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ON THE THERMAL CALCULATION OF THE FLUID FRICTION
SLIDING BEARINGS

The article deals with an approach to the heat flux distribution in fluid friction sliding bearings (FFSB)
as a basis of the thermal calculation based on electrothermal analogy considering all the possible sources of
thermogenesis in the FFSB and the way of its removal.
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B.U. POU

XepcOHChKHI HALlIOHATBHUH TEXHIYHHN YHIBEPCHTET

J0 IUTAHHSA TEIIJIOBOI'O PO3PAXYHKY HNIJJIIUITHUKIB KOB3AHHS PITUHHOI'O TEPTS

Y cmammi poszenanymo nioxio 0o po3noodiny meniosux nOmokieé 6 NIOWUNHUKAX KOB3AHHS PIOUHHO20
mepmsa (IDKT), sk ocnoea mennogoeo po3paxyHKy Ha 0asi elekmpomenniogoi awanocii, uwjo 6paxosye 6ci
Modicnusi 0dicepena mennoymeopents 6 IDKT i winaxu 11020 6i0800y.

Kniouosi cnosa: mennosuii homik, dsicepena menyiogoco NOMOKY, memMnepamypa Macmud.

B.U. POU

XepCOHCKUI HAllMOHAIILHBIA TEXHUYECKUIH YHUBEPCUTET

K BOITPOCY TEIIVIOBOI'O PACYETA INOAIIMITHUKOB CKOJIBKEHUS
KNJIKOCTHOTI'O TPEHUS

B cmamove paccmomper nooxoo0 K pacnpedeﬂenum Menio8blX NOMOKO8 8 NOOUUNHUKAX CKOJbHCCHUS.
HCUOKOCMHO20 mpeHus (H)R.D, KAdK OCHoea menjioeoco pacyema HaA base BﬂeKmp()MQI’UZOGOﬁ ananoauu,
ylmmble’aiou;eﬁ B8C€ BO3MOINCHbIE UCMOYHUKU menﬂoo6pa306aHuﬂ 6 IDKT u nymu eco omeooa.

Kniouesvie crnosa: mennosoti nomokK, UCMOYHUKU Menjioeo020 nOmokKda, memnepamypa CmMAa3Ku.

Relevance of the study

The thermal calculation is a basis for the calculation of fluid friction sliding bearing (FFSB) as a key

parameter of a bearing, its bearing capacity, is determined by a design viscosity of the lubricant.
The purpose and objectives of the article

Thus, the primal problem of thermal calculation is a lubricant temperature test in both loaded and
unloaded zones, which later determine the lubricant viscosity and the necessary amount of lubricant pumped
through the bearing. The use of noncontact infra-red method of temperature measurement, the development of
the device for direct temperature measurement of lubricant layer [1, 2] made it possible to determine
experimentally that the temperature of the lubricant layer is not constant around the circumference of the FFSB
under any operating conditions.

Substantiated exposition of the basic material and received results

The synchronous measurement of three operating parameters of the lubricant layer-the thickness, the
pressure developed in it, and the temperature - using proposed methods and devices [3, 4, 5], confirmed the
results of the method of thermal calculation of heat fluxes in the FSSB, considered below [6].

All existing methods of thermal calculation of the FFSB use the heat balance equation:

where 6 —is aheat (heat flux) separated as a result of frictional forces;
6, + 6, + -+ 6, - is a heat (heat flux) taken aside of FFS B by pumped lubricant, by heat transfer
through rubbing surfaces etc.

The equation (1) shows that the amount of heat exuded from the FFSB is equal to the amount of heat
exuded in it. A similar equation is known from the theory of electrical circuits [7] as the first Kirchhoff's law and
is formulated as follows: “the sum of electric currents flowing to the node is equal to the sum of currents flowing
from the node".

