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SOME PROPERTIES OF DISCRETE SIGNALS OF
CONTINUOUS PHASE FREQUENCY MODULATION

Discrete signals of continuous phase frequency modulation (CPFM) in comparison with known signals
of digital modulation are characterized by the following advantages: constancy of envelope and absence of
phase jumps of the modulated signal; absence of parasitic peak modulation when passing through narrow-band
paths; compactness of a spectrum and small level of out-of-band emissions; high indicators of power and
frequency efficiency. Due to these advantages CPFM signals are widely applied in systems of ground and
satellite mobile communication.

Keywords: continuous phase frequency modulation, LRC, phase trellis, differential modulation.

C.}10. MAHAKOB

anccxaﬂ HaOouOHAJIbHAsA aKaaCMUA CBA3U UM. A.C. Tlonosa

HEKOTOPBIE CBOMCTBA JUCKPETHBIX CUTHAJIOB YACTOTHOM MOYJISILUA C
HENPEPLIBHOM ®A301

Juckpemuvle cucHanvbl yacmomuol mooyisyuu ¢ Henpepwighou ¢gaszoiu (YMHD) no cpaenenuro c
U36ECMHBIMU  CUSHANAMYU  YUPPOBOU  MOOYIAYUY — XAPAKMEPUSYIOMCA  CLeOVIOWUMY  NPEeUMYUecmeamu:
ROCMOAHCMBO o2ubaowell CueHala u Omcymcmaue CKaukos hasvl MOOYIUPOSAHHO2O CUSHANA, OMCYMCMEUe
napasumuol. amMnIUmMyoOHOU MOOYIAYUY NPU NPOXOJICOEHUU Hepe3 Y3KONOIOCHble MpPAaKmyl, KOMNAKMHOCHb
CReKmpa U Maivlii YyPOGeHb GHENONOCHbIX UZNYYEHUll, 6blCOKUE NOKA3amenu HepemuiecKol U 4acmomHol
appgexmusnocmu. bnacooapsa smum npeumywecmeam cuenanvt YMHD wupoxo npumenaiomcs 6 cucmemax
HA3eMHOU U CNYMHUKOBOU MOOUILHOU CEA3U.

Kurouesvie cnosa: wacmomunas mooyaayus ¢ Henpepwignou ¢azou, LRC, @azosas pewémka,
oughpepenyuanvras mooyiayus.

C.1I0. MAHAKOB

Onecpka HalioHaIbHa akaneMis 38°s3ky iM. O.C. Tlonosa

JIESIKI BTACTUBOCTI JUCKPETHUX CUTHAJIIB YACTOTHOI MOJTIYJIALII 3
HENEPEPBHOIO ®A3010

Juckpemmui cuenanu wacmomnoi mooynayii 3 nenepepgroro gaszoro (YMHD) y nopiensanni 3 sioomumu
cueHanamu yupposoi Mooyasyii Xapakmepusylomoscs HACMYRHUMU Nepesazamu: Cmaiicms 008I0HOI cuenany u
giocymuicmes cmpuoKis Gasu MooyIb08aHO20 CUSHALY, BIOCYMHICMb NAPAZUMHOL AMNIIMYOHOT MOOYASYIL npu
NPOX0OJNCEHH] Yepe3 BY3bKOCMY208i MpaKkmu;, KOMAAKMHICMb Ccnekmpa U Manull pieeHb no3acmy208ux
BUNPOMIHIOBANb, BUCOKI NOKA3HUKU €Hepeemuunol ma 4acmomuoi egexmuenocmi. 3a60aKku yum nepesazam
cuenany YMHD wupoxo 3acmoco8yiomscs 8 CUCMeMAax HA3eMHO20 U CYNYMHUKOB020 MOOINIbHO20 36'A3KY.

Knrouosi cnosa: wacmomna mooyasayis 3 nenepepsnoro gasonw, LRC, gazosa pewimka, ougepenyiiina
MOOynAYIA.

Problem statement
In the works listed below it is not paid attention to some important properties of CPFM signals, such as
invariance and possibility of the mathematical description by differential model.
Analysis of published data
Temporal and spectral properties of CPFM signals with full and partial responses are presented in
monographs [1, 2]. More detailed information can be found also in publications [3, 5].
Formulation of research objectives
The article task is statement of the important properties of CPFM signals.
Presentation of the main research
Mathematical description of CPFM signals
The discrete signal of CPFM looks like [2]:

S(t) =, /ZT—E cos(2nf,t + o(t) + ¢, ), 1)
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where the current phase is defined by the expression

o(t) =2nh > (20, —~m+1)g, (t—iT). @)
I=—00
Here E — energy of a signal with duration of T, f, both ¢, — frequency and an initial phase; h —
modulation index; m — the alphabet of modulating symbols a.e{0..., m-1}.
From expressions (1) and (2) follows that sequences of signals, S are not linear functions of sequences
of modulating symbols «. The phase of a signal (2) during the discrete moments of time of t., = (k+1)T
corresponding to the termination of k-th interval is possible to present as:

o(t.1) = 220 S (20, —m+1)g, (k—i +D)T) @)

|=—00

In the simplest case phase function g(p(t) of CPFM signal with a partial response looks like (fig. 1):

