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In recent years, there has been increased interest in using steady-state visual evoked potentials (SSVEP) in brain-

computer interface (BCI) systems; the SSVEP approach currently provides the fastest and most reliable communication 
paradigm for the implementation of a non-invasive BCI. This paper presents recent developments in the signal process-
ing of the SSVEP-based Bremen BCI system, which allowed one of the subjects in an online experiment to reach a peak 
information transfer rate (ITR) of 124 bit min-1. It is worth mentioning that this ITR value is higher than all values pre-
viously published in the literature for any kind of BCI paradigm. 

 
1. Introduction 
Brain-computer interface (BCI) systems allow people 

to interact with the environment through an alternative 
communication channel that is entirely independent from 
the traditional motor output pathways of the nervous 
system [1-3]. These devices use brain activity as the input 
signal and may be the only possible means of 
communication for people with severe motor disabilities 
[4, 5]. Recent studies have indicated increased interest in 
BCI systems that are based on various sensor modalities 
[6]. In non-invasive BCIs, electroencephalography (EEG) 
is commonly used because of its good time resolution, 
ease of EEG data acquisition and lower system cost 
compared to other brain activity monitoring modalities [7, 
8]. Nowadays, the SSVEP approach provides the fastest 
and the most reliable communication paradigm for the 
implementation of a non-invasive BCI system [9-14]. The 
performance of the BCI can be assessed by the 
information transfer rate (ITR), as introduced in [15] and 
reported in the majority of BCI studies. This measure 
depends on three factors: speed, accuracy and number of 
targets, which can vary from 2 [16] to up to 48 [17]. In a 
six target SSVEP-based BCI, an average accuracy of 
95,3% and ITR of 58 ± 9,6 bit mіn-1 for 12 healthy par-
ticipants were reported in [18]. Using a different type of 
SSVEP stimulation, the so-called code-based modulation 
technique, where pseudorandom sequences are displayed 
to the user (instead of frequency-based modulation with 
boxes flickering with different constant frequencies, 
which is used here), the same research group reported 
ITR values of 92,8 ± 14,1 bit mіn-1 [19]. However, high 
ITRs are not the only essential characteristics for a BCI. 
In order to make BCIs more practical for a wide group of 
users with communication deficits in real-world settings, 
BCI accessibility, flexibility and usability must be sub-
stantially improved. Our recent study [20] presents a new 
hardware development, already successfully validated for 
use in SSVEP- based BCIs: EEG electrodes that require 
tap water instead of abrasive electrolytic electrode gel. 
These electrodes make both the daily setup and the clean-
up much faster and easier, and also more comfortable and 
dignified. By using these electrodes, the clean-up proce-
dure (washing the remaining electrode gel out of the hair) 
is no longer necessary and can simply be omitted. 

Another very important topic in the BCI research 
field is the so-called BCI illiteracy (also called BCI defi-
ciency). Ideally, an interface should work for any user. 
However, across the major noninvasive BCI approaches, 

numerous labs have reported that very roughly 20% of 
subjects cannot achieve control of the interface. These 
subjects, unable to use the BCI system, have usually been 
called "BCI illiterates", e.g. [21]. Although extensive 
efforts have been made to overcome this problem through 
various mechanisms, there is still no "universal BCI" that 
suits all users. 

The continuous improvement of signal processing al-
gorithms carried out in our group during the past few 
years has allowed us to reduce the number of BCI illiter-
ates for SSVEP-based BCI as follows: 

• CeBIT 2008 (March 2008) 26 subjects out of 106 
participants (24.53%) are BCI illiterates [22]. 

• RehaCare 2008 (October 2008) 5 subjects out of 
37 participants (13.51%) are BCI illiterates [23]. 

• HannoverMesse 2010 (April 2010) 2 subjects out 
of 86 participants (2.33%) are BCI illiterates [24]. 

These achievements made the difference between an 
ineffective system and a working SSVEP BCI for some 
users in our lab who were previously counted as ‘illiter-
ates’. Building on these improvements, our main effort 
now is to increase the information transfer rate of BCIs. 
High ITRs are essential for a BCI in order to become a 
practical device for communication and control, such as a 
speller application, and are important in order to control 
an external device, such as a wheelchair or a neuropros-
thesis. This paper presents the recent developments in the 
SSVEP-based Bremen BCI system, which have led to 
boosting the ITR to more than 100 bit min-1. Two main 
aspects can be distinguished: (a) various updates and im-
provements in the signal processing methods, and (b) the 
development of the user friendly and intuitive graphical 
user interface (GUI) based on the online feedback to the 
user. In comparison to our previous work [25], which was 
used as groundwork for the novel signal processing algo-
rithm presented here, the following three major changes 
in the SSVEP signal processing should be noted in par-
ticular: 

• In order to detect the presence of a frequency in 
the spatially filtered signals, the power in the stimulating 
frequency and their harmonics were used instead of the 
signal-to noise ratio used in the original method. 

• We introduced a completely new method of 
SSVEP detection based on the utilization of four addi-
tional frequencies to detect, which are selected between 
target frequencies (and do not correspond to any of the 
command classes to detect). 