=l + L+ Iy + - +1,, )
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where I—is asum of currents flowing into a node;
I=I; + I+ I3 + -+ +I, —is currents flowing from the node.
If we compare the dependence [8] describing the process of thermal conductivity known as the Fourier's
law and linking the heat flux density with the temperature gradient:

0T
qr =Ang I’ ®)

and the dependence describing the process of electrical conductivity known as Ohm's law in differential form
and relating the electric current density to the potential gradient:

93 = o_an_())z_: ’ (4)
where qr - isthe heat flux density;
qs - is the electric current density;
A - is the thermal conductivity coefficient;
o, - is the specific electrical conductivity;
T - is the temperature value at a given point;
@ - is the value of the electric potential at a given point;
n, - is the unit vector, it is clear that processes of different physical nature - thermal conductivity
and electrical conductivity - are described by the equations of the same structure.
On the assumption of the heat balance equation (1), the Kirchhoff's equation (2), the equations (3) and
(4), we can draw an analogy between the thermal and electric parameters: : the temperature T is similar to the
electrical potential ¢, the heat flux 6 is similar to the electric current 7, the heat flux density B is similar to
the electric current density B, the thermal resistance R and thermal conductivity ¢ are similar to the electrical
resistance R, and electric conductivity o,, the heat flux source 6 is similar to the electric current source 1.
Developing the similarity further, it is clear that the known equations of:
a) the heat transfer by fluid with the thermal capacity C and the density y in amount Q from a point
with temperature T; to a point with temperature T,

6 =cyQ(T, — T,), (5)

b) the heat transfer in a solid with a thickness & with a thermal conductivity A, through a cross section
with the square S from a point with temperature T; to a point with temperature T,.

0=1s5a(T, - T), (6)

c) the heat transfer by means of heat exchange between fluid and a solid with heat-exchange surface S
heat transfer coefficient o from fluid with a temperature of T; to a body with a temperature T,or vice
versa from a body to a fluid

6 =aS(T, —T,), @

are similar to the known in the theory of electrical circuits expression [7] for electric current through a branch
with a conductivity from a point with an electric potential ¢, to a point with an electric potential ¢,.

I=0(p1-@3), (8)

From the expressions 5,6,7,8 follows that the expressions cyQ, %SQ, aS are the thermal conductivities

for each particular type of heat exchange.

There are well developed techniques in the theory of electrical circuits that allow on the basis of of the
Kirchhoff's laws to calculate currents in branches or the values of electrical potentials at nodes -points of
intersection of branches in circuits where the values of the resistance or conductivity of the branches are known
and the values of current or voltage sources are set.
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Using the similarity between thermal and electrical values, we will plot a thermal scheme reflecting the
thermal bonds in the fluid friction sliding bearings and, using the methods of solving electric circuits, we will
solve the problem of the values and distribution of lubricant temperatures in the FFSB.

The thermal scheme of the PZHT, plotted on the basis of the analogy of thermal and electrical
processes, is shown in Fig. 1.
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Fig. 1. The thermal scheme of the FFSB regarding the heat transfer along the shafts

The current sources I, and I, are the sources of heat flux equal to the amount of heat exuded in
lubricant as the result of friction force in loaded and unloaded zones correspondingly (the loaded zone is a
development zone for hydrodynamic pressures, the unloaded zone is a zone through which the main quantity of
lubricant is being pumped). As it was mentioned above, the heat flux sources are similar to the current sources
and therefore have similar properties, i.e. their internal resistance equals infinity that, for the case of a thermal
scheme, means that the heat flux cannot be limited by external thermal resistances or conductivities and is
determined by the internal properties of the heat flux source. In our case, P is the external load, f is the
coefficient, u is the sliding velocity, i.e. the heat flux source can develop a heat flux equal to 6 = Pf u.

Another property of the current source is that when a resistance is connected to it, a potential
proportional to the current of the current source and the value of the connected resistance will develop at the
output of the current source. Similarly, a temperature proportional to the heat flux of the given source and the
thermal resistance connected to it will develop in the source of the heat flux. That is, at a point or on a surface
where the heat flux flows, the temperature will be higher than at a point or surface, from which the heat flux
flows, that corresponds to the Fourier's law of thermal conductivity (3). Obviously, the lower the thermal
resistance or the greater the thermal conductivity connected to the heat flux source, the smaller will be the
temperature difference on the thermal resistance and the lower will be the temperature developed by the heat flux
source. Or as applied to the FFSB, if heat is being removed from the loaded bearing zone by a large amount of
lubricant Q-formula (5), the thermal conductivity with ¢yQ becomes large, and since the amount of heat that
must be removed is constant, the temperature difference ( T; — T,) will decrease. But the T, value is constant,
as, for example, the ambient temperature. Therefore, the temperature of the lubricant T; in the loaded zone will
also decrease.

