УДК 528.8:004

В.В. Гнатушенко, О.О. Кавац

НОВИЙ АЛГОРИТМ ПІДВИЩЕННЯ ІНФОРМАТИВНОСТІ ФОТОГРАМЕТРИЧНИХ ЗОБРАЖЕНЬ

Постановка проблеми. В даний час зображення високої і надвисокої роздільної здатності, одержувані космічними знімальними системами, знаходять застосування в різних прикладних областях і дозволяють вирішувати найрізноманітніші завдання. Актуальною областю наукових досліджень є обробка фотограметричних даних декількох каналів з метою одержання штучного зображення із покращеними показниками інформативності у порівнянні із первинними знімками та його подальший аналіз.

Аналіз останніх досліджень. Панхроматичні (Pan) знімки володіють більш високою просторовою здатністю, ніж мультиспектральні (Mul). Інформація, що міститься в зображенні, отриманому в результаті злиття, є більш повною, що веде, зокрема, до підвищення якості розпізнавання об'єктів і більш якісного «розуміння» їх властивостей.

Використання кольору для відображення даних ДЗЗ є одним із найбільш важливих аспектів, що напряму пов'язані з обробкою зображення. Колір можна використовувати не тільки для відображення мультиспектральних знімків, але і для вилучення з них необхідної інформації. При описі свого сприйняття кольорового зображення не користуються такими поняттями як відносна доля червоного, зеленого чи синього кольору. Зазвичай йдеться про яскравість, колір і чистоту кольору, тобто використовуються такі поняття як «інтенсивність», «тон» і «насиченість». Саме тому вихідні цвітові компоненти RGB корисно перетворювати у компоненти, що відповідають тону, насиченості та інтенсивності (HSV або HSI) [1]. Зокрема мультиспектральні дані корисніше перетворювати до координат нового простору, в якому кожне зображення буде відповідати деяким незалежним компонентам (рис.1).

Рис.1. Використання перетворення кольорового простору RGB з метою поліпшення візуального сприйняття зображення [1]

Більшість алгоритмів, пов'язаних із підвищенням інформативності цифрових зображень, засновані на їх лінійній локальній обробці і зводяться до згортки зображення з ковзною маскою [2-5]. Значні перспективи застосування мають методи підвищення просторового розрізнення багатоспектральних зображень, засновані на їхньому розкладанні на компоненти різних просторових масштабів у межах одного піксела, відомі назвою методів просторового змішаного аналізу (Spectrum Mixture Analysis). Однак, відомі алгоритми не ефективні для злиття супутникових зображень, одержаних з сучасних космічних апаратів. Спільною та основною проблемою, пов'язаною зі злиттям таких зображень, є істотне колірне порушення.

Формулювання цілей статті (постановка завдання). Таким чином виникає необхідність розробки нового ефективного алгоритму підвищення інформативності аерокосмічних зображень, що дозволить одержати багатоспектральні зображення більш високого просторового розрізнення без втрати спектральної інформації.

Основна частина. У роботі запропонований алгоритм перетворення мультиспектрального зображення за допомогою метода аналізу незалежних компонент (ICA). Аналіз незалежних компонент розглядається саме як розширення аналізу головних компонент на задачу сліпої сепарації незалежних джерел з їх лінійних сумішей. З аналізом головних компонент тісно пов'язані такі поняття, як некорельованість і гаусовський (нормальний) характер розподілу даних, в той час як ICA пов'язаний зі статистичною незалежністю і негаусовським розподілом. Крім того, осі не обов'язково повинні бути ортогональними. Модель, яка використовується в аналізі незалежних компонент, можна представити у вигляді

$$\mathbf{y} = \mathbf{H} \, \mathbf{x},\tag{1}$$

де y — *m*-вимірний випадковий вектор, x — n-вимірний випадковий вектор з незалежними компонентами, H — деяке невідоме відображення $R^n \to R^m$, $m \ge n$. Завдання ІСА формулюється як завдання пошуку такої проекції вектора y на лінійний простір векторів x, компоненти якої були б статистично незалежні. При цьому для аналізу доступна тільки деяка статистична вибірка значень випадкового вектора y.

В алгоритмі нами пропонується заміна після перетворення ІСА першої компоненти мультиспектрального зображення панхроматичним зображенням. Наступним етапом після заміни є зворотне перетворення ІСА та перетворення отриманого зображення у кольорову модель HSV (позначимо HSV_{MOD}). Іншим кроком роботи алгоритму є також переведення вихідного мультиспектрального зображення у кольоровий простір HSV (позначимо HSV_{MUL}). Наступним кроком формування нового зображення з підвищеною інформативністю є заміна яскравісної компоненти V зображення HSV_{MUL} яскравісною компоненто ю зображення HSV_{MOD} та перетворення результату з кольорової моделі HSV до кольорової моделі RGB. Схема алгоритму представлена на рисунку 2.