• We introduced an adaptive mechanism of time 
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segment length adaptation for SSVEP command classifi-
cation. 

This paper is organized as follows. The second sec-
tion discusses the details of the proposed improvements 
of the SSVEP-based Bremen BCI system. The results we 
achieved are presented in the third section, followed by 
the discussion and conclusion in the final two sections. 

2. Methods and materials 
2.1. Bremen BCI spelling application 
The GUI of the Bremen BCI speller is presented in 

figure I. It consists of a virtual keyboard with 32 charac-
ters (letters and special symbols) and five white stimula-
tion boxes. These boxes are located at the outer edges and 
the upper left corner of the screen, and they flicker with 
different frequencies. As the quality of the SSVEP re-
sponse depends on the stability of the frequencies, the five 
stimulation frequencies that are used in this experiment 
were selected on the basis of the refresh rate of the LCD 
screen (120 Hz) that produces the stimuli: 6.67 Hz ("se-
lect"), 7.50 Hz ("left"), 8.57 Hz ("right"), 10.00 Hz ("up") 
and 12.00 Hz ("down"). In previous studies [26,27], the 
selection of these frequencies was discussed thoroughly. 
This setup, as opposed to having an LCD for the GUI and 
a separate LED board for the visual stimuli, is much more 
convenient for users as they do not have to shift their gaze 
too much. Further details about the software design and 
implementation of this GUI application can be found in 
[3, 23, 28]. 

 

 
 

Figure 1 - GUI of the SSVEP-based Bremen BCI 
during an online experiment, when a subject was spelling 
the word "CORTEX" and the letter "X" was about to be 

selected. A cursor can be navigated left, right, up and 
down until the desired letter is reached. With the "select" 
command, a letter is selected and displayed at the bottom 

of the screen. At the beginning of the experiment and 
after every selection, the cursor automatically moves back 

to the initial letter "E" 
 

At the beginning of each trial, the cursor is located in 
the middle of the virtual keyboard, over the letter "E", and 
all flickering boxes are presented in their default size of 
150 x 150 pixels. During the spelling task, by focusing 
the user’s attention on one of the four flickering boxes, 
the cursor is navigated by the commands "left", "right", 
"up" and "down" until the desired letter is reached. With 
the "select" command, a character is selected and dis-
played at the bottom of the screen, as shown in figure 1. 
Audio feedback, the name of the classified command or 

the name of the letter in the case of "select", follows after 
every recognized command. After each selection, the cur-
sor automatically moves back to the initial letter "E". Тhe 
number of commands required for letter selection varies 
from letter to letter—from the minimum of one (selection 
of the letter "E" in the middle of the speller layout with 
just one ‘select’ command) to a maximum of five com-
mands (e.g. the selection of the letter "G", which requires 
four movement commands and the following selection). 
Тhe letters are arranged according to the frequency of 
occurrence in the English language, and the additional 
special characters are located at the border. Тhis letter 
arrangement helps to increase the speed of text input and 
was selected and thoroughly compared during previous 
work of our group [3]. A minimum of nine commands are 
needed in order to spell the word "BCI". The letter "B" 
can therefore be reached in two different ways: (1) 
"down", "right" or (2) "right", "down". Both paths are 
judged as correct command sequences. In case one wrong 
command is detected, the user should correct this error 
first (e.g. an additional command "right" after the wrong 
command "left"). Therefore, the correction step is counted 
as a correct command classification in this case. During 
the experiment, the sizes of flickering boxes vary in rela-
tion to the SSVEP amplitude. The white frames around 
each stimulus box (of equal fixed size of 250 × 250 pix-
els) represent the maximum size that a stimulus can reach 
without classification. This helps the user to know 
whether a command is executed. This novel continuous 
real-time visual feedback about the power of SSVEP sig-
nals additionally improves the time behaviour of the BCI 
system. In general, the amplitude of the SSVEP response 
depends on the size of the visual stimuli. Larger stimuli 
produce better responses. These changes represent the 
positive feedback in the overall BCI system. 

Navigation cannot move beyond the layout bounda-
ries. For example, it is not possible to go from the letter 
"G" to the letter "Q" by choosing the "down" command. 
AU of these modifications improve the comfort and easy 
use of the SSVEP-based Bremen BCI and also increase 
the overall reliability of the system. The box at the bot-
tom of the screen contains—for the copy spelling mode—
the word to spell and the actual spelled text. Figure 1 
shows a screenshot taken during the online spelling task, 
when a subject spelled the word "CORTEX". After the 
subject had successfully spelled the letters "CORTE", the 
cursor was navigated over the last character, the letter 
"X". 

In contrast to our previous system implementation, 
the feature of deactivation of the stimuli when the current 
cursor position is on the edge of the speller layout was 
disabled. When the number of stimuli varies during the 
experiment, the true number of targets should be used for 
the calculation of the ITR. Since this feature results in 
significant complications in the ITR calculation and leads 
only to very minor improvements in the ITR, the number 
of stimuli was kept unchanged in order to test the ITR in 
the conventional way. Another change concerns the visu-
alization of the navigation commands on the four boxes at 
the outer edges of the LCD screen: most users preferred 
to have the navigating arrows on the boxes without 
changes instead of displaying the next target letters for 
each navigation command on the corresponding flicker-
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ing box. The reason for this change was that this kind of 
feedback was very confusing for naive subjects and re-
sulted in many wrong selections when the cursor was 
located just one step away from the desired letter. 

