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H28: APORTABLE LOW-COST SSVEP-BASED EEG SIGNAL PROCESSING UNIT ALONG WITH
VISUAL STIMULI

Mehdi Abjadpour and lvan Volosyak
Faculty of Technology and Bionics Rhine-Waal University of Applied Sciences (Germany)

A brain-computer interface (BCI) yields a communication between the human brain and other devices without get-
ting the peripheral muscles involved. One common method to fulfill this objective is to analyze the evoked responses
from the brain’s visual cortex (SSVEP) caused by gazing at a constantly flickering target, i.e., the visual stimulus. Most
of the current SSVEP-based BCI systems are not able to concurrently satisfy the criteria of portability, cost-efficiency
and accuracy. In this paper, a portable inexpensive device is presented and evaluated. This device is capable of record-
ing and processing the electroencephalography (EEG) signals simultaneously with the help of a 32-bit STM32 F429
Cortex-M4 microcontroller. Amplitude spectral density analysis is implemented to classify the recorded data using the
Goertzel algorithm instead of the widely used fast Fourier transform (FFT). This is a key feature which enables micro-
controllers to be used as signal acquisition and processing units. The developed system performs the classification pro-
cedure on 4 channels of EEG data in less than 100 ~s immediately after it receives the necessary amount of data. A
mean accuracy of 89.40% and a mean information transfer rate (ITR) of 20.83 bits/min were achieved.

Index Terms—Brain-Computer Interface (BCl), Electroencephalogram (EEG), Steady-State Visually Evoked
Potential (SSVEP), Digital Signal Processing, Microcontroller.

I. INTRODUCTION dual-core processor integrating a digital signal processor

A Brain-Computer Interface comes up with a type of  (DSP) together with an ARM processor was responsible
communication between the human brain and other elec-  for processing the EEG data. Feng et al. developed an
tronic devices which does not rely on the brain’s normal  embedded device for brain signal acquisition [9]. A DAQ
output pathways of peripheral nerves and muscles. One of  board containing an ADS1299 and a BeagleBone Black
the principal goals of the BCls is to assist people suffering  were handling the acquisition and processing part respec-
from motor impairments and disabilities in their everyday tively. Ribeiro et al. developed an EEG standalone device
lives [1], [2]. Mind spelling [3], wheelchair [4] or robot  for BCI [10]. They made use of a PIC18F4550 for data
control and gaming [5] are only a few possible applica-  acquisition, a dsPIC for signal processing and a
tions of the BCI systems. PIC18F458 for the generation of visual stimuli.

These systems are built on the basis of recording and This paper offers an economical and portable signal
analyzing the electrical signals from the human brain.  processing unit for BCls which particularly targets the
Lately, the vast majority of BCI studies prefer to put fo-  ordinary microcontrollers. It is worth mentioning that the
cus on noninvasive EEG-based methods. The steady-state  proposed system is an initial step towards an entirely
visually-evoked potential (SSVEP), motor imagery (MI)  portable BCI device, and was merely developed to exam-
and P300 are some instances of the EEG-based interfaces ine the concept. The professional EEG amplifier
[2]. The SSVEP refers to a BCI paradigm which measures  LiveAmp from Brain Products (Gliching, Germany) was
the brain responses elicited by a visual stimulus flickering  used for signal amplification and acquisition since it could
at a specific constant frequency usually ranging from 6 up  provide an exceptionally good signal quality and satisfy
to 60 Hz [6]. the need for portability. Due to the fact that the provided

This research was supported by the European software SDK required an operating system e.g. Windows
Fund for Regional Development (EFRD) under Grant  or Linux to transmit the data, the use of a portable com-
GE-1-1-047. We also thank all the participants who puter acting as a relay was inevitable.
took part in this study. The system makes use of the Goertzel algorithm for

