енергозбереження зосереджено в системах споживання теплової енергії — системах опалення, теплопостачання та вентиляції.

У будівлі відсутній прилад обліку спожитої теплової енергії, за рахунок фактичного способу установки приладу обліку розрахункові втрати теплової енергії ще до входу в будівлю складають близько 10 % від загального теплоспоживання.

Система опалення знаходиться в працюючому стані, але відсутні пристрої регулювання та автоматичного підтримання необхідних параметрів мікроклімату в приміщеннях, теплова ізоляція трубопроводів, система переходу на «черговий» режим, що приводить до фактичної перевитрати енергоресурсів та практичної неможливості регулювання теплового потоку як системи в цілому, так і її окремих елементів.

Система вентиляції недоцільна до відновлення. Через припливні шахти та вентиляційні канали цілодобово (постійно) надходить і видаляється неконтрольована кількість зовнішнього повітря, яка залежить тільки від температури зовнішнього повітря, сили і напрямку вітру. За даними фактичних вимірів та розрахунків кількість теплоти на підігрів цього вентиляційного повітря становить близько 49 % загальних тепловтрат, тобто тільки виключення цієї витратної статті теплового балансу дасть змогу зменшити майже вдвічі енергоспоживання будівлі.

Виконання наведених заходів (залежно від обсягу) дозволить на 40-60 % скоротити споживання теплової енергії будівлею порівняно з існуючим станом.

Список літератури

- 1. СНиП 2.04.05-91. Отопление, вентиляция и кондиционирование.-М.: 1992, ЦИТП.-59 с. (зі змінами №1, 2)
- 2. ДБН В.2.2-9-2009. Будівлі і споруди. Громадські будинки і споруди.- Офіц. вид.-(чинний від 01.10.2010р.).- К.: Мінрегіонбуд України, 2009.- 50 с. (Державні будівельні норми України).
- 3. ДБН В.2.6-31-2006. Конструкції будівель і споруд. Теплова ізоляція будівель.- Офіц. вид.-(чинний від 01.10.2010р.).-К.: Міністерство будівництва, архітектури та житлово-комунального господарства України, 2006.- 70 с. (Державні будівельні норми України).
- 4. **Караджи В.Г., Московко Ю.Г.** Эффективное использование отопительно-вентиляционного оборудования. Руководство.-М.: Инновент, 2004.- 139 с.
 - 5. Каталог продукции компании «Данфосс», 2011. www.danfoss.com
- 6. **Пырков В.В.** Гидравлическое регулирование систем отопления и охлаждения. Теория и практика.-К.: Таки справи, 2005. -302 с.

Рукопис подано до редакції 22.04.12

УДК 622.788.36.5

А.А. ЛАПШИН⁻, канд. техн. наук, Э. В. СЕРЕБРЕНИКОВ, канд. техн. наук, Д.А. ЛАПШИНА, студентка, ГВУЗ «Криворожский национальный университет»

ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ ПРОЦЕССА РАСШИРЕНИЯ ВОДОВОЗДУШНОЙ СМЕСИ

Проведен теоретический анализ процесса расширения водовоздушной смеси в сопле, которое входит в состав устройства, разработанного для охлаждения горных выработок. При анализе используется термодинамический метод.

Анализ условий ведения подземных горных работ указывает на существование проблемы, связанной с нарушением тепловых режимов, что может привести к нарушению условий труда, определяемых техникой безопасности. В связи с этим возникла необходимость устранения таких нарушений. Одним из возможных путей решения этой проблемы является создание устройств, обеспечивающих воздушное охлаждение горной выработки.

В состав таких устройств входят расширяющиеся сопла, или диффузоры. Рассматривается задача расширения водовоздушной смеси в сопле, выходящем в атмосферу. Схема сопла приведена на рис. 1 (размеры не соблюдены).

1. Количественный анализ процесса

Для решения применяется термодинамический подход.