The nodes in the thermal scheme denote the corresponding nodal temperatures. The scheme is a scheme
with lumped parameters. That is why the nodal temperatures and thermal resistances are average at a part of the
FFSB: t,, isthe average lubricant temperature in the loaded zone; t} is the average lubricant temperature in the
unloaded zone; t, is the shaft surface temperature; t,, is the average lubricant temperature at the entry to the
bearing; t,, is the ambient temperature; R, the thermal resistance for heat flux 6,, which is transferred from
the loaded zone of the FFSB to the unloaded as a result of the lubricant overflow captured by the rotating shaft
(1/cyQ, where Q, is the amount of the lubricant overflow); R, the thermal resistance for heat flux @, , which
is transferred from the loaded zone of the FFSB as a result of the lubricant overflow in the ends of the loaded
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zone (1/cyQ,, where Q,, is the amount of the lubricant overflow), R, is the thermal resistance for the heat flux
transferred from the lubricant in the loaded zone to the shaft; R,, is the thermal resistance for the heat flux
transferred from the shaft to the lubricant in the unloaded zone; R,; is the thermal resistance for heat flux
0, transferred from the lubricant in the loaded zone to the ambient through the bearing liner or vice versa; R,
is the thermal resistance for heat flux 6, transferred from the lubricant in the unloaded zone to the ambient
through the bearing liner or vice versa; R,, is the thermal resistance for heat flux 6,,, transferred by in the
unloaded zone the lubricant pumped through it (1/cyQ,,, Where @, is the amount of lubricant pumped through
the unloaded zone); R, is the thermal resistance for the heat flux transferred from the shaft to the ambient.

Thermal resistances and their corresponding thermal conductivities will be defined below. The thermal
resistance R, is assumed to be equal to infinity, because usually the heat transfer along the shaft to the ambient
is very small compared to other ways of heat transfer.

In this case, the thermal scheme in Fig. 1 will be as shown in Fig.2.
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Fig. 2 The thermal scheme of the FFSB

We use the method of nodal potentials to calculate the thermal scheme [7].When solving using this
method, one of the nodes is decided to be common and has a zero potential, in our case zero temperature.
Assuming it is the node U,,, the temperature of which equals U= t,; — t,,. Then:

UM= tM_ th )
Ul‘}lz tl\}l_ tBX!

onp:toxp' Cox - (9)

The thermal conductivities used in the node potential method of calculation are determined by thermal
resistances and are equal to: 6,=1/R,=cyQ,;

Jyzl/Ry: CyQy; aMnlzl/RMnl; O-anzl/Ran; O-Hzl/RH: CVQH; UMB:1/RMB; ; O-BM:]‘/RBM'
The sum of conductivities g, is g, indicated as o:

o = OmeOBM (10)

1
Omp+08M

The heat flux sources are equal to: g,
IH3 = Pfl-l3u1 (11)
IHH3: PfHH3ul (12)

where f.., fus are friction coefficients in the loaded and unloaded zones.
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The system of equations, compiled using the method of nodal potentials, will be the following:

{ UM(Jy + Oy +0x + U) - Up}l(o—x + U) - onpamnl = IHS‘ (13)
- UM (Jx + J) + Up}r(o—y + Oym +0x + U) - UOKpGMHZ = IHH3'

Applying the values of conductivity the determinant of system (13) will be:

A= CYQH (CYQx+ CYQy +o+ o_,unl) + Oyin2 (CYQX_'_ CYQy +o+ O—,unl) + (CYQX+ O')( cyQy + (14)

O-,wnl)l
Applying that f = f,, + f,,, the determinants of temperatures U,, U} will be:

A UM = (C]/ Qx + O-) (Pfu + Umcp Oyun1 + onp O-,unZ) + (15)
(Pﬁtsu+ onp Oun1 ) cy Qu + ( Pﬁma u+ onp Oyn1 ) Opin2»