Most of the SSVEP-based BCI systems are confined  the classification, which in fact gives the identical result
in terms of portability and cost-effectiveness. With the as the fast Fourier transform (FFT) under specific condi-
recent advances in embedded systems and digital signal  tions. The algorithm was applied on four filtered EEG
processing, there has been a growing tendency towards channels. Several studies have already highlighted the
portable and low- cost BCI devices. As for instance, differences between the canonical correlation analysis
Wang et al. conducted a study on the basis of a cell (CCA), minimum energy combination (MEC) and power
phone-based BCI [7]. They applied the FFT on four EEG  spectral density analysis (PSDA) [11], [12]. Requiring
channels using a 4-second moving window. The pro-  significantly less amount of memory and processing pow-
cessing unit was a Nokia N97 cell phone. Lin et al. devel-  er in comparison to other feature extraction techniques
oped a wireless BCI [8]. Their system consisted of a four-  makes the Goertzel algorithm a flawless solution to the
channel biosignal acquisition/amplification module. A issues of portability and budget-friendliness.
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Laptop

Figure 1 — Overview of the experimental setup. The
LiveAmp was clipped onto the participants’ clothes while
the Discovery board (signal processing unit) was placed
near the laptop. The participants were asked to gaze at the
prepared visual stimuli i.e. LED matrices which were
positioned in a distance of about 30 to 40 cm from the
user. The minimum time for gazing at each LED matrix
was 4 seconds depending on the classification. As can be
seen, four EEG electrodes P;, O1, O and O were used.

Il. METHODS AND MATERIALS

A. Desired System

Our ultimate goal is to develop a standalone EEG
signal processing unit which has the ability to talk to the
EEG amplifier in the absence of a laptop or any kind of
additional computer, and process the EEG data in real
time. It is obvious that such an interface could be either
installed on the user’s wheelchair or carried in the user’s
hands, pocket, bag, etc. As the first step, the signal pro-
cessing unit for such a system was introduced in reliance
on a laptop acting as a relay.

The proposed system will be supplied by a portable
power bank. The structure of such a system could result in
a lightweight interface which could be employed in cost-
sensitive applications.

B. Participants

All participants gave written informed consent in ac-
cordance with the Declaration of Helsinki. Seven healthy
subjects with a mean age (SD) of 24.29 (4.07) years rang-
ing from 20 to 31 participated in this study. The infor-
mation required for the analysis of the experiments was
stored anonymously, thus the results cannot be traced
back to the participants. This research was approved by
the Ethical Review Board of the Medical Faculty of the
University of Duisburg-Essen. Subjects did not receive
any financial reward for participation in this study.

C. Experimental Setup

As demonstrated in the Figure 1, the experimental
setup was composed of the following elements. More
specific information is provided subsequently.

eLiveAmp (Brain Products, Gilching, Germany;
Model No.: LiveAmp 8 (BP-200-3020)) - high accuracy
compact wireless 8 channel amplifier and acquisition sys-
tem together with active electrodes,

«Discovery board (STMicroelectronics, Geneva,
Switzerland) featuring STM32F429 high-performance
microcontroller,

+HC-05 - a serial port protocol (SPP) Bluetooth mod-
ule,

+Bi-color (Red/Green) LED matrices (Adafruit In-
dustries, New York City, NY, US; Product ID: 902),

«a gaming series laptop (MSI, New Taipei City, Tai-
wan; Model No.: MS-17A1) running on Windows 10
used as a relay station to exchange data between the
LiveAmp and Discovery board.
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LiveAmp: The ultra-lightweight, wearable 8-channel
24- bit LiveAmp was used for EEG signal amplification
and acquisition. A minimum input impedance of 200 MO,
least common-mode rejection ratio of 80 dB and a resolu-
tion of approximately 40.7 nV/bit are some of the most
important features of the LiveAmp. The amplifier’s input
range is +341.6 mV. It was set to sample the input signals
at the frequency of 250 Hz.

