МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФРОНТА ОРГАНИЧЕСКИХ УДОБРЕНИЙ, НАХОДЯЩИХСЯ В СТВОРЕ ВАЛКОВАТЕЛЯ В ПРОЦЕССЕ ФОРМИРОВАНИЯ ВАЛКА

Мельник В.И., д.т.н., проф., Романашенко А.А., доц.

Харьковский национальный технический университет сельского хозяйства имени Петра Василенко

На основе теорий пластичности и предельного равновесия сплошных неупругих сред решается задача построения свободной поверхности органических удобрений, которые скапливаются впереди валкователя в процессе формирования валка.

Актуальность. С одной стороны применение органических удобрений является мощнейшим фактором получения высоких и стабильных урожаев и, что важнее, восстановления природного плодородия почвы, а с другой — при некачественном внесении и, соответственно, не полной заделке, могут стать источником загрязнения окружающей среды. Кроме того, передозировки органики могут сказаться и на качестве сельхозпродукции. Из этого следует, что совершенствование технологий внесения органических удобрений является важной хозяйственной задачей.

Состояние вопроса. Органические удобрения следует распределять равномерно и заделывать немедленно. Чем лучше распределены удобрения, тем легче их заделать в почву. Наилучшие показатели равномерности, особенно если нормы внесения превышают 60 т на гектар, имеют валкообразователиразбрасыватели [1]. Их технологический процесс предполагает формирование валка из куч удобрений и последующее разбрасывание. Чем равномернее валок, тем выше показатели качества разбрасывания. Математическое моделирование процессов, которые возникает В объеме удобрений, захваченных валкообразователем, это главный инструмент для обоснования параметров обеспечивающего конструкции валкователя, высокую равномерность плотности валка.

Целью настоящих исследований является математическое моделирование одного из элементов процесса формирования валка органических удобрений, а именно, описание фронта удобрений, находящихся в створе валкователя.

Постановка задачи. Условимся, что органические удобрения удовлетворяют модели пластической среды [2-7, 9], которая характеризуется пластической постоянной (коэффициентом пластичности) *k* и удельным весом *γ*.

В таком случае объемное напряженное состояние среды описывается представленным в декартовой системы координат *Охуг* ортогональным тензором напряжений σ_{ij} , (i, j = x, y, z), где парные индексы xx, yy и zz обозначают нормальные напряжения действующие вдоль оси абсцисс, ординат

и аппликат. $\sigma_{xy} = \sigma_{yx}, \ \sigma_{xz} = \sigma_{zx}$ и $\sigma_{zy} = \sigma_{yz}$ — касательные компоненты тензора напряжений σ_{ij} , действующие на взаимно перпендикулярных площадках.

Условимся считать положительными сжимающие напряжения и главные нормальные напряжения σ_i , $(i \in \{1,2,3\})$, ранжировать в порядке возрастания индексов, когда $\sigma_1 \leq \sigma_2 \leq \sigma_3$ [8-10].

В случае плоской задачи, которая решается в двумерной декартовой системе координат Oxy касательные напряжения $\sigma_{xz} = \sigma_{zx}$ и $\sigma_{zy} = \sigma_{yz}$ равны нулю, а нормальные напряжения σ_{zz} не учитывают. Мы предполагаем именно плоскую задачу. Ориентацию системы координат Oxy зададим углом α между направлением действия весовых сил и положительным направлением оси ординат. В нашем случае $\alpha = 0$, а, значит, ось Oy ориентирована вертикально вниз, а ось Ox — слева направо.

Воспользовавшись законом подобия [10], изучая общие закономерности (качественную сторону вопроса) все задачи решаем в безразмерных единицах.

С учетом принятого, система дифференциальных уравнений плоского пластического состояния среды (в работе [8] — система уравнений предельного равновесия) выглядит так [5, 7, 8]:

$$\begin{cases} \frac{\partial s}{\partial x} - 2k \left(\sin 2\varphi \frac{\partial \varphi}{\partial x} - \cos 2\varphi \frac{\partial \varphi}{\partial y} \right) = \gamma \sin \alpha, \\ \frac{\partial s}{\partial y} + 2k \left(\cos 2\varphi \frac{\partial \varphi}{\partial x} + \sin 2\varphi \frac{\partial \varphi}{\partial y} \right) = \gamma \cos \alpha, \end{cases}$$
(1)

где: $s = \frac{1}{2}(\sigma_3 + \sigma_1)$ – полусумма наибольшего σ_3 и наименьшего σ_1 главных нормальных напряжений; φ – угол между линией действия σ_3 и осью абсцисс Ox.

С учетом принятого условия пластичности Сен-Венана $\max\{\sigma_{xy}\} = k$ [8], компоненты тензора напряжений σ_{xx} , σ_{yy} и σ_{xy} определяются так:

$$\sigma_{xx} = s + k\cos 2\varphi, \quad \sigma_{yy} = s - k\cos 2\varphi, \quad \sigma_{xy} = k\sin 2\varphi.$$
 (2)

Для системы (1) известно характеристическое решение. Опираясь на него любую практическую задачу можно свести к известным краевым задачам Коши. Римана, Гурса ИЛИ представляющим К смешанным задачам, произвольную комбинацию первых трех [8]. Обычно такие задачи решаются методом конечных разностей или конечных элементов. Проблему составляют граничные условия, которые в большинстве случаев получить крайне сложно. В конечном итоге именно они определяют адекватность получаемых таким образом решений. Природа этой проблемы состоит в том, что в большинстве случаев до решения задачи положение и форма характеристик не известны.