2.2. SSVEP signal processing 
The SSVEP signal detection and classification meth-

ods are the core of this project. The minimum energy 
combination (MEC) method [25] was used to create a 
spatial filter that magnifies the SSVEP response and can-
cels nuisance signals and noise. The BCI automatically 
determined the best spatial filter for each subject at each 
stimulation frequency. SSVEP detection is based on 
power estimation after spatial filtering and a statistical 
probability method that enhances signal separability. 
Moreover, an adaptive mechanism is used to select the 
appropriate window length depending on the subject’s 
online performance. This classification algorithm was 
implemented in MS Visual C++ building an asynchro-
nous, real-time BCI system. The complete signal process-
ing approach used for online classification of SSVEP re-
sponses is summarized in the following. 

2.2.1. SSVEP response and modeling. An SSVEP 
BCI reflects the user’s attention to an oscillating visual 
stimulus. The commonly used stimuli are light sources 
flickering at different frequencies. They elicit responses 
mainly in the visual cortex of the brain, corresponding to 
SSVEPs at the same frequencies and their higher harmon-
ics. The amplitude and the phase that define an SSVEP 
response depend on the frequency, intensity and structure 
of the repetitive visual pattern [29]. It is possible to obtain 
an SSVEP response at a large range of frequencies, from 
1 to 90 Hz [30]; however, the strongest responses are 
typically obtained for lower stimulation frequencies 
around 15 Hz [31]. Gao et al [17] have observed that two 
flickering targets with a frequency difference as low as 
0.2 Hz can be successfully distinguished in the SSVEP 
response. To model an SSVEP response, a visual stimula-
tion with a flicker frequency of f Hz is considered. The 
voltage between the ith electrode and a reference elec-
trode at time t, yi(t), can then be described as a function of 
the stimulus frequency, f, and its harmonics, subject to a 
phase-shift, and a noise and nuisance signal, Ei,t. 

 

  ti

N

k
kikii Etfkbtfkaty

h

,
1

,, 2cos2sin)(  


     (1) 

 
where Nh, is the number of considered harmonics. 

The model is linear and the signal is composed of two 
parts. The first part corresponds to the visually evoked 
response signal, which is composed of a number of sine 
and cosine functions at the harmonic frequencies kf with 
specific amplitudes, ai,k and bi,k. The second part of the 
model, Ei,t, represents all of the information that cannot 
be attributed to the SSVEP response, such as environ-
mental noise and its effect on the subject, and natural 
physical disturbances, like other background brain proc-
esses and various kinds of artefacts. 

For a time segment of length Ts, acquired with a 
sampling frequency of Fs Hz, which contains Nt samples 
of the ith signal, the model can be expressed in vector 
form as 
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where  Ttiii Nyyy )(),...,1(  contains the EEG 

signal for the electrode i in the time segment used for the 
signal analysis. The SSVEP information matrix X is of 
size Nt × 2Nh and contains the sine and cosine compo-
nents associated with the Nh, harmonics, while the vector 
gi of size 2Nh × I contains the corresponding amplitudes 
ai,k and bi,k. Equation (2) can be generalized for Ny elec-
trodes 

 
EXGY                                    (3) 

 

where  
yNyy ,...,Y 1  contains the sampled EEG 

signals from all of the electrodes. The matrix G of size 
2Nh × Ny contains all of the amplitudes for all of the ex-
pected sinusoids for all electrode signals. 

2.2.2. Minimum energy combination. To extract dis-
criminant features, the signals from the i electrodes need 
to be combined. This can be achieved by defining a chan-
nel vector s of length Nt, which is a linear combination of 
the electrode signals, yi. 
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where w is a vector of weights [ ] associ-

ated with the individual electrode signals. The aim of 
channel s is to enhance the information contained in the 
EEG while reducing the nuisance signals. Several chan-
nels can be created by using different sets of weights, 
depending on the nature of the SSVEP signal and the 
noise. Equation (4) can be generalized for Ns channels as 

yNww ,...,1
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with the set of channels  and the cor-

responding weight matrix W . 

],...,[ 1 sNSSS 
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As a first step, an orthogonal projection is used to 
remove any potential SSVEP activity from the recorded 
signal, 
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The remaining signal Y  contains approximately only 
noise, artefacts and background brain activity. 

~

In the next step, the weight vector w


 is found, which 

minimizes the energy of the signal Y
~

, by optimizing 
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which will minimize the component of the noise and 

nuisance signals in the corresponding channel signal 
(equation (4)). As shown in [25], the lower bound of the 
quadratic form on the right-hand side of equation (7) is 

given by the minimal eigenvalue 1  of the matrix YY T ~~
. 