Discovery board: The 32F429IDISCOVERY kit (a

development board from STMicroelectronics) was
used for signal processing, classification and other opera-
tional scenarios. It consisted of a 2.4" QVGA TFT LCD
used for the graphical user interface representation. It
featured an STM32F429 microcontroller with ARM 32-
bit Cortex-M4 core accompanied by a single precision
floating point unit (FPU), running at 168 MHz and con-
taining 2 MB of flash memory, 256 KB of internal SRAM
and a 64-Mbit external SDRAM.
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Figure 2 —The schematic diagram of the LED matrix driv-
er. The UDN2981 was set to source roughly 350 mA and
the ULN2803 was able to sink the same amount of cur-
rent.

Bluetooth Module HC-05: It is fully qualified Blue-
tooth V2.0 + EDR (Enhanced Data Rate) with complete
2.4 GHz radio transceiver and baseband together with the
AFH (Adaptive Frequency Hopping). It has a -80 dBm
sensitivity and up to +4 dBm RF transmit power. It runs
on 3.3V and has an UART interface with programmable
baud rate.

LED Matrices: Four Adafruit 1.2" 8 x 8 bi-color
square LED matrices (33 mm x 41 mm x 4 mm) were
mounted on corners of an extension 2-layer custom-
designed printed circuit board in order to be used as visual
stimuli which then could be controlled by four 32-bit tim-
er channels of the main board; however, the red color was
only used. Each LED matrix was driven by a UDN2981
high-side and a ULN2803 low-side driver in order to be
able to source and sink the necessary amount of current.
The board could be fed by any 5V/2A output power
adapter. More information regarding the circuitry is pro-
vided in the Figure 2. Handling the stimulation frequen-
cies in this type of visual stimulation was more reliable
and the generated frequencies were very precise and close
to the desired ones, since all the LEDs on the LED matrix
flickered synchronously and at the same time.

D. Experimental Protocol

As mentioned before, this experiment was conducted
to evaluate the accuracy and performance reliability of the
developed signal processing unit. For this reason, our
SSVEP- based BCI device could not be categorized into
real-life applications since the classifications were not



followed by any kind of operation e.g. wheelchair move-
ment, spelling, etc. Each participant was asked to gaze at
the visual stimulation frequencies on the LED matrices
for at least 4 seconds. The order in which the user was
asked to gaze at specific LED matrices was chosen ran-
domly. If the classification could be performed according
to our prerequisites and factors, the flickering of the visu-
al stimulation device would stop and another random fre-
quency was set to flicker. Otherwise, the time for which
the participant was asked to gaze at the target would in-
crease until the classification, which could either be cor-
rect or wrong, was performed.

E. Signal Processing

The Goertzel algorithm [13], [14] was implemented
to analyze the amplitude spectral density and classify the
recorded EEG data. It is capable of performing single tone
detection, i.e. detecting a specific frequency from a signal
which most probably contains different frequencies, and
is utilized in many applications [15], some of which are:
dual-tone multi-frequency (DTMF) decoding, frequency
response measurement, etc. The algorithm is implemented
in the form of a second-order infinite impulse response
(IIR) filter to compute the single-bin discrete Fourier
transform (DFT) more effectively. Considering the num-
ber of samples for each input channel N, sampling fre-
quency fs and visual stimulus’ flickering frequency fis;

fs - N (1)
fs

where k (frequency-domain index) must take an inte-
ger value. The Goertzel filter can then be described by the
following time-domain difference equations:

k=

w(n)=x(n)+ ZCO{%)W(H -1)-wn-2), (2
y(n) = wln)—e **Mufn-1) ®)

The output of the filter y(n) is equal to the DFT out-
put X (k) only if n = N iterations of the Equation 2 are
performed. Equation 3 needs to be executed once the pre-
vious step is completed. As an illustration, the block dia-
gram together with parameters and coefficients of the
used system for a specific frequency-domain index k = 6
are presented in the Figure 3 where,
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Figure 3 — Block diagram of the used Goertzel

algorithm
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A pseudocode is provided in the Algorithm 1 for the
sake of clarification.