0 , t<0,

g, (1) = % . 0<t<LT, %
1 , t>LT.
2

A

go (1)
12 b
0 LT t

Fig. 1. Phase function of a CPFM signal

The type of the phase function used in a formula (4) will be

0 , i>k+1,

g, (k—i+1)T = k‘z—'l_”  k+l-L<i<k+l. 5)
l , i<k+1-L
2

For the description of CPFM signals it is usually set a form of a frequency impulse of g, (t) which is
connected with a phase impulse by a known ratio

d
g (t) =ag¢(t)- (6)

A classification of types of the frequency impulses defining names of the corresponding CPFM signals
is given in table 1 below.

Fig. 2 shows the forms of frequency and phase impulses of CPFM signal with LRC (raised cosine pulse
of length L symbol intervals) smoothing. It should be noted that the LRC smoothing of a frequency impulse is
most often considered in theoretical researches and finds application in practice.

Typical forms of continuous phase and frequency of the LRC CPFM signal when transferring a sign-
variable sequence (+1,-1,-1, +1,-1, +1,-1,-1,-1,-1) are shown on fig. 3.
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Frequency impulses of CPFM si

Table 1
gnals

Designation

Frequency impulse gf(t)

LRC — a raised cosine on LT interval

qf(t) =

i[l—cos(@)],o <t<LT
2LT LT

GMSK — an FM with the minimum frequency shift

and a Gaussian impulse smoothing 1 t— 5 — E
1)=— 2B —%)-Q(2nB, —=)],
qq (t) 2T[Q( bm) Q( bm)]
= q R
t)=|-——=e ?dt
W=7

T T

LREC - a rectangular frequency impulse on LT
interval

formula (4)

Fig. 3. Frequency and phase of CPFM signal with LRC impulse

Spectrum of a CPFM signal
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Fig. 2. LRC frequency and phase impulses
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The phase smoothing of a CPFM signal and absence of discontinuities of the phase function provide
fast reduction in power-of-band energy spectrum. In [3] it is noted that if p — number of continuous derivatives
of a phase function of a signal, then the energy spectrum of signal with a huge detuning is proportional to size

f 2p-4

energy spectrum looks like
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16PT , cos2rfT
G(f)=
(f) n° (1—16f2T2

where P — average power of the signal.
Typical one-sided power spectrum of MSK is shown on fig. 4.
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Fig. 4. One-sided power spectrum of MSK
Trellised structure of CPFM phase trajectories

The set of CPFM signal phase trajectories forms a phase trellis on the phase/time plane. An example of
such trellis for LRC CPFM is given on fig. 5.

Phase tree of CPFM
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Fig. 5. Phase trellis of LRC impulses

Algebraic and structural models of CPFM signals
Taking into account expression (5) it is possible to present current phase of a signal in the form of four
summands:

kL
¢ (o) =21 ) oy,

i=—o0

165



BICHHK XHTY M 4(59), 2016 p. TH®OPMAIITHHI TEXHOJIOTII

k—L 1_ m
0(e) =2ty = |

1ok +1-i
¢05(a;) = 2nh Z 1 Q;
i=k+1-L
) LS G P
¢,(i) =2zh Z 3 @-m).
i=k+1-L

Let us note that summands @, (o;) and @,(ct;) depend on information symbols and define the
structure of a phase trellis.
Summands @,(a;) and @,(0;) do not depend on information symbols and define a regular

increment of a phase on each tact.
When L = 1 we receive expression for the current phase of a fuII response CPFM signal:

o(t, ;) =2mh Zoc +27h Z (8)

i=—c0 j=—c0
CPFM signal as result of differential modulatlon
Continuous phase frequency modulation can be treated as a differential modulation method. It follows
from expression (8). The first difference of signal phases is defined by a transferred information symbol

A (9(t.1) = (ot —0(t,)) = 27ha.
This property of CPFM signals defines the possibility of their use in channels with slow fading and also
the possibility of application of earlier developed effective methods of the differential FM signal processing.
Invariance of CPFM of signals
It is easy to prove that CPFM signal (1) satisfies to an invariance condition. Indeed, suppose that we are
given two sequences:

S'(t) = 2 TE cos(Zch t+2nh2(2a -m+1)g (t—|T)j

i=—o0

S"(t) =, /# cos(anot +27h Zw:(Za"i -m+1)g,(t- iT)J . 9)

Assuming that the modulating symbols do not coincide (oU'i #= o"i), when i < 0, we will determine a
square of the Euclidean distance on an interval (0..., NT). If the narrowband condition of CPFM signal is
satisfied (f,T >> 2m), we obtain