The solution is therefore the corresponding eigenvector, 
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1 , which gives the weight vector for one channel. Addi-

tional uncorrelated channels can be added by choosing 
the next smallest eigenvalue (and corresponding eigen-
vector). The weight matrix can therefore be chosen based 
on the eigenvalues in ascending order ,...),( 21   and the 

corresponding eigenvectors ,...),( 21  , 
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The total number of channels used, Ns, is selected by 
finding the smallest value for Ns that satisfies 
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This can be interpreted as selecting the number of 
channels in such a way as to discard as close to 90% of 
the nuisance signal energy as possible [25]. 

2.2.3. SSVEP detection. To detect the presence of a 
frequency in the spatially filtered signals, the power in 
that frequency and a number of harmonics Nh, can be es-
timated by 
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In the actual system implementation, Nh = 2 to avoid 
overlapping between the frequencies is used. If more 
harmonics should be taken into consideration, the used 
frequency set should be changed. So, e.g., the stimulating 
frequency of 10 Hz cannot be chosen if the frequency 
6.67 Hz is already in the set, because the second harmonic 
of 10 Hz is equal to the third harmonic of 6.67 Hz. For 
more details regarding a thorough discussion of frequency 
selection to be generated on the LCD screens, please refer 
to [26]. In a BCI application, only the frequencies with 
which the user is stimulated should produce a control sig-
nal. To improve the robustness of the classification, not 
only are the stimulation frequencies considered but also a 
number of additional frequencies, as originally proposed 
in [32], We consider four additional frequencies to im-
prove the reliability of the outputs: 7.08, 8.03, 9.28 and 
11.00 Hz. These frequencies are selected as means be-
tween two target frequencies. For instance, 7.08 Hz is the 
mean value of 6.66 and 7.50. The purpose of these fre-
quencies is to improve the quality of the detection of the 
frequencies of interest, as described below. 

The SSVEP power estimations for all frequencies Nf 

in the considered case Nf = 9, are normalized into prob-
abilities, 
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 is the /th signal power estimation, 

1 < i < Nf. A high probability will become more difficult 
to achieve when Nf is large (i.e. adding other frequencies 
amplifies this effect). Also, we use a Softmax function to 
enhance the gap between the values, 
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where   is set to 0.25 (based on our prior practical 
investigations and on the number of frequencies used Nf). 
The output values of the Softmax function are between 0 
and 1; their sum is equal to 1. This is a generalization of 
the logistic function to multiple variables. Although this 
function does not change the distribution of the frequency 
powers, it improves the relevance of the command detec-
tion. Higher a values reduce the time needed for the sin-
gle command classification. However, values higher than 
0.3 would produce many false positives and should be 
avoided. 

2.2.4. Signal classification. The classifier output O is 
determined as the number of the ith frequency if (1) this 
ith frequency has the highest probability , (2) ір  ір  ex-

ceeds the pre-defined threshold і  and (3) the detected 

frequency belongs to one of the stimulating frequencies, 
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where  and fNі 1 i  vary between 0.5 and 0.3 

( 1 =0.45, 2 =0.4, 3 =0.35, 4 =0.3, 5 =0.5). In gen-

eral, visual stimulation with lower frequencies produces 
higher SSVEP responses; this is the reason for selecting 
different i  in descending order according to the stimula-

tion frequency. This choice of i  is based on our prior 

practical investigations (work with offline data collected 
from field studies with a large number of subjects in order 
to achieve faster SSVEP classification, e.g. [33]), the fre-
quency to be classified, and the number of used frequen-
cies Nf. If O is classified as an undesired frequency (i > 
5), then this classification will be rejected as the detected 
frequency does not belong to the expected frequency set. 
To improve the overall reliability of the system, the com-
mands corresponding to the stimulating frequencies are 
produced only if their probability is higher than the fixed 
thresholds i .The main advantage of the methodology 

outlined above is the fact that the pre-defined thresholds 

i  represent the relative probabilistic values and not the 

absolute threshold values, as in the original method [25, 
28], and as such they are independent of changes in the 
segment length Ts of the acquired EEG signal used for 
classification. The classification has to take the moment 
into account when the user does not focus on any stimuli. 
Therefore, the classifier output detects a resting state or 
transition state between two stimuli and moments when 
the user’s attention is not focused on any particular stimu-
lus. These states where no SSVEP response should be 
detected are referred to as the zero class. If stimulation 
frequencies are located at the alpha band, this could pro-
duce false classifications in the resting state. Such prob-
lems could easily be avoided by introducing a so-called 
calibration session for every subject. This methodology 
was not followed in this contribution, because the BCI 
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realization presented here is fully online, i.e. no calibra-
tion data for noise estimation, feature extraction, or elec-
trode selection are needed. The system is ready to use 
once the subject is prepared. 

