Abstract

ANALYSIS OF THE USE OF A VACUUM EQUIPMENT IS IN WOODWORKING INDUSTRY

Avtukhov A., Sablina M., Zhvanko D.

In this article the analysis of technologies of woodworking industry is conducted with application of a vacuum equipment. The brought working descriptions over and types of vacuum pumps, and also reasons of basic disrepairs and ways of their removal are considered.

УДК 629.113.004

МОДЕЛИРОВАНИЕ ПРИ ИСПЫТАНИИ АВТОМОБИЛЯ НА ТОПЛИВНУЮ ЭКОНОМИЧНОСТЬ НА ДОРОГЕ И НА СТЕНДЕ С БЕГОВЫМИ БАРАБАНАМИ

Горбик Ю.В., доц., к.т.н.

(Харьковский национальный автомобильно-дорожный университет)

Проанализированы вопросы моделирования условий функционирования транспортных машин при стендовых испытаниях. Предлагается методика и алгорипи проверки показателей топливной экономичности на стендах с беговыми барабанами.

Введение. Диагностирование систем автомобиля по техникоэкономическим показателям — неотъемлемая составляющая эффективного его использования. Без регулярного выполнения диагностирования нельзя обеспечить продолжительность и качество работы ТМ.

С использованием моделирования можно решить следующие задачи диагностики:

- оценить качество функционирования ТМ:
- выдать рекомендации по видам и объёмам профилактического обслуживания и ремонта для данной ТМ;
- разработать рациональные варианты применения диагностических приборов и оборудования для различных узлов и систем ТМ, при моделировании их функционирования.

начке известны такие виды моделирования, как математическое, имитационное и модульное. Физическое моделирование базируется на теории подобия и размерностей. В основе этой теории лежит соответствующие утверждение TOM. если что все безразмерные характеристики (критерии) подобия для двух явлений одинаковы, то они физически подобны. Такие модели представляют одну из подгрупп моделей, у которых физическая природа изучаемых явлений сохраняется полностью или частично, как в натурном образце. Применительно к И

осуществляться физическое моделирование при определении (нормировании) расхода топлива, токсичности ОГ, КПД автомобиля, коэффициента сопротивления качению и сцепления с дорогой, эффективности тормозных систем, плавности хода и др.

Расход топлива — важнейший измеритель экономичности автомобиля. Для каждой модели автомобиля установлена государственная норма. Расход топлива тем меньше, чем совершеннее двигатель и трансмиссия и чем меньше внешние сопротивления

Математическая модель расхода топлива должна быть простой и не требовать знания особых параметров исследуемого автомобиля и специальных характеристик двигателя. Одновременно эта модель должна достаточно точно описывать процесс потребления топлива автомобилем и соответствовать современному уровню знаний по данной проблеме. Результаты расчётов расхода топлива с использованием данной математической модели должны с достаточной степенью точности совпадать с результатами дорожных и стендовых испытаний автомобиля на различных режимах движения.

Анализ публикаций. Основные принципы оценки топливной экономичности и нормирования расхода топлива заложены в работе [1], где с позиции системотехники и энергетического подхода рассмотрены конструктивные и эксплуатационные параметры эффективности работы транспортных средств

В работе [2] приведена методика оценки технического состояния автомобиля по изменению КПД автомобиля в целом и КПД составляющих агрегатов (двигателя, трансмиссии, подвески и колес). Приведены зависимости расчета КПД автомобиля и агрегатов на дороге и при стендовых испытаниях на беговых барабанах.

В работе [3] приведена новая методика расчета расхода топлива, основанная на определении 4-х коэффициентов полезного действия: индикаторного и механического КПД двигателя, КПД трансмиссии и колесного механизма (колеса и подвески).

В работе [4] предлагается использовать новый метод расчета расхода топлива в процессе диагностирования на стенде с беговыми барабанами, а в работе [5] приведен метод диагностирования по индикаторному расходу топлива в отдельных агрегатах автомобиля.

