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A brain-computer interface (BCI) yields a communication between the human brain and other devices without get-

ting the peripheral muscles involved. One common method to fulfill this objective is to analyze the evoked responses 

from the brain’s visual cortex (SSVEP) caused by gazing at a constantly flickering target, i.e., the visual stimulus. Most 

of the current SSVEP-based BCI systems are not able to concurrently satisfy the criteria of portability, cost-efficiency 

and accuracy. In this paper, a portable inexpensive device is presented and evaluated. This device is capable of record-

ing and processing the electroencephalography (EEG) signals simultaneously with the help of a 32-bit STM32 F429 

Cortex-M4 microcontroller. Amplitude spectral density analysis is implemented to classify the recorded data using the 

Goertzel algorithm instead of the widely used fast Fourier transform (FFT). This is a key feature which enables micro-

controllers to be used as signal acquisition and processing units. The developed system performs the classification pro-

cedure on 4 channels of EEG data in less than 100 ^s immediately after it receives the necessary amount of data. A 

mean accuracy of 89.40% and a mean information transfer rate (ITR) of 20.83 bits/min were achieved. 

 

Index Terms—Brain-Computer Interface (BCI), Electroencephalogram (EEG), Steady-State Visually Evoked 

Potential (SSVEP), Digital Signal Processing, Microcontroller. 

 

I. INTRODUCTION 

A Brain-Computer Interface comes up with a type of 

communication between the human brain and other elec-

tronic devices which does not rely on the brain’s normal 

output pathways of peripheral nerves and muscles. One of 

the principal goals of the BCIs is to assist people suffering 

from motor impairments and disabilities in their everyday 

lives [1], [2]. Mind spelling [3], wheelchair [4] or robot 

control and gaming [5] are only a few possible applica-

tions of the BCI systems. 

These systems are built on the basis of recording and 

analyzing the electrical signals from the human brain. 

Lately, the vast majority of BCI studies prefer to put fo-

cus on noninvasive EEG-based methods. The steady-state 

visually-evoked potential (SSVEP), motor imagery (MI) 

and P300 are some instances of the EEG-based interfaces 

[2]. The SSVEP refers to a BCI paradigm which measures 

the brain responses elicited by a visual stimulus flickering 

at a specific constant frequency usually ranging from 6 up 

to 60 Hz [6]. 

This research was supported by the European 

Fund for Regional Development (EFRD) under Grant 

GE-1-1-047. We also thank all the participants who 

took part in this study. 

Most of the SSVEP-based BCI systems are confined 

in terms of portability and cost-effectiveness. With the 

recent advances in embedded systems and digital signal 

processing, there has been a growing tendency towards 

portable and low- cost BCI devices. As for instance, 

Wang et al. conducted a study on the basis of a cell 

phone-based BCI [7]. They applied the FFT on four EEG 

channels using a 4-second moving window. The pro-

cessing unit was a Nokia N97 cell phone. Lin et al. devel-

oped a wireless BCI [8]. Their system consisted of a four-

channel biosignal acquisition/amplification module. A 

dual-core processor integrating a digital signal processor 

(DSP) together with an ARM processor was responsible 

for processing the EEG data. Feng et al. developed an 

embedded device for brain signal acquisition [9]. A DAQ 

board containing an ADS1299 and a BeagleBone Black 

were handling the acquisition and processing part respec-

tively. Ribeiro et al. developed an EEG standalone device 

for BCI [10]. They made use of a PIC18F4550 for data 

acquisition, a dsPIC for signal processing and a 

PIC18F458 for the generation of visual stimuli. 

This paper offers an economical and portable signal 

processing unit for BCIs which particularly targets the 

ordinary microcontrollers. It is worth mentioning that the 

proposed system is an initial step towards an entirely 

portable BCI device, and was merely developed to exam-

ine the concept. The professional EEG amplifier 

LiveAmp from Brain Products (Gliching, Germany) was 

used for signal amplification and acquisition since it could 

provide an exceptionally good signal quality and satisfy 

the need for portability. Due to the fact that the provided 

software SDK required an operating system e.g. Windows 

or Linux to transmit the data, the use of a portable com-

puter acting as a relay was inevitable. 