2.2.5. Adaptive mechanism. In addition to the already 
applied online adaptation of the MEC method, in which 
the number of channels used is recalculated every 13 
samples (101.5625 ms with the sampling rate of 128 Hz 
used), the possibility of online adaptation of the time 
segment length Ts used for classification allows further 
improvements. Based on our previous work [32], after 
analyzing the distribution of the time segment length for 
all correct classifications, it was considered that some of 
the introduced time segment lengths of 750, 1000, 1500, 
2000, 3000 and 4000 ms were used very rarely in prac-
tice. The three most used time segment lengths over all 
subjects were 750, 2000 and 4000 ms. Therefore, the used 
time segment lengths should be limited to these values. 
The second improvement comes from the idea of simpli-
fying the algorithm: there is no need to use an additional 
timer, as far as all classifications are performed on the 
basis of the EEG amplifier used; the new EEG data are 
transferred to the PC in blocks of 13 samples. Therefore, 
the new time segment lengths were chosen as 812.5 ms (8 
× 13 samples, or 8 blocks of EEG data), 2031.25 ms (20 
blocks) and 4062.5 ms (40 blocks). The classification is 
performed with the sliding window of Ts after receiving 
the new EEG data block. In the case where no classifica-
tion can be made and the actual time t allows the exten-
sion of the Ts to the next pre-defined value, this new value 
will be used instead, 
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In contrast to the previous Bremen BCI system im-

plementations [23, 32], the EEG data are not replaced 
with zeros after each performed classification. Instead, an 
additional time for the gaze shifting was included. During 
this time, the classifier output will automatically be re-
jected. This could be helpful for many words, when two 
or more identical commands should be produced con-
secutively (e.g. three times the command "right" to reach 
the letter "C" in the word "BCI"). Figure 2 illustrates the 
changes in the time segment length after classification 
was carried out. The next classification could be per-
formed again approximately 914 ms (9 blocks) after the 
previous classified command. This timing (reset the clas-
sifier output for exactly 8 blocks) is a good compromise 
between the high overall speed of the BCI system and the 
chance of false classifications caused by movement arte-
facts during the gaze shifting period. Please note that the 
five blocks of the EEG data are excluded from the calcu-
lations for Ts of 20 and 40 blocks since the reliability of 
correct command classifications is more important for 
subjects using these segment lengths. 

2.3. Subjects. 
A total of seven subjects participated in the study. 

The subjects’ mean age was 28.14 years, ranging between 
25 and 30 years with a standard deviation of 1.676. For 
further demographical information, please refer to table 1. 
This study included two naive subjects, subjects 2 and 3, 
who had never used any kind of BCI system before. Sub-
ject 4 had used the Bremen BCI system once and was 
known to have a poor performance during the previous 
experiments. They were included in this study in order to 
form the basis of comparison. None of the subjects had 
neurological or visual disorders. Glasses or contact lenses 
were worn when appropriate. Subjects did not receive any 
financial reward for participating in this study. 

2.4. Experimental setup and data acquisition. 
The experiments were carried out in a normal office 

room in the Institute of Automation at the University of 
Bremen. Subjects were seated in a comfortable chair ap-
proximately 80 cm from an LCD monitor (22" Samsung 
SyncMaster 2233 with a vertical refresh rate of 120 Hz 
and resolution of 1680 × 1050 pixels) with the GUI 
shown in figure 1. Two computers were used. PCI (note-
book) ran the Bremen BCI system, including real-time 
EEG data acquisition and classification. The classification 
results were transmitted via a Transmission Control Pro-
tocol/Internet Protocol (TCP/IP) link to PC2 (desktop PC 
running Linux), which implemented the GUI shown in 
figure 1. The implementation on two separate PCs was 
chosen for this study to facilitate meeting the different 
real-time requirements for the EEG and visual stimula-
tion, although the single PC setup has also been success-
fully implemented (with adequate multicore hardware) 
using local TCP/IP for the communication between the 
two parts [23]. The EEG data were recorded from the 
surface of the scalp via eight sintered Ag/AgCl EEG elec-
trodes. They are placed on AFz for ground, the right ear 
lobe was used for the reference electrode and Pz, PO3, 
PO4, O1, OZ, O2, O9, O10 as the input electrodes on the 
international system of EEG measurement. Standard abra-
sive electrolytic electrode gel was applied between the 
electrodes and the skin to bring impedances below 5 kΩ. 
The impedances were controlled during the subject prepa-
ration phase. An EEG amplifier g.USBamp (Guger Tech-
nologies, Graz, Austria) was used; the sampling fre-
quency was 128 Hz. During the EEG acquisition, an ana-
log bandpass filter between 2 and 30 Hz and a notch filter 
around 50 Hz (mains frequency in Europe) were applied 
directly in the amplifier. The amplifier was connected to 
the USB port of the PCI, a regular dual core notebook 
computer with a 15.4" TFT (1280×800) monitor display 
and Intel Core 2 Duo (2×1.50 GHz) processor running the 
Bremen BCI software framework under Microsoft Win-
dows XP Pro. The spelling interface of the Bremen BCI 
was displayed on an external LCD screen (22" Samsung 
SyncMaster 2233 with a vertical refresh rate of 120 Hz 
and resolution of 1680×1050 pixels), as shown in fig. 1. 

2.5. Procedure. 
Each subject completed a brief questionnaire, includ-

ing age and gender information, and was prepared for 
EEG recording. Next, a short familiarization run was car-
ried out in order to introduce the experimental procedures 
and the letter arrangement to the user. 
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Figure 2 - Changes in the time segment length (TSn) after each performed classification in case no classification can be 
made at the moment and the actual time t allows the extension of the Ts to the next pre-defined value. The horizontal 

bars represent the EEG data currently used for classification. 
 