52(5,5") = 2EN{1——ICOS(2nhZZ(a —a)g (t—|T))dt} (10)

|=—00
Since transition to new information sequences o =o' +0 and A =a+a (6*— any
sequence) does not change distance (10), signals of CPFM of the form (9) belong to invariant category, and
distance 87,(S’,S") depends only on a difference of the phase trajectories defined by arguments of cosines in
(9). Therefore, subsequently it is advisable to analyze the given phase function

Oter) = 0y (tea) + 05 (t0) = z_nh(z Lo + i(k +1-i)a, j (11)

i=k—L+1
Since the expression for (B(tk+l) is included in the cosine argument, we can proceed to modified phase
function

= 27‘ch 1
o(t,.,) = Z Loy + . (k+1-i)o; |mod(2n). (12)
i=—o0 i=k—-L+1
For a modulation index h=p / g where p and q are integers, the expression (12) can be written as
~ k+1
ot,.,) :{ [szx + > (k+1-i)oy ﬂ mod(Lq). (13)
i=k—L+1
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To expression (13) there corresponds the finite state automaton (fig. 6) describing phase on the output
of CPFM modulator. On fig. 6 and further, the symbols of addition and multiplication mean transactions of
addition and multiplication modulo Lg.

Subsequent conversions are conveniently produced by a polynomial representation of the sequences in
the form of polynomials of argument D, where the time delay T corresponds to operation of multiplication by D.
Then, transfer function of the structure represented on fig. 6, will look like:

¢(D) 2 L2, D
K(D)=——=| p|1+2D+3D" +...+(L-1)D“ +L mod(Lq). (14)
a(D) 1-D
More compact structure of the automaton with the same transfer function is shown on fig. 7.
p
a@
T T s T
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i ID—I
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modulo L.q adder
i ¢ (t-1)
Fig. 6. Model of CPFM modulator in the form of the finite state automaton with memory
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Fig. 7. Compact automaton structure
The number of the finite automaton states is defined by a full set of variables on inputs of delay

elements. The quantity of delay elements and, respectively, number of states can be reduced by minimizing the
block diagram.

Expression (14) can be transformed to the form:
K(D) = { p(1+ D+D*+..+D" %+ DL‘l)ﬁ} mod(Lq) . (15)

In this case, the structure of the minimal automaton is represented on fig. 8.
a (D)

lmomeomo—s
1

Fig. 8. Structure of the minimized automaton

It follows from fig. 8 structure that total number of automaton states is equal to S =g‘L, wherein

1 js the quantity of temporary states (caused by the presence of memory elements) and Sp=qgL — the

Si=q
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quantity of phase states (caused by the phase shift at the end of each clock interval). In solving problems of
creating the signal-code constructions using internal CPFM signals and external codes there is a problem of
correct connection of multiple outputs of the error-correcting encoder to the CPFM modulator input. Let the
error-correcting encoder have v outputs. In this case the CPFM modulator also should have v inputs and symbols
arrive on parallel inputs of the modulator as v-length blocks. We divide the sequence of clock time intervals t,
= KT in the blocks of duration vT, i.e. imagine the current index as k = vs + r. Here v — the block length, s — the
current block number, r — the current symbol number within the (0 < r <v-1) block. Accordingly, the transfer
function of the modulator model can be represented as a matrix

Ko(D) Kiy(D) KzD) .. K,a(D)
Ky1(D) Ko(D) Ky(D) ... Ky2(D)
K (D) = | K,2(D) K,1(D) Ko(D) ... K,3(D)

Ki(D) K,(D) Kai(D) .. Ka(D)

(16)

wherein each element of K(D) composed of all members of the matrix (16) containing a variable D power
(vs + 1), s =1,2,3. Elements of the polynomials matrix (16) are shown in table 2. An example of such a model is

shown in fig. 9.

Table 2
The elements of matrix (6)

L|v KO0 (D) K1 (D) K2 (D) K3 (D)

1 |1 |p/(1-D) - - -

1 |2 | pl(1-D2) pD (/1-D2) - -

1 |4 | pl/(1-D4) pD (/1-D4) pD2 (/1-D4) pD3 (/1-D4)

2 |2 | p@+D2) (/1-D2) 2pD (/1-D2) - -

2 | 4 | p(1+D4) (/1-D4) 2pD (/1-D4) 2pD2 (/1-D4) 2pD3 (/1-D4)

al

D |—+ p0(D)

X

al

D + 9l(D)

Fig. 9. Modulator model (L =2, v =2, p=1, q = 2, addition modulo 4)

Conclusions
1. The article describes some of the important properties of the frequency-modulated signal with the
continuous phase that were not previously investigated in the published literature.
2. The invariance property of CPFM simplifies the exhaustive search of generating polynomials for
convolutional codes used in the encoder for better noise immunity in the channels with CPFM signals.
3. Representation of CPFM signals by the differential model facilitates synthesis of a demodulating
algorithm for this signal.
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