The system makes use of the Goertzel algorithm for 

the classification, which in fact gives the identical result 

as the fast Fourier transform (FFT) under specific condi-

tions. The algorithm was applied on four filtered EEG 

channels. Several studies have already highlighted the 

differences between the canonical correlation analysis 

(CCA), minimum energy combination (MEC) and power 

spectral density analysis (PSDA) [11], [12]. Requiring 

significantly less amount of memory and processing pow-

er in comparison to other feature extraction techniques 

makes the Goertzel algorithm a flawless solution to the 

issues of portability and budget-friendliness. 
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Figure 1 – Overview of the experimental setup. The 

LiveAmp was clipped onto the participants’ clothes while 

the Discovery board (signal processing unit) was placed 

near the laptop. The participants were asked to gaze at the 

prepared visual stimuli i.e. LED matrices which were 

positioned in a distance of about 30 to 40 cm from the 

user. The minimum time for gazing at each LED matrix 

was 4 seconds depending on the classification. As can be 

seen, four EEG electrodes Pz, O1, O z and O2 were used. 

 

II. METHODS AND MATERIALS 

A. Desired System 

Our ultimate goal is to develop a standalone EEG 

signal processing unit which has the ability to talk to the 

EEG amplifier in the absence of a laptop or any kind of 

additional computer, and process the EEG data in real 

time. It is obvious that such an interface could be either 

installed on the user’s wheelchair or carried in the user’s 

hands, pocket, bag, etc. As the first step, the signal pro-

cessing unit for such a system was introduced in reliance 

on a laptop acting as a relay. 

The proposed system will be supplied by a portable 

power bank. The structure of such a system could result in 

a lightweight interface which could be employed in cost- 

sensitive applications. 

B. Participants 

All participants gave written informed consent in ac-

cordance with the Declaration of Helsinki. Seven healthy 

subjects with a mean age (SD) of 24.29 (4.07) years rang-

ing from 20 to 31 participated in this study. The infor-

mation required for the analysis of the experiments was 

stored anonymously, thus the results cannot be traced 

back to the participants. This research was approved by 

the Ethical Review Board of the Medical Faculty of the 

University of Duisburg-Essen. Subjects did not receive 

any financial reward for participation in this study. 

C. Experimental Setup 

As demonstrated in the Figure 1, the experimental 

setup was composed of the following elements. More 

specific information is provided subsequently. 

• LiveAmp (Brain Products, Gilching, Germany; 

Model No.: LiveAmp 8 (BP-200-3020)) - high accuracy 

compact wireless 8 channel amplifier and acquisition sys-

tem together with active electrodes, 

• Discovery board (STMicroelectronics, Geneva, 

Switzerland) featuring STM32F429 high-performance 

microcontroller, 

• HC-05 - a serial port protocol (SPP) Bluetooth mod-

ule, 

• Bi-color (Red/Green) LED matrices (Adafruit In-

dustries, New York City, NY, US; Product ID: 902), 

• a gaming series laptop (MSI, New Taipei City, Tai-

wan; Model No.: MS-17A1) running on Windows 10 

used as a relay station to exchange data between the 

LiveAmp and Discovery board. 

LiveAmp: The ultra-lightweight, wearable 8-channel 

24- bit LiveAmp was used for EEG signal amplification 

and acquisition. A minimum input impedance of 200 MO, 

least common-mode rejection ratio of 80 dB and a resolu-

tion of approximately 40.7 nV/bit are some of the most 

important features of the LiveAmp. The amplifier’s input 

range is ±341.6 mV. It was set to sample the input signals 

at the frequency of 250 Hz. 

Discovery board: The 32F429IDISCOVERY kit (a 

development board from STMicroelectronics) was 

used for signal processing, classification and other opera-

tional scenarios. It consisted of a 2.4" QVGA TFT LCD 

used for the graphical user interface representation. It 

featured an STM32F429 microcontroller with ARM 32-

bit Cortex-M4 core accompanied by a single precision 

floating point unit (FPU), running at 168 MHz and con-

taining 2 MB of flash memory, 256 KB of internal SRAM 

and a 64-Mbit external SDRAM. 