Обойти проблему упомянутую можно, воспользовавшись полученными для системы (1) в работе [8]. Подобно соотношениями, соотношениям на характеристиках они выполняются вдоль линий декартовой называются параллельных осям системы координат И соотношениями на декартовых координатах. Их принципиальное отличие последних состоит, в том, что они выполняются вдоль прямых, положение и, разумеется, форма которых известна заранее.

Применительно к нашей задаче, когда $\alpha = 0$, упомянутые соотношения принимают следующий вид.

Соотношения на абсциссе:

$$x\big|_{y=\text{const}} = 2k \exp \frac{\gamma y - \widetilde{C}_y}{2k} \operatorname{ctg} \varphi + C_y^*, \qquad (3)$$

$$s\big|_{y=\text{const}} = k\ln(\sin^2\varphi) + C_y^+, \tag{4}$$

где:

$$\varphi \in]\varphi_{x_o} - \frac{1}{2}\pi, \ \varphi_{x_o} + \frac{1}{2}\pi[, \ \varphi_{x_o} = \pm \frac{1}{2}\pi,$$
 (5)

$$C_{y}^{+} = \widetilde{C}_{y} + k \ln(2(C^{\nu})^{2}), \qquad (6)$$

 \widetilde{C}_{v} , C_{v}^{*} и масштабирующий множитель C^{v} — постоянные величины.

Соотношения на ординате:

$$y\Big|_{x=\text{const}} = (-1)^r 2k \exp \frac{-\widetilde{C}_x}{2k} \operatorname{tg} \varphi + C_x^*, \qquad (7)$$

$$s\big|_{x=\text{const}} = k \ln(\cos^2 \varphi) + \gamma y + k \ln(2(C^{\upsilon})^2) + \widetilde{C}_x, \qquad (8)$$

$$s\big|_{x=\text{const}} = k \bigg[\ln(\cos^2 \varphi) + (-1)^r 2\gamma \exp \frac{-\widetilde{C}_x}{2k} \operatorname{tg} \varphi \bigg] + C_x^+,$$
(9)

где

$$\varphi \in]\varphi_{x_o} - \frac{1}{2}\pi, \ \varphi_{x_o} + \frac{1}{2}\pi[, \ \varphi_{x_o} = \pm \frac{1}{2}\pi,$$
(10)

$$r = \begin{cases} 1 & \text{при } \varphi > \varphi_{x_o}, \\ 2 & \text{при } \varphi < \varphi_{x_o}, \end{cases}$$
(11)

$$C_{x}^{+} = \gamma C_{x}^{*} + k \ln(2(C^{\upsilon})^{2}) + \widetilde{C}_{x}, \qquad (12)$$

 \widetilde{C}_x , C_x^* — постоянные величины.

Масштабирующий множитель C^{ν} остается постоянным для всей области пластичности, в то время, как постоянные \tilde{C}_y , C_y^* , C_y^+ или \tilde{C}_x , C_x^* , C_x^+ изменяются всякий раз, когда меняется положение прямой параллельной оси системы координат, для которой применяются соотношения ((3) — (6)) или ((7) — (12)). Таким образом, решение любой прикладной задачи состоит в формулировке граничных условий и разработке алгоритма расчета, по сути бесконечного множества комплектов постоянных \tilde{C}_y , C_y^* , C_y^* и \tilde{C}_x , C_x^* , C_x^+ .

Теперь об условии решаемой задачи. На рис. 1А изображен агрегат для внесения органических удобрений путем формирования валка из куч и последующего разбрасывания валка. Он состоит из трактора 1, валкователя 2 авторской конструкции [1] и барабанного разбрасывателя 3 [12]. На рис. 1В изображена схема валкователя, основу которого составляют левый 4 и правый 5 формирующие щиты, между которыми располагается окно для прохода валка, сформированного из предварительно отделенного от кучи массива $L^{u}UR^{u}R^{d}L^{d}$ органических удобрений 6.

На рис. 1В ориентация оси ординат противоположна направлению движения валкователя. Окно для прохода валка $L^d R^d$ симметрично относительно оси симметрии трактора, в то время как формирующие валок щиты $L^u L^d$ и $R^u R^d$ асимметричны. Последнее связано с необходимостью отделения части кучи от общего массива и дальнейшего формирования валка из отделенной части. Далее речь идет о процессе формировании валка и предполагается, что необходимый объем органических удобрений уже $L^u U R^u R^d L^d$ попал в валкообразователь, но, все же, сбоку, т.е. асимметрично. Верхнюю границу удобрений, в общем случае выпуклую кривую, аппроксимирует ломаная линия $L^u U R^u$. В дальнейшем нам надлежит восстановить $L^u U R^u$ теоретическим путем.