Algorithm 1 The Goertzel algorithm

1: function GOERTZEL(x, Wy)

W, =0

Wa=0

a = 2cos(2mk/N)

for counter = 0 to counter = 249 do
Wy = a- W, — Wy + z(counter)
Wy =W,
Wy, =W,

9: Re = Wi — Wa - cos(2mk /N)

Im =Wy -sin(27k/N)

- Two initial values.

= 250 data samples.

= The cosine term is the real part of Wiy.
> The sine term is the imaginary part of Wy .
> i is the output of the filter.

1: y = v Re? + Im?
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Figure 4 - Structure of the sliding window. In this figure, j
represents a counter which is incremented each time a
new data block arrives. As indicated earlier, Bj refers to a
block of data which contains 125 data samples (approxi-
mately 0.5 seconds).

For the realization of the system in this paper, the
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sampling frequency (fs) of 250 Hz, first 4 data channels
from the LiveAmp, 250 data samples (N) per channel and
four frequency-domain indexes (k) 6, 7, 8 and 10 were
used. It is worthy of note that the system was set to re-
ceive the data samples in two parts, called blocks, each
containing 125 points. Once the first two blocks of data
points were received, the system could perform the
aforementioned algorithm. Receiving the next 125 data
points was followed by performing the same algorithm on
the received block together with the most recent block
from the previous data set. Simple moving average was
run afterward on the computed DFT magnitudes of all
channels for each frequency each time the algorithm was
executed:

14
Yavk :ZZ|yi,k| k=86,7,8,10. (6)
i-1



In order to attain a high accuracy, the calculated Yay,«
’s were averaged over a minimum 4-second time window,

;
Y, :%Zyav,kj k=6,7.810. (7
i

Figure 4 illustrates the sliding window behavior on 4
seconds of data.

The system was able to go through the classification
procedure when the predefined time window was ana-
lyzed and a certain threshold was exceeded for the ob-
tained Yi’s.

Roception of B, Other CPU Tasks

&

Reception of B, = | Other CPU Tasks Reception of B,

w

Figure 5 - Task scheduling. The DMA controller let the
processor perform other operations while the data were
being received. The block notation refers to the one used
in the Figure 4.

The threshold was determined and set manually by
considering the amplitude of the evoked responses for
each participant.

A

C, = max{Y;,.Y,}, )

Equation 8 refers to the final classification step where
the maximum obtained Yy was being found. Since only
four stimulation frequencies were used, only four Yi’s
were expected; Y1 to Ya. where C, denotes the classified
command.

F Software

System Workbench for STM32 integrated develop-
ment environment equipped with the ARM GCC compiler
was used for source code editing, building and debugging.
STM32F4 HAL, BSP and CMSIS APIs were exerted for
the program development. The HAL driver was in control
of working with peripherals like UART, initializing the
flash interface and the System Tick Time (SysTick), set-
ting the direct memory access controller, etc. Setting the
touchscreen LCD for the graphical user interface was
carried out by the BSP driver. In addition, CMSIS pro-
vides a useful optimized floatingpoint enabled DSP li-
brary for use on Cortex-M based devices.

Realization of Flickering Targets: LED matrices
were controlled by four 32-bit timer channels of the mi-
crocontroller. Four used flickering frequencies 6 Hz, 7
Hz, 8 Hz and 10 Hz were generated by the PWM channels
running in parallel, where PAO, PA1, PA2 and PA3 repre-
sent the respective pins on the Discovery board.

Data Acquisition: In the first step, the amplified and
digitized EEG signals were transmitted to the laptop via
Bluetooth with the help of the Lab Streaming Layer
(LSL) [16] APL.