Table 1 - BCI spelling performance (spelling time) over all copy spelling words 
 

  Time [s]   
Subject Age Gender 

BCI BREMEN BRAIN CORTEX SIREN Mean* 

#1 29 F 13.000 20.008 22.852 31.484 18.180 1.789 

#2 29 M 22.953 37.578 47.836 57.586 34.633 3.303 

#3 30 F 15.336 35.750 28.742 39.508 25.086 2.448 

#4 27 M 95.164 232.375 * * 106.234 7.383 

#5 25 M 17.367 38.594 35.547 49.055 40.117 3.062 

#6 29 F 15.641 23.156 20.820 24.274 13.406 1.649 

#7 28 F 10.055 15.438 15.336 23.055 12.492 1.295 

Mean 28.14  27.07 57.56 28.52 37.49 35.74  

S.D. 1.676  30.287 77.635 11.728 13.862 32.790  
*Mean time for correct command classifications for each subject. 

 
None of the parameters were adapted or changed. 

The assessment task was to spell five messages with the 
SSVEP-based Bremen BCI system. AU five messages 
were the same for all subjects and were chosen by the 
experimenter (copy spelling). The copy spelling words 
were "BREMEN", "BCI", "BRAIN", "CORTEX" and 
"SIREN". 

The order in which these five terms were presented 
to the user was determined randomly to avoid adapta-
tions. Each trial ended automatically when the subject 
correctly spelled the word in question (or when the sub-
ject chose to stop spelling due to any reason, such as vis-
ual fatigue—this happened with subject 4). Misspellings 
were to be corrected with the ‘Del’ option located at the 
top right of the matrix. The entire session took an average 
of about 40 min per subject. 

2.6. ITR calculation. 
The ITR calculation leading to the results shown is 

based on the following formula, 
 











1

1
log)1(loglog 22 N

p
ppNВt       (15) 

 

where p is the classification accuracy and N is the number 
of targets. Bt is calculated in bits per trial. It is important 
to note that the number of targets in our case is the num-
ber of flickering boxes (N = 5) and not the number of 
letters and special characters in the letters layout, because 
none of the letters and special characters are flickering 
and therefore they cannot be directly selected by means 
of an SSVEP communication channel. 

In case a wrong moving command was detected, the 
user should correct this error first, e.g. the correction 
movement command "right" after the erroneously se-
lected "left" command. Thus, in this case the correction 
step is counted as a correct command classification. 
Hence the number of commands can increase depending 
on the subject’s performance. In the case of an incorrectly 
classified selection command, the wrongly spelled letter 
should be corrected. This results in five additional com-
mands to select the special character "Del" located at the 
top-right border of the speller layout. 

The classification accuracy p is calculated in the tra-
ditional way and is defined as the number of correct 
command classifications divided by the total number of 
classified commands. Since all five frequencies can be 
(erroneously) classified independently of the actual cursor 
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position, it could be assumed that all choices are equally 
probable, as it is in fact done in the majority of BCI stud-
ies. The spelling time T (for the whole word) is consid-
ered in the calculation of the ITR in bits per minute (Bm). 
This leads to the conventional ITR calculation in bit/min 
(bpm), 

 

tNm BC
T

В 
60

                 (16) 

 
where CN is the number of classifications and T is the 

spelling time in seconds. 
The highest theoretically achievable ITR can be 

roughly calculated as 152.42 bit min-1 (assuming the al-
ready introduced minimal time between two consecutive 
command classifications of 914 ms), 

 

5log
914,0

60
2max ITR

.                 (17) 
 

Since this is the ideal situation, the real ITR values 
will always be below this theoretical value. 

3. Results 
Figure 3 shows an example of the copy spelling with 

the Bremen BCI system. Subject 7 spelled the word 
‘BCF. Figure 3(a) presents the EEG signal acquired from 
the site OZ, figure3 (b) the changes in the signal probabili-
ties  as calculated in (12) and figure3(c) the corre-

sponding classifier output. This example was chosen be-
cause to spell this word, subject I needed the outstand-
ingly short time of only 10.055 s (ITR value of 124 bit 
min-1)! It is important to note that during the time meas-
urement, one sampling block of 13 samples (101.5625 
ms) was additionally added at the beginning of the trial. 
The reason for that is the fact that the EEG amplifier 
starts to transfer the acquired EEG data in blocks, which 
cause the shift of EEG data by one EEG block. Many 
research groups do not consider this time in their calcula-
tions, but even though it is negligible, this difference 
could be decisive during the calculation of the ITR, espe-
cially in the range over 100 bit min-1. 