Цель и постановка задачи. Целью работы является дальнейшее совершенствование методики и разработка алгоритма диагностирования технического состояния автомобиля по изменению расхода топлива и КПД автомобиля.

Материалы и результаты исследования. Разработанные теоретические модели проверялись на автомобиле Γ A3-33021 «Газель». Для этого была написана программа расчета расхода топлива и токсичности для данной марки автомобиля в среде Mathcad.

В общем виде расход топлива определяется по формуле

$$Q = K P_i / \eta_i / \eta_{i-\pi/100 \text{ kM}}, \tag{1}$$

где K – коэффициент, учитывающий основные параметры двигателя автомобиля и качество топлива.

Этот коэффициент определяется по формуле

$$K = 7,95 \cdot V_h \cdot i_0 \cdot i_k / H_u \cdot \rho_m \cdot r_{k \text{ JI M}}/H. \tag{2}$$

где V_h — рабочий объем цилиндров двигателя, л; i_0 , i_κ — соответственно передаточное число главной передачи и коробки передач; H_n — низшая теплота сгорания топлива, кДж/ кг; ρ_m — плотность топлива, кг/см³; r_κ — радиус качения колеса, м.

Переменной величиной в рассматриваемом выражении является среднее передаточное число коробки передач, которое определяется по формуле

$$i_k = K_c \cdot i_{\kappa n} \cdot V_{\text{max}} / V_a, \tag{3}$$

где K_c - скоростной коэффициент, $i_{\kappa\pi}$ — повышенное передаточное число коробки передач; $V_{\rm max}$ — максимальная (допускаемая) скорость движения автомобиля, км/ч; V_a — средняя техническая скорость движения автомобиля, км/ч.

Для автомобиля ГАЗ - 33021 (при
$$V_{\rm max}$$
 = 100 км/ч)
$$i_k = 0.53 \cdot 0.849 \cdot 100 \ / \ V_a \approx 45 \ / \ V_a.$$

C ухудшением дорожных условий коэффициент K будет возрастать. Например, на дороге 4 гр.

$$K = \frac{7,95 \cdot 2,445 \cdot 5,125 \cdot 1,667}{44000 \cdot 0,74 \cdot 0,31} = 0,0165,$$

а на дороге 5 гр. при $V_a = 26$ км/ч K увеличивается до 0,0205.

Следующей переменной величиной является среднее индикаторное давление P_i кПа, которое складывается из среднего давления механических потерь на трение в двигателе P_n и среднего эффективного давления P_e .

В теории двигателей рекомендуется механические потери определять по формуле [6]

$$P_n = (a_n + b_n \omega_a), \tag{4}$$

где a и b — постоянные для данного автомобиля коэффициенты, ω_a — средняя скорость поршня в м/с.

Если известен ход поршня S_n и частота вращения коленвала n, тогда

$$P_n = (a_n + b_n \cdot 2S_n \cdot n / 60) = (a_n + 0.033 \cdot b_n \cdot S_n \cdot n)$$
 KIIa

Для грузовых автомобилей средней грузоподъемности можно принять a_n = 50 кПа, а b_n = 2.1 кПа с м $^{-1}$.

Из приведенной формулы для определения (1) можно получить более общее выражение, введя в зависимость другие частные значения КПД. Так как

$$\eta_e = \eta_i \cdot P_e / P_i \tag{5}$$

TO

$$\eta_i = \eta_e \cdot P_i / P_e$$

Подставив это значение в последнюю формулу получим

$$Q = K \cdot P_e / \eta_i \cdot \eta_{M-\Pi/100 \text{ KM}}. \tag{6}$$

Средне эффективное давление

$$P_e = 12,56 \frac{r_k}{V_h \cdot i_0 \cdot i_k \cdot \eta_m} \cdot P_k = \frac{K_t \cdot P_k}{\eta_{mp}}.$$
 (7)