В реальности вся объемная конструкция валкователя располагается горизонтально. Но, чтобы в дальнейшем свести задачу к плоской постановке, условимся мысленно представлять, что вся эта конструкция располагается вертикально, а органические удобрения как бы засыпаны сверху внутрь валкователя. На рис.1 ориентацию исследуемой системы задает вектор весовых сил γ , который по направлению совпадает с ориентацией оси ординат.

Принятое представление позволяет заменить силы трения, которые возникают межу массивом удобрений и почвой, и по своему значению пропорциональны толщине слоя удобрений, на силы веса. Такая возможность обусловлена тем, что и силы трения в реальном случае увеличиваются по мере перехода от линии $L^u R^u$ к линии $L^d R^d$, и внутренне давление среды обусловленное ее весом γ изменяется по тому же закону, если мыслить, что объем $L^u R^u L^d R^d$ ориентирован вертикально. И силы трения о почву в реальности, и силы веса среды в модельном представлении одинаково

способствуют продвижению среды между щитами валкователя в направлении оси *Оу*. В конечном итоге получаем возможность применить уже описанные выше двумерные математические модели.

Рис.1 — Агрегат для внесения органических удобрений путем формирования валка из куч и его последующего разбрасывания: А) общий вид агрегата, состоящего из трактора 1, валкователя 2 и разбрасывателя 3; В) схема валкователя, где: 4, 5 — формирующие щиты; 6 — органические удобрения; P — растягивающая нагрузка, порождаемая истекающей средой; γ — весовые силы; β_l и β_r — углы ориентации ограждающих щитов по отношению к оси абсцисс системы координат Oxy; $L^d R^d$ — уровень нижнего обреза направляющих щитов; $L^{ru}R^u$ — горизонтальная линия, исходящая из точки R^u ; $L^u U R^u$ — верхний (передний) уровень пластической среды, проходящей между формирующими щитами; $L^{ru}U^l$ — вертикаль, исходящая из точки L^{ru}

Решение задачи. Для формирования граничных условий обратимся к рис. 2, где ограничивающие щиты (две заштрихованные прямоугольные трапеции, которые соответствуют позициям 4 и 5 на рис. 1), для удобства изображены отодвинутыми от массива среды $L^{u}UR^{u}R^{d}L^{d}$. В образовашихся зазорах показаны векторы касательных напряжений $\sigma_{i\tau}$ и реактивные по своей сути напряжения $\sigma_{i\nu}$. Ориентация и тех и других понятна исходя из физической сути решаемой задачи. Кроме того на рисунке показаны элементарные прямоугольные треугольники с катетами dx и dy. Знаки и направления действия напряжений проанализируем в процессе формирования граничных условий. В общем случае углы θ_{l} и θ_{r} не являются постоянными. Считаем, что ось ординат Oy проходит через вершину U, положение которой до решения задачи не определено, а, значит, координаты точек L^{u} , U, R^{u} , R^{d} и L^{d} изначально неизвестны.

В отношении верхней свободной границы $L^{u}UR^{u}$ можно однозначно утверждать, что на ней касательные напряжения отсутствуют и, следовательно, она полностью состоит из главных площадок, а значит:

$$\sigma_1 |_{L^u U R^u} = 0, \quad \sigma_3 |_{L^u U R^u} = 2k, \quad s |_{L^u U R^u} = k.$$
 (13)

Кроме этого, пользуясь определением φ , как угла между линией действия большего из главных нормальных напряжений σ_3 и осью Ox системы координат, а также тем обстоятельством, что линия $L^u UR^u$ полностью лежит на главных площадках, записываем:

$$\theta_l = \varphi|_{I^{u_{IJ}}}, \quad \theta_r = \varphi|_{IIR^u}. \tag{14}$$

Такой же вывод можно получить и пользуясь определением φ , как угла между линией действия большего из главных нормальных напряжений σ_{yx} и осью *Ох* системы координат, а также тем обстоятельством, что линия $L^{u}UR^{u}$ полностью лежит на главных площадках.

Дополнительные ограничения, действующие на левой $L^{u}L^{d}$ и правой $R^{u}R^{d}$ границах сформулируем, прибегнув к анализу действующих на них условий внешнего трения (рис. 2). Определим предельные значения величин удельного трения τ_{i} и τ_{r} , действующих на левой и правой границах области пластичности:

$$\tau_i = f_i \sigma_{iv}, \quad i \in \{l, r\}.$$
(15)

где: f_i и σ_{iv} — коэффициенты внешнего трения и нормальные напряжения действующие на левой $L^u L^d$ (i=l) и правой $R^u R^d$ (i=r) границах области $L^u U R^u R^d L^d$ (на левом и правом щитах валкователя).

Поскольку трение τ_i уравновешивается касательными напряжениями $\sigma_{i\tau}$, $(i \in \{l, r\})$, действующими вдоль границ $L^u L^d$ и $R^u R^d$, то это значит, что τ_i не всегда реализуется полностью, а значит справедливо неравенство

$$|\sigma_{i\tau}| \le \tau_i = f_i \sigma_{i\nu}, \quad i \in \{l, r\}, \tag{16}$$

где знак модуль в левой части $|\sigma_{i\tau}|$ обусловлен тем, что касательные напряжения $\sigma_{i\tau}$ могут быть, как положительными так и отрицательными, в то время как, внешнее трение возможно только в случае сжимающих (положительных) нормальных напряжений, когда $\sigma_{iv} > 0$, а, значит, и удельное трение всегда положительное и $\tau_i > 0$.