Table 1 — Results for 7 participants the task as to gaze at a specific led matrix which was selected randomly and
shown to the participants the time parameter refers to the total time it took for the user to accomplish the task

Participants Total No. of Classifications (C, ) Accuracy [%] Time [s] ITR [hits'min]
| 1] 100 40 30
2 12 91.67 48 21.81
3 16 75 64 11.89
4 13 0231 52 22.30
5 14 9286 56 2274
6 14 8371 56 17.73
7 17 88.23 68 19.36
Mean 1371 89.40 54.86 20.83

The buffered data on the laptop were then transmitted
to the main board via Bluetooth with the baud rate of
115.2 kbits/s. The UART on the board was set to function
in non-blocking circular double buffer mode, thanks to
the DMA controller on the F429 microcontroller.

Data Processing: Two interrupt service routines,
each being called by the end of the block transfer, were
responsible for processing the received data. The first
interrupt flag was set when 125 data samples were already
in one of the double buffers. The classification process
started immediately after the interrupt, while the other
buffer was being filled by another set of 125 data sam-
ples. Figure 5 highlights the aforementioned functionality
in a detailed manner.

1. RESULTS
Table I represents the results for all participants. The
overall performance of the system was evaluated by cal-
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culating the information transfer rate (ITR) in bits/min
[2]:
1-P

B, =log, N'+ Plog, P + (1 - P)IOQZ(N'——J’ 9

B:Bt-Cn~6_;|_—0 (10)

where N', P, C, and T refer to the total number of
possible choices, accuracy, total number of classified
commands and the total classification time respectively.
Accuracy (0 <P <1) was calculated by dividing the num-
ber of correct classifications by the total number of classi-
fied commands. Table Il put focus on the accuracy of the
classifier for each specific stimulation frequency separate-
ly. The second column refers to the total number of times
the classification procedure of a specific frequency was
performed for all users regardless of its correctness, while
the third column counts only the correct classified com-



mands. Accuracy was calculated by dividing the elements
of the third column by the ones in the second column.

V. DISCUSSION

As previously stated, this system was solely devel-
oped to assess the reliability of the idea. Using the Goert-
zel algorithm to realize the classification had several sig-
nificant advantages over the widely used fast Fourier
transform (FFT):

A radix-2 FFT requires 2N logz N real multiplica-
tions, whereas the Goertzel calculates N + 2 real multipli-
cations. This might not be a big deal for high-performance
microprocessors, however by increasing the number of
input channels it could play a crucial role in microcontrol-
lers. In order to get the most out of the algorithm, the
number of frequencies to be classified should be kept less
than logz> N. Since N was 250 for each input channel in
our case, the number of frequencies to be classified
should be less than 7.

Table 2 — Classification accuracy the of the signal
processing unit based on the total number of classifica-
tions for all the participants for the used frequencies on
the visual stimuli.

Frequency [Hz] No. of Cp's  No. of Correct €,
3] 21 2T
7 23 23
8 23 20

10 29 21

Accuracy
100 7
100 %

86.96 %

7241 %

A Goertzel filter incorporates a second-order digital
resonator. This gives the freedom to choose any reso-
nance frequency between zero and fs. In this case, the fi-
nal result will not be the same as the FFT.

N does not need to be a power of 2 in the used algo-
rithm whilst the FFT processes a block of data, of which
the length has to be a power of 2.

«It does not require a block of data for the processing
to be started. This indeed is the most important advantage
of this technique which enables the cheap microcontrol-
lers to come into play.

Furthermore, using the high-performance
STM23F429 microcontroller had several benefits:

«It featured 2 MBytes of flash memory which could
be loaded with a very thorough Bcl classifier.

-Being equipped with 256 KBytes of fast SRAM
could help us save more temporary variables without the
need to worry about RAM management.

«The 32-bit timers could provide a very precise pulse
width modulated waveform in order to be used on the

visual stimulation devices.