Введя значение P_e в предыдущую формулу, получим

едылущую формулу, получим
$$Q = K \cdot K_i \cdot \frac{P_k}{\eta_i \cdot \eta_M \cdot \eta_m} \prod_{\pi/100 \text{ км.}}$$

Так как $\eta_k = P_o \ / \ P_\kappa$, то $P_k = P_o \ / \ \eta_\kappa$. После его подстановки в последнюю формулу получим новое выражение для определения расхода топлива:

$$Q = K \cdot K_{l} \frac{P_{o}}{\eta_{l} \cdot \eta_{M} \cdot \eta_{m} \cdot \eta_{n}} \frac{1}{\eta_{l} \cdot \eta_{M} \cdot \eta_{m} \cdot \eta_{n}} \frac{1}{\eta_{l} \cdot \eta_{M} \cdot \eta_{m} \cdot \eta_{n}} \frac{1}{\eta_{l} \cdot \eta_{M} \cdot \eta_{m} \cdot \eta_{n}} \approx \frac{100}{H_{u} \cdot \rho_{m} \cdot r_{k}} \cdot 12,56 \frac{r_{k}}{V_{h} \cdot i_{0} \cdot i_{k} \cdot \eta_{m}} \approx \frac{100}{H_{u} \cdot \rho_{m}} \cdot \frac{1}{\eta_{m}} \cdot \frac{1}{\eta_{m}}$$

В окончательном виде упрощенная формула для расчета расхода топлива запишется так:

$$Q = \frac{100 \cdot P_o}{H_u \cdot \rho_m \cdot \eta_i \cdot \eta_m \cdot \eta_m}$$
(9)

$$Q = \frac{100 \cdot P_o}{H_u \cdot \rho_m \cdot \eta_a}_{\text{JJ}/100 \text{ KM}}, \tag{10}$$

где η_a — общий КПД автомобиля.

Последняя формула представлена в более простом виде и поэтому она может быть использована для диагностирования автомобилей. В технически исправных автомобилях общий КПД для бензиновых автомобилей изменяется в пределах 0,06...0,07, для дизельных -0.010...0,012.

Усилие, подведенное к дороге P_{∂} можно имитировать, меняя нагрузку на барабанах (P_m) . Величина $H_u \cdot \rho_m$ постоянная для данного вида топлива. Например, для бензина среднего качества 44000 0,74 = 32560 дизельного топлива $43500 \cdot 0,84 = 36540$ кДж/л. Если, например, для порожнего автомобиля ГАЗ-33021 эксплуатационная норма расхода топлива $Q \approx 15.8$ л/100 км, а общий КПД $\eta_a \approx 0,064$, тогда усилие P_o на барабане должно быть $15,8 \cdot 32560 \cdot 0,064/100 = 329,24$ Н. Крутящий момент на барабане M_6 должен быть равен $P_{\partial} \cdot r_{\delta}$.Нм.

Усилие, подведенное к дороге определяется по формуле

$$P_{o} = (G_{a} \cdot i + 0.077kF \cdot V_{a}^{2} + 0.1 \cdot \delta \cdot G_{a} \cdot V) =$$

$$= M_{a}(g \cdot i + 0.077kF \cdot V_{a}^{2} / M_{a} + \delta \cdot V)$$
(11)

где i – предельный уклон дороги, %; $\delta \cdot V$ – усилие в H, затрачиваемое на разгон автомобиля.

В теории автомобилей введен новый термин "шум ускорения" в м/ c^2 , который наиболее полно оценивает качество дорожного движения и определяется по формуле

$$K_{\mathcal{A}} = (g \cdot i + 0.077 kF \cdot V_a^2 / M_a + \delta \cdot V)_{\text{M/C}^2}$$
 (12)

где M_a – масса автомобиля, кг; δ – динамический коэффициент учета вращающихся масс.