Для того, что бы граничные условия (16) можно было использовать в дальнейшем необходимо касательную $\sigma_{i\tau}$ и нормальную $\sigma_{i\nu}$ компоненты

полного напряжения σ_i действующего вдоль границ $L^u L^d$ (i=l) и $R^u R^d$ (i=r)выразить через компоненты тензора напряжений σ_{xx} , σ_{yy} и σ_{xy} (2).

С целью вычисления напряжений σ_{iv} и $\sigma_{i\tau}$, $(i \in \{l, r\})$ используем элементарные прямоугольные треугольники, располагающиеся вдоль границ $L^{u}L^{d}$ и $R^{u}R^{d}$. На рис. 2 они выделены затемнением. Длина их катетов равна dx и dy. Ориентация нормальных составляющих напряжений σ_{xx} и σ_{yy} , опять таки понятна исходя из физической сути задачи. А для того, что бы определиться с тем, как ориентированы касательные напряжения σ_{xy} , следует задействовать правило парности [8, 9, 13]. Строго говоря, оно формулируется применительно к поверхностям, пересекающимся под прямым углом, но, тем не менее, в случае плоского напряженного состояния справедливо следующее: *чем ближе к прямому величина угла треугольника, ограничивающего элементарный объем среды, тем справедливее положения упомянутого правила.* Опираясь на это замечание можно утверждать, что у вершины среднего по величине угла треугольника векторы σ_{xy} должны ориентироваться навстречу векторам $\sigma_{i\tau}$, а у вершины прямого угла векторы σ_{xy} должны быть попарно равны по модулю и направлены в противоположные стороны.

Рис. 2 — Иллюстрация граничных условий, действующих вдоль боковых линий контакта *L^uL^d* и *R^uR^d* среды с ограничивающими поверхностями

В отношении знаков касательных напряжений, воспользовавшись правилом из работы [8], можно сказать, что вблизи левой границы $L^{u}L^{d} \sigma_{xy} > 0$, а вблизи правой $R^{u}R^{d} \sigma_{xy} < 0$. Таким образом, при переходе слева направо через область $L^{u}UR^{u}R^{d}L^{d}$ касательные напряжения σ_{xy} изменяют свой знак «+

» на «-». Это согласуется с интервалами $\varphi \in]\varphi_{x_o} - \frac{1}{2}\pi, \ \varphi_{x_o} + \frac{1}{2}\pi[, \ \varphi_{x_o} = \pm \frac{1}{2}\pi,$ (5) и выражением для σ_{xy} (2).

В дальнейшем, использовав известный опыт, по обоснованию возможных интервалов значений угла φ [8], примем, что в условии (5) $\varphi_{x_o} = \frac{1}{2}\pi$, а, значит,

$$\varphi \in]0, \pi[. \tag{17}$$

Для вычисления σ_{iv} запишем векторные уравнения силового баланса, состоящие из составляющих напряжений и весовых сил $\frac{1}{2}\dot{\gamma}dxdy$, действующих на элементарные треугольники в направлении нормали к их гипотенузам

$$\frac{dx}{\sin\beta_i}\overleftarrow{\sigma_{iv}} = \overleftarrow{\sigma_{yy}}dx + \overleftarrow{\sigma_{xx}}dy + \overleftarrow{\sigma_{xy}}dx + \overleftarrow{\sigma_{xy}}dy + \frac{1}{2}\overleftarrow{\gamma}dxdy, \quad i \in \{l, r\},$$
(18)

где дифференциалы dx, dy связаны соотношением $dx: dy = tg \beta_i = const$ и являются бесконечно малыми величинами одного порядка. В случае предельного перехода, когда $(dx, dy) \rightarrow 0$, произведение $dx \cdot dy$ дает бесконечно малую величину более высокого порядка, чем сами множители dx и dy. Таким образом, применив предельную теорему [8] и определения σ_{xx} , σ_{yy} и σ_{xy} (2) переписываем выражения (18) в скалярном виде:

$$\frac{dx}{\sin \beta_{i}} \sigma_{iv} = \sigma_{yy} dx \sin \beta_{i} + \sigma_{xx} dy \cos \beta_{i} + \zeta (\sigma_{xy} dx \cos \beta_{i} + \sigma_{xy} dy \sin \beta_{i});$$

$$\zeta = \begin{cases} +1, \text{ при } i = l, \varphi \in] 0, \frac{1}{2}\pi[; \\ -1, \text{ при } i = r, \varphi \in] \frac{1}{2}\pi, \pi[. \end{cases}$$
(19)

После преобразования они дают:

$$\sigma_{iv} = s_i + k \cos 2(\varphi - \zeta \beta_i); \qquad \zeta = \begin{cases} +1, \, \text{при} \, i = l, \, \varphi \in]0, \, \frac{1}{2}\pi[; \\ -1, \, \text{при} \, i = r, \, \varphi \in]\frac{1}{2}\pi, \, \pi[. \end{cases}$$
(20)