ір 

Two conventional BCI performances, accuracy and 
ITR achieved, were averaged over all spelled words and 
are presented in figure 4. The ITR calculation leading to 
the results shown is based on the commonly used formula 
published in [7]. Mean accuracies vary considerably and 
range from 78.96 (subject 4) to 100.00%. However, the 
majority of subjects (subjects 1, 3, 5, 6 and 7) completed 
all copy spelling tasks without errors and achieved mean 
accuracies of 100%. This means that all five copy spelling 
words were performed without any errors; all 58 individ-
ual command classifications were classified correctly: 

• word BCI left: 0, right: 4, up: I, down: I, select: 3 
(9 commands); 

• word BREMEN left: 2, right: I, up: I, down: 2, 
select: 6 (12 commands); 

• word BRAIN left: 3, right: I, up: I, down: 2, se-
lect: 5 (12 commands); 

• word CORTEX left: I, right: 4, up: 3, down: 3, 
select: 6 (17 commands); 

• word SIREN left: I, right: I, up: I, down: I, select: 
5 (9 commands); 

• Total left: 7, right: 11, up: 7, down: 9, select: 25 
(58 commands). 

Since all of these 58 command classifications are true 
positives, the false positive rate cannot be calculated and 
the ROC curve is not provided. 

Figure 4(b) presents the normalized (by the total 
number of correct classifications) distribution of the time 
segment length. This distribution is independent of the 
stimulus frequency. It is important to note that even for 
the subject with the worst ITR (subject 4), a time segment 
length of 813 ms was sometimes successfully used for a 
correct classification of the intended frequency. Subject 4 
experienced visual fatigue and discomfort, and aborted 
the experiments after spelling three randomly chosen 
copy spelling words. Table I shows the times spent in 
individual spelling tasks as well as the mean (Mean) and 
standard deviation (SD) for each measured variable. Since 
subject 4 finished only three copy spelling tasks, the miss-
ing values are represented by stars in this table. Further-
more, the mean times for all correct classifications over 
all words were calculated for each subject and are pre-
sented in the last column of the table. These times are 
measured between the actual correct command classifica-
tion and the previous command classification, and give a 
good value for comparison in addition to the commonly 
used performance indicator ITR in bit min-1. 

Two supplementary videos were recorded separately 
(the results are not included in this paper) that demon-
strate the high online performance of the SSVEP-based 
Bremen-BCI system, and also provide a better explana-
tion of the experimental protocol for spelling two words, 
i.e. BREMEN and BCI. These are available at 
stacks.iop.org/JNE/8/036020/mmedia. 

4. Discussion 
The brain-computer interface is a relevant and excit-

ing topic in neuroscience and biomedical engineering. 
Current developments have led to an improvement in the 
main components of BCIs, such as data acquisition and 
signal processing. However, in order to make BCIs prac-
tical devices for a wide group of users with communica-
tion deficits in real- world settings, BCI accessibility, 
flexibility and usability must be substantially improved. 
High ITRs are essential for a BCI to achieve these goals. 

The highest mean ITR for healthy subjects using a 
SSVEP-based BCI reported so far is 92.8 ± 14.1 bit min-1 
for code-based modulation [19]. These ITR values are not 
directly comparable to the actual study based on fre-
quency modulation due to different types of modulation, 
but they give a good indication of the range attainable. In 
the study presented here, the overall mean ITR over all 
spelled words was 61.70 ± 32.676 bit min-1 with a mean 
accuracy of 96.79 ± 7.881%. Considering only the sub-
jects who finished the complete experiment, these values 
increased (ITR: 70.41 ± 25.390 bit min-1, accuracy: 99.76 
± 0.583%). Although these values are lower than the re-
ported ITR in [19], these results are promising, because 
of the very high accuracy for the majority of subjects. 
Five of the seven subjects completed all copy spelling 
words without errors, achieving a mean accuracy of 
100%, as shown in figure 4(a). In addition, the highest 
peak ITR and mean ITR for a single subject in this ex-
periment were 124.00 and 109.02 bit min-1, respectively 
(subject 7).   
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Figure 3 - Spelling with Bremen BCI in the example of subject 7 and the copy spelling word "BCI".  
The classifications were performed every 13 samples; these moments are marked with stroke lines on the x axes in the 
diagrams. (a) Example of the EEG signal acquired from site Oz (one of the eight electrodes used in this study). (b) Sig-
nal classification on the basis of different thresholds і , ranged from 30 to 50%. Each colour corresponds to the indi-

vidual stimulating frequency and the related threshold і . (c) Classifier output. 
 

 
 

Figure 4 - Results over all subjects. (a) Mean individual accuracies and information transfer rates. (b) Distribution of the 
time segment length for all correct classifications 

 
It is worth mentioning that this peak ITR value of 

124 bit min-1 is higher than all values previously pub-
lished in the literature for any kinds of BCI paradigms. 
The improvements in the SSVEP signal processing, the 
introduction of the novel adaptive time segment length 
and the new type of online visual feedback to the user 
were the keys to achieving good online performance. In 
comparison to the original method [25] with the previous 
mean ITR of 27 bit min-1, a mean ITR of 61.70 bitmin-1 
was achieved in the study presented here. It is important 
to note that this system realization is fully online, i.e. no 
calibration is performed prior to the online experiment. In 
addition, including such a calibration session may over-
come the problems of the poor performance of subject 4. 
For this subject, it could be recommended to change the 
stimulating frequencies and to adapt the fixed thresholds 

і . Another approach could be the use of the BCI wizard 

[34], which will automatically identify and optimize im-
portant parameters not only for some specific BCI para-
digm but across different BCI approaches. 