 

 
 

Figure 2 –The schematic diagram of the LED matrix driv-

er. The UDN2981 was set to source roughly 350 mA and 

the ULN2803 was able to sink the same amount of cur-

rent. 

Bluetooth Module HC-05: It is fully qualified Blue-

tooth V2.0 + EDR (Enhanced Data Rate) with complete 

2.4 GHz radio transceiver and baseband together with the 

AFH (Adaptive Frequency Hopping). It has a -80 dBm 

sensitivity and up to +4 dBm RF transmit power. It runs 

on 3.3V and has an UART interface with programmable 

baud rate. 

LED Matrices: Four Adafruit 1.2" 8 x 8 bi-color 

square LED matrices (33 mm x 41 mm x 4 mm) were 

mounted on corners of an extension 2-layer custom-

designed printed circuit board in order to be used as visual 

stimuli which then could be controlled by four 32-bit tim-

er channels of the main board; however, the red color was 

only used. Each LED matrix was driven by a UDN2981 

high-side and a ULN2803 low-side driver in order to be 

able to source and sink the necessary amount of current. 

The board could be fed by any 5V/2A output power 

adapter. More information regarding the circuitry is pro-

vided in the Figure 2. Handling the stimulation frequen-

cies in this type of visual stimulation was more reliable 

and the generated frequencies were very precise and close 

to the desired ones, since all the LEDs on the LED matrix 

flickered synchronously and at the same time. 

D. Experimental Protocol 

As mentioned before, this experiment was conducted 

to evaluate the accuracy and performance reliability of the 

developed signal processing unit. For this reason, our 

SSVEP- based BCI device could not be categorized into 

real-life applications since the classifications were not 
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followed by any kind of operation e.g. wheelchair move-

ment, spelling, etc. Each participant was asked to gaze at 

the visual stimulation frequencies on the LED matrices 

for at least 4 seconds. The order in which the user was 

asked to gaze at specific LED matrices was chosen ran-

domly. If the classification could be performed according 

to our prerequisites and factors, the flickering of the visu-

al stimulation device would stop and another random fre-

quency was set to flicker. Otherwise, the time for which 

the participant was asked to gaze at the target would in-

crease until the classification, which could either be cor-

rect or wrong, was performed. 

E. Signal Processing 

The Goertzel algorithm [13], [14] was implemented 

to analyze the amplitude spectral density and classify the 

recorded EEG data. It is capable of performing single tone 

detection, i.e. detecting a specific frequency from a signal 

which most probably contains different frequencies, and 

is utilized in many applications [15], some of which are: 

dual-tone multi-frequency (DTMF) decoding, frequency 

response measurement, etc. The algorithm is implemented 

in the form of a second-order infinite impulse response 

(IIR) filter to compute the single-bin discrete Fourier 

transform (DFT) more effectively. Considering the num-

ber of samples for each input channel N, sampling fre-

quency fs and visual stimulus’ flickering frequency fνs; 
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where k (frequency-domain index) must take an inte-

ger value. The Goertzel filter can then be described by the 

following time-domain difference equations: 
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The output of the filter y(n) is equal to the DFT out-

put X (k) only if n = N iterations of the Equation 2 are 

performed. Equation 3 needs to be executed once the pre-

vious step is completed. As an illustration, the block dia-

gram together with parameters and coefficients of the 

used system for a specific frequency-domain index k = 6 

are presented in the Figure 3 where, 

 

 
Figure 3 – Block diagram of the used Goertzel  

algorithm 
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A pseudocode is provided in the Algorithm 1 for the 

sake of clarification. 

 

 

 
 

 
 

Figure 4 - Structure of the sliding window. In this figure, j 

represents a counter which is incremented each time a 

new data block arrives. As indicated earlier, B j  refers to a 

block of data which contains 125 data samples (approxi-

mately 0.5 seconds). 