Для вычисления $\sigma_{i\tau}$ поступим аналогично выкладкам ((18) — (20)) и запишем векторные уравнения силового баланса, состоящие из составляющих напряжений и весовых сил $\frac{1}{2}\dot{\gamma}dxdy$, действующих на элементарные треугольники в направлении их гипотенуз

$$\frac{dx}{\sin \beta_i} \overleftarrow{\sigma_{i\tau}} = \overleftarrow{\sigma_{yy}} dx + \overleftarrow{\sigma_{xx}} dy + \overleftarrow{\sigma_{xy}} dx + \overleftarrow{\sigma_{xy}} dy + \frac{1}{2} \overleftarrow{\gamma} dx dy, \quad i \in \{l, r\}.$$
(21)

или в скалярном виде, с учетом определений σ_{xx} , σ_{yy} и σ_{xy} (2) и предельной теоремы [8]

$$\frac{dx}{\sin\beta_i}\sigma_{i\tau} = \sigma_{yy}dx\cos\beta_i - \sigma_{xx}dy\sin\beta_i - \zeta(\sigma_{xy}dx\sin\beta_i - \sigma_{xy}dy\cos\beta_i), \quad (22)$$

где: *i*, ζ — соответствует (19).

После преобразования они дают:

$$\sigma_{i\tau} = k \sin 2(\varphi - \zeta \beta_i); \qquad \zeta = \begin{cases} +1, \text{ при } i = l, \varphi \in]0, \frac{1}{2}\pi[; \\ -1, \text{ при } i = r, \varphi \in]\frac{1}{2}\pi, \pi[. \end{cases}$$
(23)

Далее подставляем значения σ_{iv} (20) и $\sigma_{i\tau}$ (23) в условие (16). После введения замены $s = s_i$, где s_i значения величины s вдоль i-той границы ($i \in \{l, r\}$), получаем искомую форму граничных условий (условий трения), которые действуют вдоль отрезков прямых $L^u L^d$ (i = l) и $R^u R^d$ (i = r):

$$\frac{k\left|\sin 2(\varphi - \zeta\beta_{i})\right|}{s_{i} + k\cos 2(\varphi - \zeta\beta_{i})} \leq f_{i};$$

$$\zeta = \begin{cases} +1, \text{ при } i = l, \varphi \in]0, \frac{1}{2}\pi[; \\ -1, \text{ при } i = r, \varphi \in]\frac{1}{2}\pi, \pi[. \end{cases}$$
(24)

Решив (24) относительно *s_i* получаем:

$$s_{i} \geq k \left[\frac{\left| \sin 2(\varphi - \zeta \beta_{i}) \right|}{f_{i}} - \cos 2(\varphi - \zeta \beta_{i}) \right];$$

$$\zeta = \begin{cases} +1, \text{ при } i = l, \varphi \in]0, \frac{1}{2}\pi[; \\ -1, \text{ при } i = r, \varphi \in]\frac{1}{2}\pi, \pi[. \end{cases}$$
(25)

В отношении угловых точек L^{u} и R^{u} уточним, что в них должны выполняться как ограничение (13) так и условия трения (24). Следовательно выполнив подстановку $s_{i} = s = k$ (13) в (24) и введя замену $\varphi = \varphi^{iu}$ находим:

$$\begin{aligned} \left| \operatorname{tg}(\varphi^{iu} - \zeta \beta_i) \right| &\leq f_i; \\ \zeta &= \begin{cases} +1, \, \operatorname{прu} \, i = l, \, \varphi^{iu} \in]0, \, \frac{1}{2}\pi[; \\ -1, \, \operatorname{пpu} \, i = r, \, \varphi^{iu} \in]\frac{1}{2}\pi, \, \pi[. \end{cases} \end{aligned}$$
(26)

где: $\varphi^{iu} \in \{\varphi^{lu}, \varphi^{ru}\}$ — значения угла φ в точках L^{u} (i=l) и R^{u} (i=r). Решив последнее относительно φ^{iu} , с учетом того, что $0 \le \beta_i < \frac{1}{2}\pi$, находим:

$$\max\{0, (\beta_l - \operatorname{arctg} f_l)\} \le \varphi^{lu} \le \min\left\{(\beta_l + \operatorname{arctg} f_l), \frac{1}{2}\pi\right\};$$
(27)

$$\max\left\{\frac{1}{2}\pi, (\pi - \beta_r - \operatorname{arctg} f_r)\right\} \le \varphi^{ru} \le \min\left\{(\pi - \beta_r + \operatorname{arctg} f_r), \pi\right\}.$$
(28)

На этом формулировка граничных условий заканчивается.

Минимально возможное (начальное) значение постоянной C_y^+ , определяется условием пересечения кривых (25) и (4) на уровне $s = s_i = k$.