The conventional calculation of the BCI performance 
in bitmin-1 is directly dependent on the time and the num-
ber of targets. There are also two ways to achieve a high 
ITR: (I) by decreasing the time required for single com-
mand classifications and (2) by increasing the number of 
detectable targets (this way is easier, in general). The 
traditional formula introduced in [7] has no limitations—
if only one command is transferred over the communica-
tion channel, it is possible to calculate the ITR. In the 
case of an experimental protocol with many targets and 
the goal to classify just one of them, a very high ITR 
could be achieved after this first selection, even if this 
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command will need a comparatively long time to be pro-
duced. Furthermore, the possibility of wrong classifica-
tions cannot be fully excluded—this one classification 
could just be a false positive! This was one of the reasons 
why table 1 reports the mean times in s, and not the ITRs 
in bit min-1. This problem of the ITR calculation is not 
new; the recent paper from Shyu et al [14] has already 
introduced the mean times for command classification 
(called CTI—command transfer interval). In real-world 
applications, BCI users with several disabilities often just 
need to send I bit of information at the right time in order 
to initiate an autonomous sequence e.g. such as "pour a 
drink" [35]. In the study presented here, the mean values 
of time for correct classifications ranged between 1.295 
and 7.383 s. As with the previous study with the Bremen 
BCI speller [26], a difference between the times required 
for the classification of individual commands (i.e. stimu-
lating frequencies) was found. These differences seem to 
be influenced by the selection of the thresholds. Again, it 
could be expected that an additional calibration run for 
adjusting subject-dependent parameters could greatly 
improve BCI performance, especially in terms of BCI 
accuracy for lower performing subjects. This study has 
been carried out without any free spelling words. The 
reason for this is the fact that in the case of free spelling, 
the strong comparison test with the current letter’s ar-
rangement presented in figure I is impossible, as the 
choice of words to be spelled is very subject dependent. 
During our previous studies [22, 23], we realized that 
some users tended to select shorter words when all letters 
are located close to the initial letter "E" on the layout. On 
the other hand, other subjects were prone to select "com-
plicated words" with rare letters located at the layout 
boundaries. It is important to repeat that the number of 
targets in the current SSVEP-based BCI speller applica-
tion is the number of flickering boxes (N = 5) and not the 
number of letters and special characters in the letters lay-
out, because none of the letters and special characters are 
flickering and therefore they cannot be directly selected 
by means of an SSVEP communication channel. There-
fore, the individual words spelled are not important. The 
last column in table I presents the mean time (also called 
CTI), which is independent of the words spelled. 

5. Conclusion and future work 
In this paper, the results of the evaluation of the up-

dated Bremen BCI in online BCI experiments with seven 
healthy volunteers have been presented. These results 
demonstrate that improvements in the signal processing 
and feedback modules of the BCI system constituted the 
basis for achieving an information transfer rate in the 
range of 100 bit min-1. Particularly important is the im-
provement in the BCI accuracy. Five out of seven sub-
jects spelled all copy spelling words without errors. The 
adaptive time segment length and the novel type of visual 
feedback were the keys to achieving a high online per-
formance. Further research should identify other factors 
that can influence performance, such as human factors, 
training procedures, time behaviour of the complete sys-
tem (the user can learn the time latencies and responses of 
the system), and error recognition and error correction at 
early stages of the BCI signal processing. Subject-specific 
parameter adaptation seems to be unavoidable in order to 
achieve further progress in terms of information transfer 

rate, classification time and accuracy with a broader 
population of users.  

In this work, the classification thresholds ( і ) were 

determined based on our previous work (offline analysis 
of EEG data collected during previous studies with many 
subjects) [22-24]. Further research might also consider a 
general method to automatically determine the individual 
constants for each subject in order to take into account the 
variation in the power of SSVEPs at different frequen-
cies. Additionally, water-based or dry EEG electrodes 
should be considered to make BCI systems less annoying. 
Our recent study presents the first results of the evalua-
tion of water-based electrodes in the online BCI experi-
ments with ten healthy subjects [20]. 
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Аннотация 
 

SSVEP-BASED BREMEN-BCI — 
НЕЙРО-КОМПЬЮТЕРНЫЙ ИНТЕРФЕЙС ДЛЯ  

ПОВЫШЕНИЯ БЫСТРОДЕЙСТВИЯ  
ПЕРЕДАЧИ ИНФОРМАЦИИ 

 
Волосяк И. 

 

Описывается архитектура и процедуры практи-
ческого использования нейро-компьютерного интер-
фейса (BCI), созданного в институте автоматики 
Бременского университета (Германия). 

 
Анотацiя 

 
SSVEP-BASED BREMEN-BCI —  

НЕЙРО-КОМП'ЮТЕРНИЙ ІНТЕРФЕЙС  
ДЛЯ ПІДВИЩЕННЯ ШВИДКОДІЇ ПЕРЕДАЧІ 

ІНФОРМАЦІЇ 
 

Волосяк І. 
 

Описується архітектура та процедури практич-
ного використання нейро-комп'ютерного інтерфейсу 
(BCІ), створеного в інституті автоматики Бремен-
ського університету (Німеччина). 
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