Запропонований алгоритм підвищення інформативності фотограмметричних видових даних на основі ICA-HSV-перетворення зображень був реалізований на первинних багатоспектральних знімках, отриманих супутником WorldView-2. Після перетворень MUL-зображення за зазначеним алгоритмом було отримано зображення, яке навіть візуально у порівнянні з первинним знімком відрізняється більшою чіткістю (рисунок 3).

Для отримання кількісних порівняльних оцінок роботи запропонованого алгоритму нами були досліджено відомі методи злиття фотограмметричних даних, а саме методи: класичний HSV, Brovey, Grama-Schmidt, PC. На рис. 4 представлено синтезовані зображення, перетворені за вказаними методами.

Рис.3. Мультиспектральні зображення: а) первинне; б) зображення після обробки новим алгоритмом

Отримано кількісні оцінки якості синтезованих мультиспектральних зображень такі як: ентропія, SSIM, MSSIM, Quality index та інші. Вище зазначені метрики дозволяють оцінити якісні показники та структурні схожості між двома зображеннями.

У таблиці 1 наведено значення ентропії, отримані для мультиспектрального та панхроматичного первинних знімків, а також для синтезованих зображень за усіма вказаними методами (розмір зображення 1000*1000). У таблиці 2 вказані значення найбільш відомих характеристик якості для первинного мультиспектрального зображення. У табл. З наведено значення показників якості при порівнянні інформативності мультиспектрального зображення, обробленого за запропонованим алгоритмом, з еталонним зображенням.

Рис.4. Мультиспектральні зображення перетворені за методами: a) HSV; б) Brovey; в) Grama-Schmidt; г) PC

Таблиця 1

Зображення	Значення ентропії
Панхроматичне зображення	7.3535
Первинне мультиспектральне зображення	7.4022
Перетворене за методом HSV	7.3159
Перетворене за методом РС	6.7005
Перетворене за методом Brovey	6.3456
Перетворене за методом Grama-Schmidt	7.4082
Перетворене за запропонованим алгоритмом	7.4915

Таблиця 2

Значення для первинного мультиспектрального зображення

Метрика / Канал	R	G	В
Root mean square error (RMSE)	30.8270372	30.8270372	30.8270372
Persentage fit error (PFE)	28.6329122	28.6329122	28.6329122
Mean absolute error (MAE)	24.3234892	24.3234892	24.3234892
Correlation (CORR)	0.9585872	0.9585872	0.9585872
Signal to noise ration (SNR)	10.8626902	10.8626902	10.8626902
Peak signal to noise ration (PSNR)	33.2754812	33.2754812	33.2754812
Mutual information (MI)	1.1071462	1.1141460	1.1071461
Quality index (QI)	0.5492692	0.5492692	0.5492692
Measure of structural similarity (SSIM)	0.5545892	0.5545892	0.5545892
MSSIM	0.5936	0.6261	0.6075

Таблиця 3

Значення для синтезованого ICA-HSV-зображення

Метрика / Канал	R	G	В
Root mean square error (RMSE)	32.3578002	34.7826232	31.6332732
Mean absolute error (MAE)	24.9174182	26.5308882	24.5869212
Correlation (CORR)	0.9577802	0.9509742	0.9539532
Signal to noise ration (SNR)	10.4417462	9.5185712	9.9538982
Peak signal to noise ration (PSNR)	33.0650092	32.7511762	33.1633582
Mutual information (MI)	1.1171462	1.1171462	1.1171462
Quality index (QI)	0.5556432	0.5521052	0.5526542
Measure of structural similarity (SSIM)	0.5555162	0.5677132	0.5751462
MSSIM	0.6588	0.6656	0.6701

Порівняння значень табл.1-3 свідчить про те, що у результаті обробки мультиспектральних знімків за допомогою нового алгоритму підвищення інформативності видових даних дистанційного зондування на основі ICA-HSV-перетворення кореляція зменшується, погрішності знижуються, синтезовані зображення мають більш високу якість та збільшену інформативність у порівнянні з первинними знімками. Показники, що оцінюють ефективність відомих методів злиття мультиспектрального зображення HSV, Brovey, Grama-Schmidt, PC представлені у таблицях 4-7 відповідно.