Перепишем условие (26) в виде равенства, применительно к правой границе $R^{u}R^{d}$, т.е положив, что i=r:

$$\left| \operatorname{tg}(\varphi^{ru} + \beta_r) \right| = f_r.$$
⁽²⁹⁾

В таком случае интересующее решение (29) будет таким:

$$\varphi^{ru} = \pi - \beta_r - \operatorname{arctg} f_r.$$
(30)

Решив соотношение на абсциссе (4) относительно постоянной интегрирования C_v^+ и выполнив подстановку s = k и $\varphi = \varphi^{ru}$ (30) получаем:

$$C_{y}^{+} = k\{1 - \ln[\sin^{2}(\pi - \beta_{r} - \arctan f_{r})]\}.$$
 (31)

— минимальное значение постоянной C_{y}^{+} .

Описание алгоритма для расчета напряженного состояния среды, которое складывается вдоль взаимно перпендикулярных линий $L^{ru}U^{l}$ и $L^{ru}R^{u}$.

А. Определяемся с положением системы координат Oxy по высоте, а также с расстоянием между формирующими щитами $L^{u}L^{d}$ и $R^{u}R^{d}$ валкователя и степенью заполнения его удобрениями.

1) Назначаем величину ординаты $y^{ru} = y|_{L^{ru}R^{u}}$ горизонтали $L^{ru}R^{u}$.

2) Назначаем разность абсцисс $x|_{I^{ru}} - x|_{R^{u}}$ точек L^{ru} и R^{u} , соответственно.

3) Вычисляем абсциссу $x^{lru} = x|_{r^{ru}}$ точки L^{ru} :

$$x^{lru} = \frac{1}{2} (x |_{L^{ru}} - x |_{R^{u}}).$$
(32)

4) Вычисляем абсциссу $x^{ru} = x|_{R^{u}}$ точки R^{u} :

$$x^{ru} = -x^{lru}. (33)$$

• Теперь условие задачи уточнено.

В. Рассматриваем линию $L^{ru}R^{u}$ (рис. 1В).

5) Использовав (30) вычисляем $\min \{ \varphi^{ru} \}$.

- 6) Использовав (31) вычисляем $\min\{C_v^+|_{I^{ru}R^u}\}$.
- Теперь соотношение (4), выполняющееся вдоль $L^{ru}R^{u}$ определено.

7) Вычисляем минимально возможное значение угла $\varphi^{lru} = \varphi|_{L^{ru}}$, как величину φ в точке пересечения соотношения (4) с условием трения (25), если в последнем принят знак равенства. Т.е. численно решаем уравнение

$$k \ln(\sin^2 \varphi) + C_y^+ = k \left[\frac{|\sin 2(\varphi - \zeta \beta_i)|}{f_i} - \cos 2(\varphi - \zeta \beta_i) \right];$$

$$\zeta = \begin{cases} +1, \text{ при } i = l, \varphi \in]0, \frac{1}{2}\pi[; \\ -1, \text{ при } i = r, \varphi \in]\frac{1}{2}\pi, \pi[; \end{cases}$$
(34)

относительно φ и полученное значение присваиваем φ^{lru} . Тут i = l и, соответственно, $\zeta = +1$. В дальнейшем значение φ^{lru} может быть увеличено до $\frac{1}{2}\pi$.

8) Воспользовавшись соотношением (3) получаем формулу

$$\widetilde{C}_{y} = \gamma y + 2k \ln \left[\frac{2k(\operatorname{ctg} \varphi^{lru} - \operatorname{ctg} \varphi^{ru})}{x^{lru} - x^{ru}} \right],$$
(35)

и вычисляем постоянную $\widetilde{C}_{y}|_{L^{ru}R^{u}}$.

9) Из (3) по формуле

$$C_{y}^{*} = \begin{pmatrix} x^{lru} \\ x^{ru} \end{pmatrix} - 2k \exp\left(\frac{\gamma y - \widetilde{C}_{y}}{2k}\right) \operatorname{ctg}\left(\frac{\varphi^{lru}}{\varphi^{ru}}\right)$$
(36)

вычисляем постоянную $C_y^* \mid_{L^{ru}R^u}$.

• Теперь соотношение (3), выполняющееся вдоль $L^{ru}R^{u}$ определено.

10) Из (6) по формуле

$$C^{\nu} = \frac{1}{\sqrt{2}} \exp\left(\frac{C_y^+ - \widetilde{C}_y}{2k}\right),\tag{37}$$

вычисляем постоянную C^{ν} . Ее значение справедливо для всей области пластичности.

• Теперь напряженное состояние модельной среды полностью определено вдоль горизонтали $L^{ru}R^{u}$.

С. Рассматриваем линию $L^{ru}U^l$ (рис. 1В).

11) Воспользовавшись соотношением (4) вычисляем полусумму напряжений $s|_{r^{ru}}$, действующих в точке L^{ru} .

12) Воспользовавшись решением (8) относительно постоянной \widetilde{C}_x

$$\widetilde{C}_x = s - k \ln(\cos^2 \varphi) - \gamma y - k \ln(2(C^{\upsilon})^2),$$
(38)

и выполнив соответствующие подстановки находим значение $\widetilde{C}_{x}|_{I^{ru}I^{l}}$.