«Having the capability to be clocked at 168 MHz, re-
sulting in 210 Dhrystone Million Instructions per Second
(DMIPS) could lead to a very fast signal processing unit.

«Coming up with special DSP instructions and bene-
fiting from the floating point unit (FPU) could lead to an
even faster processing unit.

eLast but not least, the above mentioned microcon-
troller was able to deliver such a great performance in
exchange for an absolutely reasonable price.

Besides, using the 8-channel LiveAmp amplifier
could provide us with a very well-filtered high-quality
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EEG data, which highly influenced the accuracy of the
classifier.

As can be seen in Table Il, there exists a noticeable
accuracy decrease in frequencies 8 and 10 Hz. This might
be linked to the differences in the SSVEP amplitudes for
different frequencies, the used signal processing algo-
rithms as well as to the fatigue of the user, concentration
loss, etc.

V. CONCLUSION

In this paper, it was intended to overcome the most
important challenges of a BCI system including the ability
to be easily carried. To this end, a signal processing unit
was developed with the help of a well-known algorithm in
communication systems, the Goertzel algorithm, in a way
that suits mainstream microcontrollers. The accuracy of
the system is dependent on numerous factors e.g. choos-
ing an adequate stimulation frequency set, making use of
a low- noise amplification/acquisition device, establishing
a proper algorithm for the classification, etc. All the fre-
quencies applied in this research belonged to the range of
5 to 10 Hz, since it has been shown that lower frequencies
yield higher accuracies [17].

The obtained results, especially the accuracies which
were mentioned in the results section, imply that the per-
formance of the proposed signal processing unit was ab-
solutely reliable and promising in the presence of the
high-quality and high- priced amplification/acquisition
device, LiveAmp. Although the implemented classifica-
tion method on the microcontroller may not outperform
the CCA, minimum energy combination and other classi-
fication techniques, in conjunction with the limited com-
putational power on the MCU boards, it connotes that this
concept could be introduced in many low-price BCI ap-
plications and could be a fundamental step towards entire-
ly portable, as well as inexpensive BCI interfaces.
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H28: IOPTATUBHE HEJIOPOTE
OBJALIITYBAHHSA OBPOBKH CUT'HAJIIB
EJJEKTPOEHIIE®AJIOI'PAMU HA OCHOBI
SSVEP BJIOKA 3A TOITIOMOI'OIO BI3YAJIBHUX
CTUMY.IIB

A6mxannyp M., Bonocsik 1.

Iumepdpeiic  netipo-xomn'romep (IHK) 3abes3neuye

7

36'130K MIJC THOOCOKUM MO3KOM I [HUWUMU APUCMPOIMU,
He 3anyyarouu nepugepiini m'szu. OOHUM 3 NOWUPEHUX
Memo0i6 O OOCASHEHHS Yiel Memu € aHai3 GUKIUKAHUX
30posux peaxyiii kopu 201061020 Mo3ky (SSVEP), euxnu-
KAHUX HA2NAOOM 3d NOCMINIHO MepexXmiauso0 MIUeHHIO,
moomo 8i3yanrbHuUM CMUMYIoM. Bintvwicme cywacHux cu-
cmem IHK na ocnosi SSVEP ne mooicyms 00HouacHO 3a-
0080IbHAMU KPUMEPIAM MOOIILHOCTMI, PeHmabdenbHOCMI |
mounocmi. Y yiii cmammi npedcmasnenuti i oyineHuil
nopmamusHutl nedopoauii npucmpiu. Llett npucmpii 30a-
MHULL OOHOYACHO peccmpysamu i 0OpOOIAMU CUSHATU
enexmpoenyeganoepagii  (EEI) 3a Oonomoecorw 32-
po3psoHozo mikpoxkonmponepa STM32 FA429 Cortex-MA4.
AmnnimyOHuil cnekmpanoHull aHaliz WilbHOCMI 8UKOPU-
cmogyemuvcsi 015l KIacugikayii 3anucanux 0aHux 3 6UKo-
pucmannam aneopummy I'epyens 3amicms wupoko uKo-
PUCOBYBAH020 WBUOK020 nepemesoperts Pyp'e (LLUTD).
Le xnouosa ¢hynkyis, axa 0036013€ BUKOPUCINOBYBAMU
MIKpOKOHmMPOAEpU 8 AKOCmi 610Ki6 300py i 00pobKu cue-
Hanig. Po3pobnena cucmema 8UKOHYE npoyedypy Kiacu-
¢ixayii no 4 kananam oanux EEI menw niowe 3a 100 mxc
8I0pa3y diC NICAsT OMPUMAHHS HeoOXIOHOI Kintbkocmi Oa-
nux. Jlocaenymo cepeous mounicmo 89,40% i cepeons
weuokicmos nepeoadi ingpopmayii (ITR) 20,83 6im / xs.
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H28: IOPTATUBHOE HEJIOPOI'OE
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SJIEKTPOOHIE®AJIOI'PAMMBI HA OCHOBE
SSVEP BJIOKA ITPHU NOMOIIU BU3YAJIBHBIX
CTUMYJOB