Класичний HSV-метод			
Метрика / Канал	R	G	В
Root mean square error (RMSE)	30.8270372	30.9807012	30.7241032
Mean absolute error (MAE)	24.3234892	24.1531562	23.8036702
Correlation (CORR)	0.9585872	0.9583492	0.9551842
Signal to noise ration (SNR)	10.8626902	10.5239932	10.2071972
Peak signal to noise ration (PSNR)	33.2754812	33.2538872	33.2900072
Mutual information (MI)	1.1171462	1.1125652	1.1027792
Quality index (QI)	0.5492692	0.5651952	0.5584252
Measure of structural similarity (SSIM)	0.5545892	0.5758962	0.5682122
MSSIM	0.6599	0.6773	0.6671

Таблиця 4

a 1

Таблиця 5

Mетод Brovey			
Метрики/ Канал	R	G	В
Root mean square error (RMSE)	32.7639382	30.1278622	29.6681262
Mean absolute error (MAE)	26.2053262	23.7921402	23.9520592
Correlation (CORR)	0.9459112	0.9538912	0.9492282
Signal to noise ration (SNR)	10.3334042	10.7664512	10.5109782
Peak signal to noise ration (PSNR)	33.0108382	33.3751162	33.4418982
Mutual information (MI)	1.1230202	1.1144102	1.1142452
Quality index (QI)	0.5498462	0.5727112	0.5712172
Measure of structural similarity (SSIM)	0.5777532	0.6069342	0.5938382
MSSIM	0.6770	0.7012	0.6933

Таблиця 6

Merod Grama-Schmidt			
Метрики/ Канал	R	G	В
Root mean square error (RMSE)	31.4706052	30.3008342	29.6662292
Mean absolute error (MAE)	24.8949562	23.3335092	23.1807832
Correlation (CORR)	0.9576012	0.9602902	0.9579022
Signal to noise ration (SNR)	10.6832242	10.7167262	10.5115342
Peak signal to noise ration (PSNR)	33.1857482	33.3502542	33.4421762
Mutual information (MI)	1.1038312	1.1098732	1.1019542
Quality index (QI)	0.5524892	0.5835422	0.5778472
Measure of structural similarity (SSIM)	0.5616562	0.6002462	0.5885262
MSSIM	0.6618	0.6971	0.6858
			Таблиця 7

Метод РС			
Метрики/ Канал	R	G	В
Root mean square error (RMSE)	143.3480172	143.9904032	143.4658902
Mean absolute error (MAE)	126.4922802	127.0922842	127.0330652
Correlation (CORR)	0.3705242	0.3711732	0.3812642
Signal to noise ration (SNR)	-2.4865082	-2.8208532	-3.1781922
Peak signal to noise ration (PSNR)	26.6008822	26.5814642	26.5973132
Mutual information (MI)	1.0897812	1.1175562	1.0643932
Quality index (QI)	-0.3215282	-0.3275162	-0.2696752
Measure of structural similarity (SSIM)	-0.1967792	-0.2000242	-0.1612762
MSSIM	-0.2157	-0.2191	-0.1748

Висновки та перспективи подальших досліджень. Отримані характеристики свідчать про те, що у результаті обробки багатоспектральних знімків за допомогою методики підвищення інформативності видових даних ДЗЗ на основі ICA-HSV-перетворення синтезовані зображення мають більш високу якість та збільшену інформативність у порівнянні з первинними знімками. У порівнянні з існуючими методами злиття запропонований алгоритм дозволяє підвищити значення ентропії та показників структурної схожості, таких як SSIM, MSSIM, Quality index.

ЛІТЕРАТУРА:

- 1. Шовенгердт Р.А. Дистанционное зондирование. Модели и методы обработки изображений. Часть 1 /Р.А. Шовенгердт М.: Техносфера, 2010. 560 с.
- Гнатушенко В.В. Комп'ютерні технології підвищення інформативності багатоспектральних зображень земної поверхні / В.В. Гнатушенко, О.О. Сафаров // Прикладна геометрія та інженерна графіка. - К.: КНУБА, 2012. - Вип. 89. – С. 140-144.
- Грузман И.С. Цифровая обработка изображений в информационных системах // И.С. Грузман и др. Учебное пособие. / И.С. Грузман - Новосибирск: Изд-во НГТУ, 2002. – 352 с.
- 4. Pohl C. Multisensor image fusion in remote sensing: concepts, methods and applications / C. Pohl, J.L. Van Genderen // International journal of remote sensing. 1998. Vol. 19. No. 5. P. 823-854.
- 5. Yuhendra Sumantyo, Performance Analyzing of High Resolution Pan-sharpening Techniques: Increasing Image Quality for Classification using Supervised Kernel Support Vector Machine. / Yuhendra Sumantyo [Електронний ресурс] - http://scialert.net/abstract/?doi=rjit.2011.12.23.

ГНАТУШЕНКО Володимир Володимирович — д.т.н., професор, завідувач кафедри автоматизованих систем обробки інформації Дніпропетровського національного університету імені Олеся Гончара.

Наукові інтереси:

- математичне та комп'ютерне моделювання, обробка й аналіз багатовимірних сигналів, комп'ютерна графіка.

КАВАЦ Олена Олександрівна — к.т.н., доцент кафедри інформаційних технологій та систем Національної металургійної академії України.

Наукові інтереси:

- обробка та аналіз фотограмметричних зображень ГІС-систем.