Для автомобиля ГАЗ-33021

$$K_{\text{A}} = (9.81 \cdot 0.32 / V_a + 3.64 \cdot 10^{-5} \cdot V_a^2 + \delta \cdot \dot{V})_{\text{M}/c^2}$$

На дорогах 1-5 гр. $K_{\! /\! J}$ изменяется в пределах 0,13...0,20. При стендовых испытаниях второе и третье слагаемое принимаем равными нулю. Тогда силу $P_{\!\partial} \approx 3,14\cdot M_a\ /V_a\ _{\rm H_{\circ}}$

При моделировании средних условий эксплуатации (35...40 км/ч) можно определить общий КПД автомобиля по формуле

$$\eta_a = \frac{100 \cdot P_o}{H_u \cdot \rho_m \cdot Q},\tag{13}$$

где P_6 — приведенное усилие на барабане с учетом массы на заднем мосте, Q — замеряемый на стенде расход топлива в л/100 км, или Q_1 в кг/ч по формуле Q_1 = 0,1 \cdot $Q \cdot V_a \cdot \rho_T$

Результаты расчетов представлены на рис. 1-3, где расход топлива на стенде определялся при постоянном тормозном усилии. Данные графики позволяют подбирать тормозное усилие, при котором расходы топлива на стенде и на дороге одинаковы.

На рис. 2-3 приведены графические зависимости расхода топлива, основной и дополнительной норм расхода топлива (соответственно) для дорожных и стендовых испытаний.

Результаты моделирования расхода топлива с использованием данной математической модели, в зависимости от тормозного момента стенда, с определённой степенью точности совпадают с результатами дорожных и стендовых испытаний автомобиля на различных режимах движения.

Предлагаемая методика позволяет предложить упрощенный алгоритм общего диагностирования ТМ.

Упрощенный алгоритм диагностирования можно представить так:

1. Если по результатам диагностирования получаем $\eta_a \approx 0,062...0,064$ _ автомобиль исправен. При этом принимаем, что эффективный КПД исправного двигателя равен примерно $0,28\cdot 0,66\approx 0,18$, КПД трансмиссии и шин — $0,77\cdot 0,46\approx 0,35$, а общий $\eta_a=0,18\cdot 0,35\approx 0,063$

- 2. Если, η_a меньше 0.062 ищем неисправность.
- 3. Путем замера или визуально определяем, что давление воздуха в шинах нормальное и шум в редукторе заднего моста отсутствует. Предполагаем неисправность в двигателе (в системе питания или зажигания). Наибольшая вероятность снижения η_i . Этот КПД можно проверить по составу отработавших газов ($\eta_i \approx 0,32 \cdot \alpha$, а % СО есть функция α). Если замер СО показал, что его содержание достигает 6%, то это может быть при $\alpha \approx 0,6$. При таком значении α η_i снижается до 0,20 (вместо \sim 0,28). Резкое снижение η_i свидетельствует о неисправности топливной системы или зажигания.

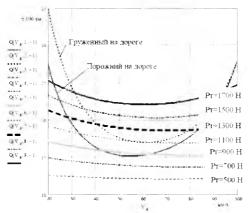


Рисунок 1 — Расход топлива автомобиля ГАЗ-33021 при движении по дороге полной и снаряженной массе, а также «движении» на имитационном стенде при заданной постоянной нагрузке

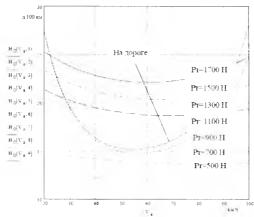


Рисунок 2 — Основная норма расхода топлива автомобиля ГАЗ-33021 при движении на дороге и на имитационном стенде при различной нагрузке

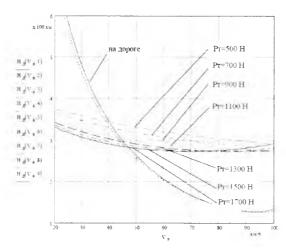


Рисунок 3 — Дополнительная норма расхода топлива автомобиля ГАЗ-33021 при движении по дороге и на имитационном стенде при различной нагрузке

Выводы. Рациональное использование топлива на автомобильном транспорте может быть обеспечено за счет учета влияния различных факторов при расчетах и совершенствования методов диагностирования показателей их топливной экономичности на стендах с беговыми барабанами. Для обеспечения соответствия режимов испытаний ТМ реальным необходимо, с использованием полученных результатов коэффициента сопротивления качению колеса, подбирать нагрузочные режимы стендового диагностирования так, чтобы условия её работы максимально соответствовали дорожным условиям.