 

For the realization of the system in this paper, the 

sampling frequency (fs) of 250 Hz, first 4 data channels 

from the LiveAmp, 250 data samples (N) per channel and 

four frequency-domain indexes (k) 6, 7, 8 and 10 were 

used. It is worthy of note that the system was set to re-

ceive the data samples in two parts, called blocks, each 

containing 125 points. Once the first two blocks of data 

points were received, the system could perform the 

aforementioned algorithm. Receiving the next 125 data 

points was followed by performing the same algorithm on 

the received block together with the most recent block 

from the previous data set. Simple moving average was 

run afterward on the computed DFT magnitudes of all 

channels for each frequency each time the algorithm was 

executed: 
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In order to attain a high accuracy, the calculated yav,k 

’s were averaged over a minimum 4-second time window, 
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Figure 4 illustrates the sliding window behavior on 4 

seconds of data. 

The system was able to go through the classification 

procedure when the predefined time window was ana-

lyzed and a certain threshold was exceeded for the ob-

tained Yk’s.  

 

 
 

Figure 5 - Task scheduling. The DMA controller let the 

processor perform other operations while the data were 

being received. The block notation refers to the one used 

in the Figure 4. 

 

The threshold was determined and set manually by 

considering the amplitude of the evoked responses for 

each participant. 
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Equation 8 refers to the final classification step where 

the maximum obtained Yk was being found. Since only 

four stimulation frequencies were used, only four Yk’s 

were expected; Y1 to Y4. where Cn denotes the classified 

command. 

F Software 

System Workbench for STM32 integrated develop-

ment environment equipped with the ARM GCC compiler 

was used for source code editing, building and debugging. 

STM32F4 HAL, BSP and CMSIS APIs were exerted for 

the program development. The HAL driver was in control 

of working with peripherals like UART, initializing the 

flash interface and the System Tick Time (SysTick), set-

ting the direct memory access controller, etc. Setting the 

touchscreen LCD for the graphical user interface was 

carried out by the BSP driver. In addition, CMSIS pro-

vides a useful optimized floatingpoint enabled DSP li-

brary for use on Cortex-M based devices. 

Realization of Flickering Targets: LED matrices 

were controlled by four 32-bit timer channels of the mi-

crocontroller. Four used flickering frequencies 6 Hz, 7 

Hz, 8 Hz and 10 Hz were generated by the PWM channels 

running in parallel, where PA0, PA1, PA2 and PA3 repre-

sent the respective pins on the Discovery board. 

Data Acquisition: In the first step, the amplified and 

digitized EEG signals were transmitted to the laptop via 

Bluetooth with the help of the Lab Streaming Layer 

(LSL) [16] API. 

 

Table 1 – Results for 7 participants the task as to gaze at a specific led matrix which was selected randomly and 

shown to the participants the time parameter refers to the total time it took for the user to accomplish the task 

 

 
 

The buffered data on the laptop were then transmitted 

to the main board via Bluetooth with the baud rate of 

115.2 kbits/s. The UART on the board was set to function 

in non-blocking circular double buffer mode, thanks to 

the DMA controller on the F429 microcontroller. 

Data Processing: Two interrupt service routines, 

each being called by the end of the block transfer, were 

responsible for processing the received data. The first 

interrupt flag was set when 125 data samples were already 

in one of the double buffers. The classification process 

started immediately after the interrupt, while the other 

buffer was being filled by another set of 125 data sam-

ples. Figure 5 highlights the aforementioned functionality 

in a detailed manner. 

 

III. RESULTS 

Table I represents the results for all participants. The 

overall performance of the system was evaluated by cal-

culating the information transfer rate (ITR) in bits/min 

[2]: 
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where N', P, Cn and T refer to the total number of 

possible choices, accuracy, total number of classified 

commands and the total classification time respectively. 

Accuracy (0 < P < 1) was calculated by dividing the num-

ber of correct classifications by the total number of classi-

fied commands. Table II put focus on the accuracy of the 

classifier for each specific stimulation frequency separate-

ly. The second column refers to the total number of times 

the classification procedure of a specific frequency was 

performed for all users regardless of its correctness, while 

the third column counts only the correct classified com-
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mands. Accuracy was calculated by dividing the elements 

of the third column by the ones in the second column. 