AU},I:(C]/QX'F O—)(Pfu_'-UOKpO—,wnl + (16)
Umcp Oyin2 ) + (Pﬁmz u+ onp Oyn1 ) 94 Qy + ( Pﬁmx u+ Umcp Oyun2 ) Oyun1-

Determine the node temperatures as U, = AU, /A , UL=AU,/A and considering equations (9), we
obtain expressions for the lubricant temperature in the loaded and unloaded zones:

1
tM:UM+ bpx= tox + Z{Pfu-'_(toxp' 2% )( Oum T O-MIIZ)]( Cny+ a)+[PfH3u+(t0Kp_ (17)
th) O-Ml'll] CYQH + [Pfl-msu +(t01<p' th) O-Ml'Il] Ovn2 »

1
tl\:}l = U]\:/ll+ tox = Tox +_A{[Pfu+(toxp' th)( Oum + GMHZ)]( Cny+ U)+[PfHH3u+(t0Kp' (18)
th) a}vml] C)/Qy + [PfHHSu +(t0Kp' th) UMHZ] Oun1 -

The obtained formulas can be used for calculating both lightly loaded and heavily loaded sliding
bearings. One can see what affect the ambient temperature has, for example, when t,, < t,, as if often
happens, the terms, that have a multiplier t..,- t,, are subtracted from the terms Pfu, Pf,u, Pf,,U,
characterizing the sources of heat fluxes, which is equivalent to reducing them and, correspondingly, reducing
the lubricant temperature in the loaded and unloaded zones. From the formulas obtained, one can see the effect
of heat transfer through the bearing line (terms a,,1, 0,,2), heat transfer through the shaft to the lubricant
flowing through the unloaded zone from lubricant in the loaded zone (term ¢). For the case of heavily loaded
FFSBs, when heat transfer to the ambient can be neglected, thermal conductivities o,,;; and g,,,, equal zero:

+ Pfu(cyQx+ 0)+ PfisucyQy (19)
¥ Qu(cy Qe+ c¥Qy + 0)+ cvQy(cyQx+ o)’

tu= fax

Pfu(cyQx+ o)+ Pfuusu cyQy
¥ Qu(cyQx+ c¥Qy + 0)+ c¥Qy(cyQx+ o)’ (20)

th = o

It has been experimentally proved [9] that the amount of lubricant flowing into the ends of the loaded
zone in heavily loaded FFSBs is negligible small. 1.e. Q,= 0. Then (19), (20) can be represented in the following
form:

_ Pfu P fusl (21)
= Ly lEs
tu Lo ¥Qu c¥Qx+o'
Pfu
e =t t oo (22)
Or t, =t +— (23)

As one can see from the formulas (21), (22), (23) the lubricant temperature in the unloaded zone is
determined by the amount of lubricant pumped through the unloaded zone, and the lubricant temperature in the
loaded zone if all other conditions are equal (load, friction coefficient, sliding speed) is determined by the value
of the lubricant temperature in the unloaded zone and highly depends on the value of the thermal conductivity o,

83



BICHHK XHTY MNel(60), 2017 p. IHXKEHEPHI HAYKU

which characterizes the heat transfer developed in the lubricant of the loaded zone to the lubricant pumped in an
unloaded zone through a rotating shaft.

When the shaft rotates, the temperature of each of its points on the surface, depending on the lubricant
temperature, changes its temperature. For a fixed mode of operation of the FFSB, periodic change of the
temperature is harmonic. The process of temperature changes during one period of rotation may be varied. For
example, the temperature can vary sinusoidally, continuously increase, then continuously decrease or change
impulsively. Thus, one can assume that when the surface temperature of the shaft is lower than the lubricant
temperature, it accumulates heat from the lubricant, or when the surface temperature is higher, the shaft transfers
heat to the lubricant. This assumption was made in the paper [9]. There are given the heat transfer coefficients of
the lubricating layer to the shaft, according to which the amount of heat transferred by the shaft is determined
directly from the formula 6 = aS(T; — T,). However, the paper [9] does not take into account the true ability of
the shaft to accumulate and give off heat.