13) Решив соотношение (7) относительно постоянной C_x^*

$$C_{x}^{*} = y - (-1)^{r} 2k \exp \frac{-\widetilde{C}_{x}}{2k} \operatorname{tg} \varphi, \quad r = \begin{cases} 1 & \text{при } \varphi > \frac{1}{2}\pi, \\ 2 & \text{при } \varphi < \frac{1}{2}\pi, \end{cases}$$
(39)

и выполнив соответствующие подстановки находим значение $C_x^*|_{I^{ru}I^l}$.

14) Воспользовавшись выражением (12) вычисляем постоянную $C_x^+|_{L^{ru}U^l}$.

• Теперь напряженное состояние модельной среды полностью определено вдоль вертикали $L^{ru}U^l$.

D. Для определения угла $\varphi^{ul} = \varphi|_{U^l}$, согласно требованию (13), рассматриваем условия достижения равенства $s|_{U^l} = k$.

15) Назначаем возможный интервал значение угла φ^{ul} :

$$\varphi^{ul} = \varphi \mid_{U^l} \in]0, \varphi^{lru}]. \tag{40}$$

16) В пределах интервала (40), методом деления отрезка пополам, находим такое значение угла $\varphi|_{U^l}$ при котором достигается равенство $s|_{U^l} = k$.

17) Воспользовавшись соотношениями (7) вычисляем значение ординаты $y|_{U^l}$ точки U^l кривой верхней свободной границы $L^u UR^u$.

• Теперь напряженное состояние модельной среды полностью согласовано вдоль двух взаимно перпендикулярных сечений определяемых линиями $L^{ru}R^{u}$ и $L^{ru}U^{l}$.

Е. Построение следующей точки на кривой верхней свободной границы $L^{u}UR^{u}$ удобрений. При этом точка L^{ru} по горизонтали перемещается вправо, а верхняя точка U^{l} , находясь на вертикали $L^{ru}U^{l}$ обозначает фрагмент $U^{l}UR^{u}$ свободной границы $L^{u}UR^{u}$.

18) Определяемся с элементарным приращением Δ_{φ} угла $\varphi^{lru} = \varphi |_{rru}$.

19) Увеличиваем значение $\varphi^{lru} = \varphi|_{r^{ru}}$ на величину Δ_{φ} .

20) Повторяем пункты 8) ... 16).

Далее на рис. 3 представлены расчетные кривые фрагмента $U^{l}UR^{u}$ свободной поверхности $L^{u}UR^{u}$, полученные путем применения описанного алгоритма с использованием исходных данных табл. 1.

Рис. 3 — Построеные в соответствии с исходными данными из табл. 1 линии фрагмента *U*^{*i*}*UR*^{*u*} свободной границы *L*^{*u*}*UR*^{*u*}

Из анализа рисунков следуют выводы.

Таблица 1 — Исходные данные для построения рис. 3	3
---	---

Параметры:				Номер:	
название	обозначение	величина	рисунка	линии	

Общие данные для всех рисунков и графиков									
1	Ордината горизонтального	y^{ru}	1,0	A, C, E	1, 2, 3				
	сечения $L^{ru}R^{u}$		``	B, D, F	``				
2	Разность абсцисс	$\left(x\mid_{L^{ru}}-x\mid_{R^{u}} ight)$	2,0	A, C, E	1, 2, 3				
	для точек L^u и R^u		``	B, D, F	``				
3	Угол наклона правого щита	β_r	$\pi/12$	A, C, E	1, 2, 3				
	валкователя $R^{u}R^{d}$		``	B, D, F	``				
Общие данные для рисунков А, С, Е									
4	Коэффициент трения для левой	f_l	tg(0,5)	А, С, Е	1, 2, 3				
	границы $L^{u}L^{d}$								
5	Коэффициент трения для правой	f_r	tg(0,3)	A, C, E	1, 2, 3				
	границы $R^u R^d$								
Общие данные для рисунков В, D, F									
6	Угол наклона левого щита	$oldsymbol{eta}_l$	$\pi/6$	B, D, F	1, 2, 3				
	валкователя L ^u L ^d								
Вариационная часть для рисунков А, С, Е и В, D, F									
7	Коэффициент пластичности	k	1,0	A, B, C, D	1, 2, 3				
			2,0	E, F	``				
8	Удельный вес модельной среды	γ	5,0	A, B	1, 2, 3				
			10,0	C, D, E, F	``				
Вариационная часть для отдельных графиков									
9	Угол наклона левого щита	β_l	$\pi/6$	A, C, E	1				
	$L^{u}L^{d}$ валкователя		$\pi/8$	``	2				
			$\pi/10$	``	3				
10	Коэффициент трения	f_l	tg(0,5)	B, D, F	1				
	для левой границы $L^{u}L^{d}$		tg(0,4)		2				
	<u> </u>		tg(0,3)		3				
11	коэффициент трения	f_r	lg(0,3)	B, D, F	l				
	для правой границы <i>R^uR^d</i>		tg(0,4)	"	2				
			tg(0,5)		3				

Выводы

1. Общий характер кривых свободного контура *L^uUR^u* соответствует действительности.

2. Чем меньше угол β_i наклона левого щита валкователя, тем сильнее вправо смещается максимум кривой свободного контура $L^u UR^u$.