 

IV. DISCUSSION 

As previously stated, this system was solely devel-

oped to assess the reliability of the idea. Using the Goert-

zel algorithm to realize the classification had several sig-

nificant advantages over the widely used fast Fourier 

transform (FFT): 

• A radix-2 FFT requires 2N log2 N real multiplica-

tions, whereas the Goertzel calculates N + 2 real multipli-

cations. This might not be a big deal for high-performance 

microprocessors, however by increasing the number of 

input channels it could play a crucial role in microcontrol-

lers. In order to get the most out of the algorithm, the 

number of frequencies to be classified should be kept less 

than log2 N. Since N was 250 for each input channel in 

our case, the number of frequencies to be classified 

should be less than 7. 

 

Table 2 – Classification accuracy the of the signal 

processing unit based on the total number of classifica-

tions for all the participants for the used frequencies on 

the visual stimuli. 

 

 
 

• A Goertzel filter incorporates a second-order digital 

resonator. This gives the freedom to choose any reso-

nance frequency between zero and fs. In this case, the fi-

nal result will not be the same as the FFT. 

• N does not need to be a power of 2 in the used algo-

rithm whilst the FFT processes a block of data, of which 

the length has to be a power of 2. 

• It does not require a block of data for the processing 

to be started. This indeed is the most important advantage 

of this technique which enables the cheap microcontrol-

lers to come into play. 

Furthermore, using the high-performance 

STM23F429 microcontroller had several benefits: 

• It featured 2 MBytes of flash memory which could 

be loaded with a very thorough BcI classifier. 

• Being equipped with 256 KBytes of fast SRAM 

could help us save more temporary variables without the 

need to worry about RAM management. 

• The 32-bit timers could provide a very precise pulse 

width modulated waveform in order to be used on the 

visual stimulation devices. 

• Having the capability to be clocked at 168 MHz, re-

sulting in 210 Dhrystone Million Instructions per Second 

(DMIPS) could lead to a very fast signal processing unit. 

• Coming up with special DSP instructions and bene-

fiting from the floating point unit (FPU) could lead to an 

even faster processing unit. 

• Last but not least, the above mentioned microcon-

troller was able to deliver such a great performance in 

exchange for an absolutely reasonable price. 

Besides, using the 8-channel LiveAmp amplifier 

could provide us with a very well-filtered high-quality 

EEG data, which highly influenced the accuracy of the 

classifier. 

As can be seen in Table II, there exists a noticeable 

accuracy decrease in frequencies 8 and 10 Hz. This might 

be linked to the differences in the SSVEP amplitudes for 

different frequencies, the used signal processing algo-

rithms as well as to the fatigue of the user, concentration 

loss, etc. 

 

V. CONCLUSION 

In this paper, it was intended to overcome the most 

important challenges of a BCI system including the ability 

to be easily carried. To this end, a signal processing unit 

was developed with the help of a well-known algorithm in 

communication systems, the Goertzel algorithm, in a way 

that suits mainstream microcontrollers. The accuracy of 

the system is dependent on numerous factors e.g. choos-

ing an adequate stimulation frequency set, making use of 

a low- noise amplification/acquisition device, establishing 

a proper algorithm for the classification, etc. All the fre-

quencies applied in this research belonged to the range of 

5 to 10 Hz, since it has been shown that lower frequencies 

yield higher accuracies [17]. 

