing” the payoff parity severest, cor-
responded to the maximum of (17).

It is the easiest in 2x2 BMGs like those ones with
PMs (5), (6), (7). Let u=0.5 just for these examples.
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Then in BMG with PMs (5)

d(1,0.5)=0.125~0.3536, d(2,0.5)=7/128 ~0.3644,
whence the ENE z ={x;, y,} with the respective pay-
offs {4,4} becomes the refined. As a generalization of
such a BMG, in BMG with PMs (6) distance d(1,0.5)
remains the same, and

d(2,0.5)=\0.125+57/80Z >d (1, 0.5),

i. e. the situation with ultimate parity is always the best.

Another examples are BMGs of bigger sizes: for
2 32 37 14 26 19 42 15
26 2 29 34 3 10 15 8
36 16 0 42 36 44 17 1 |,
42 6 1 42 49 13 4 6
29 36 26 14 2 41 34 47

9 20 33 43 30 31 47 36
5 1 8 2910 12 12 8
38 0 15 23 31 40 35 23|,
20 11 21 26 30 15 1 3
26 49 27 28 25 33 4 18
having four ENEa z, ={x, Y7}, > ={Xs, Ys}, Zs={Xa, Y5},
2,={Xs, Y}, all distances (17)

d (1 0.5)~0.5205, d(2,0.5)~0.5309,
d(3,0.5)~0.5428, d(4,0.5)~0.5295,
d(10.5)<d(4,0.5)<d(2,0.5)<d(3,0.5)
allow ranking those ENEa without any troubles. ENE
z={x, y7} with its payoffs {42,47} becomes the re-
fined one. It is followed by z,={xs, y,} with its payoffs
{36, 49} . A worse but not the worst is ENE 2, ={Xs, Ye}
with its payoffs {44,40}. The worst ENE here is
Z3={X4, Y5} whose payoffs {49,30} have the greatest

parity loss and produce the smallest collective utility.
Although ENE 7z, ={xs, Y¢} appears to have lost to

ENE z,={xs, y,} in this 5x8 BMG, a ratio

d(2,0.5)/d(4,0.5)~1.0028

prompts that the difference between these ENEa is very
small. The collective utility by the winner is 85 against
that 84 of the loser, whereas the winner’s payoff parity
loss is 13 against that 4 of the loser. This means that
increasing the weight of the payoff parity loss (by de-
creasing the weight of the collective utility) may make
the losing ENE a winner (at least, against that ENE with
the greater payoff parity loss and too small advantage
by that 85). Indeed, setting n=0.2 gives distances

d(1,0.2)~0.3294, d(2,0.2)~0.3359,
d(3,0.2)~0.3461, d(4,0.2)~0.3362,

that change ranks of those two neighboring ENEa.
Moreover, setting pn<0.0035 changes the best ENE to

Z,={Xs, Ys} With its minimum payoff parity loss.
A 4x7 BMG whose PMs are

has five ENEa: z;={Xy, Y1}, Z2={Xs, Y2}, z3={X2, Y},
2,={Xs, Ya} , Zs={Xa, Y1} . However, distances (17)
d(1,0.5)=d(2,0.5)=d(5,0.5)~0.57,
d(3,0.5)~0.5602, d(4,0.5)~0.5605
do not allow ranking those ENEa totally. The best ENE
(which actually is SRNE) nonetheless exists — it is
Z3={X,, Ys} With the zero parity loss in its payoffs
{8,8}. ENE z,={xs, Y4} is of the second rank losing
very little with its payoffs {9,7}. Obviously, the rest
three ENEa producing payoffs {6,9} cannot be distin-

guished (there is no diversity in payoff pairs). Such a
collision in BMGs may happen to a few best ENEa,
whence an SRNE does not exist (in the sense of the
suggested approach).

Relative ranking of ENEa. Distances (17) allow not
only ranking ENEa from the best one down to the worst
one. They also give ratios amongst the ENEa. Values

{d(a, u)} are arranged as {d(q, u)}v ,» Where
d(q-1)<d(guarn) by v=1Q-1  (19)
and o
d (g w)=d(cn, 1) by {a}y,N{LQ}={1.Q}. (20)
Then a value

r(qv’ p)=d (qwh H)/d (qv’ H) (21)
is a ratio showing an advantage of the g, -th ENE over
the g..-th ENE by v=1Q-1. Ratios {r(q., u)}fz’ll

show relative ranking of ENEa that can be visualized as
a histogram (Figure 4).

r(g,,0.5) r(g..0.5)  {gq.e{l,2,5}}
1.025 1.018
@b, =114.2.3) 2 o
1.02 11.014
1.012
, =4
1.015 1.01 12
1.008
1.01 11.006
1.004
1.005 1002 g =3
; J
1 0.998 ! 2 !

14
Figure 4 — Histogram bars showing relative ranking of
ENEa by (21) in the exampled above 5x8 BMG

(ranked totally) and 4x7 BMG (only the first two best
ENEa are ranked due to no diversity in payoff pairs)

CONCLUSIONS. A couple of collective utility and
minimum payoff parity loss rules is used as for refining
NEa, as well as for ranking ENEa in BMGs [18]. The

best or (uniquely) refined ENE is zq ={x., Ya.} by in-
dex (18). Although index (18) depends on how the
weight p is chosen for distance (17), an ultimate uncer-
tainty case can be resolved by setting u=0.5 or about
that. Cases n<0.05 and n>0.95, where the collective

utility matters correspondingly so little and it matters so
much, are unlikely in practice.
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Driven by the principle of the default collaboration, 10. Van Damme, E. (1984), “A relation between
the best/refined ENE z, ={x;., Vs is the metaequilib- perfect equilibria in extensive form games and proper
equilibria in normal form games”, International Journal
of Game Theory, vol. 13, iss. 1, pp. 1-13.