3. Увеличение удельного веса модельной среды γ при условии, что коэффициент пластичности k сохраняет свое значение, приводит к «проседанию среды между щитами», т.е. к уменьшению высоты максимума на кривой $L^{u}UR^{u}$ свободной границы.

4. Пропорциональное увеличение коэффициента пластичности k и удельного веса среды γ в одно и то же количество раз не приводит к изменению характера кривых свободного контура $L^{u}UR^{u}$.

5. Уменьшение коэффициента внешнего трения на левом щите валкователя f_l и пропорциональное увеличение коэффициента трения, действующего на правом щите f_r , приводит к «провалу среды» вдоль щита с меньшим трением и пропорциональному смещению максимума на кривой свободного контура $L^{u}UR^{u}$ в сторону щита с более интенсивным трением.

6. Из предыдущих выводов следует, что увеличение углов наклона щитов валкователя β_l и β_r , а также коэффициентов внешнего трения f_l и f_r , действующего на них, приводит к увеличению транспортирующей способности валкователя, т.е. к увеличению высоты максимума на кривой свободного контура $L^u UR^u$. При определенных значениях β_l , β_r , f_l и f_r транспортирующая способность валкователя может стать избыточной.

7. В качественном смысле все перечисленные пункты 1) — 5) полностью согласуются с физическим смыслом решаемой задачи, а, следовательно, они могут быть использованными при обосновании параметров конструкции валкователя органических удобрений.

Список использованных источников

- 1. Бондаренко А.М. Механико-технологические основы процессов производства и использования высококачественных органических удобрений [Текст]: монография / А.М. Бондаренко. Зерноград: ВНИПТИМЭСХ, 2001. 289 с.
- 2. Томленов А.Д. Теория пластического деформирования материалов [Текст] / А.Д. Томленов. М.: Металлургия, 1972. 408 с.
- 3. Малинин Н.Н. Прикладная теория пластичности и ползучести [Текст] / Н.Н. Малинин. — М.: Машиностроение, 1975. — 398 с.
- 4. Клюшников В.Д. Математическая теория пластичности [Текст] / В.Д. Клюшников. М.: Изд.-во Моск. ун-та, 1979. 208 с.
- Писаренко Г.С. Уравнения и краевые задачи теории пластичности и ползучести [Текст]: Справочное пособие / Г.С Писаренко, Н.С. Можаровский. — К.: Наукова думка, 1981. — 496 с.
- 6. Основы теории упругости и пластичности [Текст]: Учеб. для

машиностроит. спец. Вузов/В.Г. Зубчанинов.- М.:Высш.шк., 1990. - 368 с.

- 7. Можаровский Н.С. Теория пластичности и ползучести в инженерном деле [Текст] / Н.С. Можаровский // Приложение методов теории пластичности и ползучести к решению инженерных задач машиностроения: в 2 ч., К.: Выща школа, 1991. Ч. 1. 264с.
- 9. Саргсян А.Е. Сопротивление материалов, теории упругости и пластичности. Основы теории с примерами расчетов [Текст]: учебник для вузов / А.Е. Саргсян. М.: Высшая школа, 2000. 286 с.
- 10. Соколовский В. В. Статика сыпучей среды [Текст]: / В.В. Соколовский.— [4-еизд.].— М.: Наука, 1990.— 272с.
- А.с. 1817972 СССР, МПК⁴ А 01 С 3/08. Валкообразователь органических удобрений [Текст] / Н.З. Макеев, А.А. Романашенко, А.И. Аникеев, А.Н. Красноруцкий — Заявл. 30.04.1991, № 4932853/30-15, Опубл. в Б.И. 1993, № 20.
- А.с. 1459621 СССР, МПК⁴ А 01 С 3/06. Разбрасыватель органических удобрений [Текст] / Н.З. Макеев, А.С. Зайцев, А.И. Никитенко, А.А. Немцев А.И. Аникеев, А.Н. Красноруцкий Заявл. 27.08.1986, № 4109627/30-15, Опубл. в Б.И. 1989, № 7.
- Феодосьев В.И. Сопротивление материалов [Текст]: учебник д ля вузов / В.И.Феодосьев. — 9-е изд., перераб. — М.: Наука. Гл. ред. физ.-мат. лит., 1986. — 512 с.

Анотація

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ФРОНТУ ОРГАНІЧНИХ ДОБРИВ, ЯКИЙ ЗНАХОДИТЬСЯ У СТВОРІ ВАЛКУВАЧА В ПРОЦЕСІ ФОРМУВАННЯ ВАЛКА

Мельник В., Романашенко О.

На основі теорії пластичноті та граничного рівновісся суцільних непружніх середовищ вирішується задача побудови вільної поверні органічних добрив, які скопилися спереду валкувача у процессі формування валка.

Abstract

MATHEMATICAL MODELING OF FRONT ORGANIC FERTILIZER, WHICH IS IN CREATE SWATH IN THE FORMATION OF THE ROLLS

V. Melnik, A. Romanashenko

Based on the theory plasticity and inelastic continuum limit balance environments to solve the problem of building a free Turn Manure that accumulated in front of the swath formation process to roll.