The obtained results, especially the accuracies which 

were mentioned in the results section, imply that the per-

formance of the proposed signal processing unit was ab-

solutely reliable and promising in the presence of the 

high-quality and high- priced amplification/acquisition 

device, LiveAmp. Although the implemented classifica-

tion method on the microcontroller may not outperform 

the CCA, minimum energy combination and other classi-

fication techniques, in conjunction with the limited com-

putational power on the MCU boards, it connotes that this 

concept could be introduced in many low-price BCI ap-

plications and could be a fundamental step towards entire-

ly portable, as well as inexpensive BCI interfaces. 
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Анотація 

 

H28: ПОРТАТИВНЕ НЕДОРОГЕ  

ОБЛАШТУВАННЯ ОБРОБКИ СИГНАЛІВ  

ЕЛЕКТРОЕНЦЕФАЛОГРАМИ НА ОСНОВІ 

SSVEP БЛОКА ЗА ДОПОМОГОЮ ВІЗУАЛЬНИХ  

СТИМУЛІВ  

 

Абджадпур М., Волосяк І. 

 

Інтерфейс нейро-комп'ютер (ІНК) забезпечує 

зв'язок між людським мозком і іншими пристроями, 

не залучаючи периферійні м'язи.  Одним з поширених 

методів для досягнення цієї мети є аналіз викликаних 

зорових реакцій кори головного мозку (SSVEP), викли-

каних наглядом за постійно мерехтливою мішенню, 

тобто візуальним стимулом. Більшість сучасних си-

стем ІНК на основі SSVEP не можуть одночасно за-

довольняти критеріям мобільності, рентабельності і 

точності.  У цій статті представлений і оцінений 

портативний недорогий пристрій. Цей пристрій зда-

тний одночасно реєструвати і обробляти сигнали 

електроенцефалографії (ЕЕГ) за допомогою 32-

розрядного мікроконтролера STM32 F429 Cortex-M4.  

Амплітудний спектральний аналіз щільності викори-

стовується для класифікації записаних даних з вико-

ристанням алгоритму Герцеля замість широко вико-

ристовуваного швидкого перетворення Фур'є (ШПФ).  

Це ключова функція, яка дозволяє використовувати 

мікроконтролери в якості блоків збору і обробки сиг-

налів.  Розроблена система виконує процедуру класи-

фікації по 4 каналам даних ЕЕГ менш ніж за 100 мкс 

відразу ж після отримання необхідної кількості да-

них.  Досягнуто середня точність 89,40% і середня 

швидкість передачі інформації (ITR) 20,83 біт / хв. 
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H28: ПОРТАТИВНОЕ НЕДОРОГОЕ  

УСТРОЙСТВО ОБРАБОТКИ СИГНАЛОВ 

ЭЛЕКТРОЭНЦЕФАЛОГРАММЫ НА ОСНОВЕ 

SSVEP БЛОКА ПРИ ПОМОЩИ ВИЗУАЛЬНЫХ 

СТИМУЛОВ 

 

Абджадпур М., Волосяк И. 

 

Интерфейс нейро-компьютер (ИНК) обеспечива-

ет связь между человеческим мозгом и другими 

устройствами, не вовлекая периферийные мышцы. 

Одним из распространенных методов для достиже-

ния этой цели является анализ вызваемых зритель-

ных реакций коры головного мозга (SSVEP), вызван-

ных наблюдением за постоянно мерцающей мишенью, 

т. е. визуальным стимулом. Большинство современ-

ных систем ИМК на основе SSVEP не могут одновре-

менно удовлетворять критериям мобильности, рен-

табельности и точности. В этой статье представ-

лено и оценено портативное недорогое устройство. 

Это устройство способно одновременно регистриро-

вать и обрабатывать сигналы электроэнцефалогра-

фии (ЭЭГ) с помощью 32-разрядного микроконтрол-

лера STM32 F429 Cortex-M4. Амплитудный спек-

тральный анализ плотности используется для клас-

сификации записанных данных с использованием ал-

горитма Герцеля вместо широко используемого 

быстрого преобразования Фурье (БПФ).  Это ключе-

вая функция, которая позволяет использовать мик-

роконтроллеры в качестве блоков сбора и обработки 

сигналов.  Разработанная система выполняет проце-

дуру классификации по 4 каналам данных ЭЭГ менее 

чем за 100 мкс сразу же после получения необходимо-

го количества данных.  Достигнута средняя точ-

ность 89,40% и средняя скорость передачи информа-

ции (ITR) 20,83 бит / мин. 
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