Abmxanmyp M., Bomocsk U.

Humepgpeiic netipo-xomnviomep (MHK) obecneuusa-
em C6A3b MedxHCOY UYeno8eyecKUM MOo320M U OpyeUMU
ycmpouicmeamu, He 6081eKds nepughepuiinvlie MulUYbl.
Oonum u3 pacnpocmpaHenHvlx Memooos 0Jis O0Cmudice-
HUA 9MOU Yenu AGIAemMCca AHAU3 BbI36AEMbIX 3PUMelb-
HBIX pearyuti Kopul 20106H020 mosza (SSVEP), evizeaH-
HbIX HAOIHOOEHUeM 3a NOCMOSHHO Mepyanuiell MULLEHbH0,
m. e. GU3YATbHBIM CMUMYLOM. Bonbwuncmeo coepemen-
noix cucmem UMK na ocnose SSVEP He mozym 00HO8pe-
MEHHO YO081emEOPAms KPUMepUsim MOOULIbHOCHU, DeH-
mabenvHocmu U moyHocmu. B smoil cmamve npedcmas-
JIEHO U OYeHeHO NOopmamusHoe Heoopo2oe YyCMmpolcmso.
Omo ycmpoiicmeo cnocoono 00HOBPEMEHHO Pe2ucmpupo-
6amb U 00pabamvi6ams CUSHAIbL INEKMPOIHYepanospa-
¢duu (33I') ¢ nomowwro 32-pazpsonoeo MuKpoOKOHmMpO.i-
aepa STM32 F429 Cortex-M4. Amnaumyonwiii cnex-
MPANbHLIIL AHAIU3 NIOMHOCMU UCHOAb3Yemcs 08 Kldc-
cugurayuy 3anUCaAnHbIX OAHHBIX C UCNONIbL30BAHUEM Al
eopumma Iepyenss emMecmo WUPOKO UCHOAb3YEMO2O
bvicmpozo npeobpazosanus Pypve (BIID). Omo knoue-
6asl (YHKYUsL, KOMOpasi NO360J5€m UCHOIb3068AMb MUK-
POKOHmMpOILEPbl 8 Kawecmee O10K08 coopa u 06pabomxu
cuenanos. Paspabomannas cucmema 8blNOIHAEM Npoye-
dypy xnaccugurayuu no 4 xananam oannvix 31 menee
yem 3a 100 mxc cpa3zy dmce nocie noryueHusi HeobxXooUMo-
20 Koauwecmea OauHwiX. Jlocmuenyma cpeoOHss mou-
Hocmov 89,40% u cpeonsis ckopocms nepedayu UH@popma-
yuu (ITR) 20,83 6um / mum.
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