To do this one has to consider the possibility of a rotating shaft to transfer the heat generated in the
loaded zone to the lubricant pumped through the unloaded zone and solve the problem of the form of the
temperature field in the shaft, and then the problem of the heat flux through the shaft. In addition, one first has to
assume that all heat from the lubricant in the loaded zone is transferred to the shaft and from the shaft all heat is
transferred to the lubricant in an unloaded lubricant, which is equivalent to the fact that each point of the shaft
surface repeats the temperature of each point of the lubricant layer, and then to make a correction taking into
account the finiteness of the heat transfer coefficients.

Since the shaft does not have internal sources of thermal energy, to determine the temperature field in it,
we can consider the Fourier's heat equation in the following form:

BL: VZU' (24)
at
where «a is the heat conductivity coefficient, U is the temperature function, t is the time.
This assumes that the temperature function U does not obey any temporal initial condition, i.e. the
previous duration is so great that the influence of the initial temperature distribution is no longer displayed.
One of the solutions of the Fourier's equation is the product of two functions, one of which is connected
only with the coordinates, and the other with time:

U=y (x,y,2)p(1), (25)

When any point on the surface of the shaft is heated, its initial temperature T; is less than its
temperature at the time t and less than the lubricant temperature Ty, ie. T < T, < T, .When any pointon
the surface of the shaft is cooled, it is vice versa: T; > T, > T, . Herewith the dimensionless quantity

(T, — T,)/ (T, — T,) inthe first and second cases is equal to 1 at the initial moment, and by equilibrium
T, = T,, isequal to 0.
This condition is met by the exponential function

o=, (26)

where p is an AQ. As a result, the solution of the equation of the temperature field takes the following form:

U=U,e V4t cos(Zty |[ =) | 27)
to ato
Where U, - is the peak value of the temperature function;
y - is the coordinate in the direction of the radius of the shaft;
to - isthe period of oscillation (in this case, the period of the shaft rotation.
We will determine the heat flux through the shaft as:
=15/t , (28)

where Ay - is the heat conductivity coefficient of the material of the shaft;
S - is the shaft surface area.
Integration of the equation (28) in half the period taking into account that the heat conductivity
coefficient a=1, /y,c, will give an expression for the heat flux carried by the shaft:
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’2 (29)
6= UA S ; Angcato )

where ¥ — is the density of the material of the shaft;
c, — Is the heat capacity of the material of the shaft.

The equation (29) shows that if the temperature of the shaft changes according to the harmonic law, the
heat will be accumulated by the shaft from the loaded zone, and half to the lubricant in the unloaded zone for a
half of the rotation period of the shaft. The experimental studies [1, 2, 3, 4, 5] with simultaneous measurement of
the lubricant layer thickness, hydrodynamic pressure developed in it and temperature along the circumference of
the FFSB have shown that the hydrodynamic pressure development zone, i.e. the loaded zone is much smaller.
Taking into account the finiteness of the heat transfer coefficients from the lubricant to the shaft in the loaded
zone and from the shaft to the lubricant in the unloaded zone, and also the representation of the periodic
temperature function [10] using harmonic analysis in the form of a sum of different cosine waves, the
determination for each cosine of the corresponding temperature, the summation of these temperatures, and for
the total temperature determines the heat flux accumulated by a shaft with diameter d, sliding velocity u, in a
loaded FFSB | long in the pressure development zone t:

1
0 =2 ud 2y [Ni 0 (sin“5)? cos el 1t~ t1) (30)

where 753, cosel are coefficients that take into account the final value of the heat transfer
coefficient, recommended [11] for fluid flows in flat channels, in which the channel length considerably exceeds
its height, the coefficient before t,- tl by similarity with (7) is the conductivity o,,,, i.e. the conductivity from
lubricant to the shaft in the loaded zone.

Conclusions and prospects for further researches

Based on the above-stated information, a methodology for the thermal calculation of heavily loaded
FFSBs can be proposed, consisting of preliminary and clarified thermal calculations, which allow to determine
the average lubricant temperatures in the loaded and unloaded zones, the required amount of pumped lubricant,
the friction coefficient, the minimum thickness of the lubricant layer. An electrothermal similarity for
determining the distribution of heat fluxes in the FFSB, which takes into account all heat sources and ways of
heat removal from the FFSB is proposed as a basis for thermal calculation.
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