11. Fudenberg, D., Tirole, J. (1991), “Perfect Bayes-
ian equilibrium and sequential equilibrium”, Journal of
Economic Theory, vol. 53, iss. 2, pp. 236-260.

12. Gerardi, D., Myerson, R. B. (2007), “Sequential
equilibria in Bayesian games with communication”,
Games and Economic Behavior, vol. 60, iss. 1,
pp. 104-134.

13. Mertens, J.-F. (1995), “Two examples of strate-
gic equilibrium”, Games and Economic Behavior,
vol. 8, iss. 2, pp. 378-388.

14. Bajoori, E., Flesch, J., Vermeulen, D. (2013),
“Perfect equilibrium in games with compact action
spaces”, Games and Economic Behavior, vol. 82,
pp. 490-502.

15. Romanuke, V.V. (2016), “Sampling individually
fundamental simplexes as sets of players’ mixed strate-
gies in finite noncooperative game for applicable ap-
proximate Nash equilibrium situations with possible
concessions”, Journal of Information and Organiza-
tional Sciences, vol. 40, no. 1, pp. 105-143.

16. Romanuke, V.V. (2010), “Recommendations on
transacting the finite noncooperative game with invisi-
ble horizon of plays by NE-strategy”, Science and Eco-
nomics, iss. 2 (18), pp. 255-262.

17. Arias-Nicolas, J.P., Martin, J., Ruggeri, F., Suar-
ez-Llorens, A. (2009), “Optimal actions in
problems with convex loss functions”, International
Journal of Approximate Reasoning, vol. 50, iss. 2,
pp. 303-314.

18. Hinojosa, M.A., Lozano, S., Borrero, D.V.,
Marmol, A.M. (2017), Ranking efficient DMUs using
cooperative game theory, Expert Systems with Applica-
tions, vol. 80, pp. 273-283.

rium preventing the players from springing off ENEa
themselves. Its applications are basically in law, eco-
nomics, bioecological processes, etc., where interaction
events need the equilibria. A further research focuses on
greater numbers of players.
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IMAPA TIPABWJI KOJIJIEKTUBHOM MMOJIE3HOCTU U MUHUMAJIBHBIX TIOTEPH IAPUTETA
BBIUTPBIIUEN 1151 OTBOPA PABHOBECH HAIIIA B BUMATPUUHBIX UTPAX
C ACUMMETPUYHBIMHU BBIAIT PBIIIIAMMAX
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JI1s yCOBEpIIEHCTBOBAHUS M3BECTHBIX MOAXO0JIOB K 0TOOpY paBHOBecuit Hamia gomkeH ObITh MPEmioKeH MOIXO/I,
KOTOPBI OBl MOT HMCIIOJIB30BAaTh OOJIbINE, YEM MPOCTO OJHY METOJUKY OTIEpUPOBAHUS HAJ BHIMTPHIIIIAMU B OUMaTpHU4-
HbIX urpax. st co3maHus Takoro HOBOTO IMOAX0J]a JODKHBI OBITH COPMYIMPOBAHBI HavalbHbIe 0003HAYCHUS, KOH-
BEHIIMS TI0 MAaTPHUIIAM BBIUTPBINIEH, KOHBEHITUS O PAllMOHAIN3ME UTPOKOB U MaTeMaThudeckas 3ajmada oroopa. [Ipemrmo-
JlaraeTcs, 9TO UTPOKH HE SIBIISETCS YHCTO >KaJHBIMH, TO €CTh HEKOTOPBIC YCTYNKW/OTCTYIUICHHUS TOMYCTUMBI. Trpoku
MOTYT MOTEPSITH 0e3 OTCTYIUICHUI OOJIbINe, HO OTCTYIUICHHE JTOJDKHO OBITH OCYIIECTBICHO OMHUM HrpokoM. [Ipoucxo-
mut pokycrupoBka Ha 3 dekTrBHOE paBHOBecue Halia, KOTOpoe COOTBETCTBYET MUHHMAIBHOMY OTCTYIUICHHUIO U HA3bI-
BaeTcsi MeTapaBHOBecHeM. M310keHO NBYXKpUTEpHANBHYIO 3ajady AJisi METapaBHOBECHUS, B KOTOPOH KOJUIEKTHBHAs
10JIE3HOCTh MAaKCUMU3HUPYETCS, a IOTEPs MApUTETa BHIMTPHILLIEH — MUHUMHU3UPYETCs. DTa 3ajjaua peliaeTcs: MyTeM cKa-
JISIpU3alUK CO B3BELIMBaHUEM KpuTepueB. [lapa npaBui KOJUIEKTUBHOM MOJE3HOCTH U MUHUMAJIBHBIX [IOTEPh MapUTETa
BBIMTPHINICH UCIOIB3YyeTCs KaK Uil 0TOOpa paBHOBecuil Homia, Tak u st pamxupoBanus 3QPEeKTUBHBIX paBHOBECHI
Hbsma. MerapaBHOBecue He MO3BOJISIET UTPOKAM CIIPBITMBATh ¢ CaMUX paBHOBecui. Ero npuMeHeHne B OCHOBHOM Kaca-
€TCsl MpaBa, SKOHOMUKH, OMOIKOJIOTUIECKUX MPOIIECCOB.

KuoueBble ciioBa: paBHoBecHs Homa, oTOop, OMMaTpUdHBIE UTPHI, KOJUICKTUBHAS TOJIC3HOCTH, IMOTEPsT MapHUTETa
BBIUTPHILIEH, METapaBHOBECHE.
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