Список литературы

- 1. Говорущенко Н.Я. Системотехника транспорта. / Н.Я. Говорущенко, А.Н. Туренко. Изд. 2-е, перераб. и подолн. Харьков: РИО ХГАДТУ, 1999. 468 с.
- 2. Кривошапов С.І. Розробка методики та алгоритму загального діагностування автомобілів за зміною коефіцієнта корисної дії. / Автореф. канд. техн. наук: 05.22.10. Харків, ХДАДТУ, 1999. 20 с.
- 3. Говорущенко Н.Я. Новая методика нормирования расхода топлива транспортных машин (метод четырех КПД) / Н.Я. Говорушенко, С.И. Кривошапов. // Автомобильный транспорт: Сб. научн. тр. Харьков: ХНАДУ, 2004. № 15.
- 4. Говорущенко Н.Я. Методы системного расчетно-аналитического и стендового диагностирования легковых автомобилей / Н.Я. Говорущенко, Ю.В. Горбик // Автомобильный транспорт: Сб. науч. трудов. Харьков: ХНАДУ, 2009. № 25. С. 58-61.

- 5. Говорущенко Н.Я. Методы диагностирования автомобилей по изменению общего и индикаторного расхода топлива и частных КПД в отдельных агрегатах. / Н.Я. Говорушенко, Ю.В. Горбик. // XVI научнотехническая конференция с международным участием «Транспорт экология устойчивое развитие» Варна: ТУ, 2010 С. 442-450.
- 6. Двигатели внутреннего сгорания: Теория поршневых и комбинированных двигателей: учебник для втузов по специальности "Двигатели внутреннего сгорания" / [Д.Н. Вырубов, Н.А. Иващенко, В.И. Ивнин и др.; под ред. А.С. Орлина, М.Г. Круглова]. 4е изд. перераб. и доп. М.: Машиностроение, 1983 372 с.

Анотація

МОДЕЛЮВАННЯ ПРИ ВИПРОБУВАННІ АВТОМОБІЛЯ НА ПАЛИВНУ ЕКОНОМІЧНІСТЬ НА ДОРОЗІ Й НА СТЕНДІ З БІГОВИМИ БАРАБАНАМИ

Горбік Ю.В.

Проаналізовано питання моделювання умов функціонування транспортних машин при стендових випробуваннях. Пропонується методика й алгоритм перевірки показників паливної економічності на стендах з біговими барабанами.

Abstract

MODELING IN THE TEST CAR ON FUEL EFFICIENCY ON THE ROAD AND ON A ROLLER DYNAMOMETER

Y. Gorbik

Analyzed issues of modeling of conditions of transport vehicles at the test bench. The technique and algorithm for checking the fuel economy on a roller dynamometer.

УДК 629.1.01

О ВЗАИМОДЕЙСТВИИ ДЕФОРМИРУЕМОГО ПРИВОДНОГО КОЛЕСА С ПОЧВОЙ

Али Кадем Ахмед, Калиниченко Д.Ю., аспиранты, Ковбаса В.П., профессор

(Национальный университет биоресурсов и природопользования Украины)

В статье приведены аналитические функции распределения давлений в зоне контакта деформируемого колеса с деформируемой поверхностью и аналитические функции по определению границы зоны контакта, которые являются исходными для решения задачи о контактном взаимодействии колеса с поверхностью. Полученные зависимости могут быть использованы при решении задач, связанных с эксплуатацией, в частности, при проектировании движителей мобильных энергосредств и сельскохозяйственных машин.