Термодинамической системой является сопло. Процесс прохождения смеси через систему считается адиабатическим. Это стандартный подход к быстрым потокам, когда теплообмен с окружающей средой не успевает происходить.

_

^{√ ©} Лапшин А.А., Серебреников Э.В., Лапшина Д.А., 2012

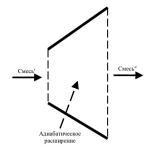


Рис. 1. Схема сопла

Состояния на входе и на выходе считаются равновесными.

Необходимо задать геометрию сопла через диаметры d' и d'', м. Кроме того, должны быть заданы параметры смеси на входе в

сопло. Перед соплом в устройстве располагается смеситель, в котором образуется водовоздушная смесь. Параметры смеси определяются путем решения задачи о смешении воздуха с водой.

Все соотношения будут строиться для промежутка времени, равного 1 с. Для перехода в соотношениях от массы или объема к массовому или объемному расходам, достаточно в единицах измерения заменить кг на кг/с или ${\rm M}^3$ на ${\rm M}^3$ /с соответственно.

Параметры на входе в сопло обозначаются соответствующими буквами со штрихом, на выходе - с двумя штрихами.

Водовоздушная смесь, проходящая через сопло, представляет собой термодинамическую систему, которая называется «Туман». Она состоит из воздуха, воды и насыщенного водяного пара. Эта система двухкомпонентная (воздух и вода) и двухфазная (газ и жидкость).

Очевидно, что при прохождении потока через систему масса воздуха сохраняется. Сохраняется и суммарная масса водовоздушной смеси. Масса воды каким-то образом распределяется между водой и паром. Характер этого распределения зависит от температуры.

Справедлива цепочка соотношений

$$m' = m'' = m_{\text{возд.}} + m_{\text{воды}} =$$

$$= m'_{\text{возд.}} + m'_{\text{волы}} + m'_{\text{пара}} = m''_{\text{возд.}} + m''_{\text{волы}} + m''_{\text{пара}},$$
(1)

$$m_{\text{возд.}} = m'_{\text{возд.}} = m''_{\text{возд.}},$$
 (2)

$$m_{\text{воды}} = m'_{\text{воды}} + m'_{\text{пара}} = m''_{\text{воды}} + m''_{\text{пара}}.$$
 (3)

Считается, что давление на конечном срезе сопла р" равно атмосферному.

Из условия механического равновесия двухфазной системы «Влажный воздух – Вода» следует, что

$$p'_{BOOM} = p'_{BJOJCH,BOJO} = p'. \tag{4}$$

Влажный воздух представляет собой смесь идеальных газов, состоящую из сухого воздуха и насыщенного водяного пара. В соответствии с законом Дальтона

$$p' = p'_{\text{BO3JL}} + p'_{\text{Hapa}},$$
 (5)

где в правой части стоят парциальные давления воздуха и пара соответственно.

Чтобы найти $p'_{\Pi apa}$, необходимо обратиться к таблицам водяного пара [1]. Линейная аппроксимация значений давления имеет вид

$$p'_{napa} = \alpha t' + \beta, \tag{6}$$

где α и β - коэффициенты. Их определение по методу наименьших квадратов в интервале температур от 0°С до 35°С дало значения: α =139 Па/°С, β =39,7 Па.

Чтобы получить соотношение, связывающее давление, температуру и среднюю скорость смеси W', необходимо использовать соотношения

$$V' = W'S', \tag{7}$$

$$V'_{\text{возд.}} = \frac{m_{\text{возд.}}}{\mu_{\text{возд.}}} \cdot \frac{R(t'+273)}{p'},$$
 (8)

$$V'_{\text{воды}} = \frac{m_{\text{воды}} - m'_{\text{пара}}}{1000},$$

$$V'_{\text{пара}} = \frac{m'_{\text{пара}}}{\mu_{\text{воды}}} \cdot \frac{R(t'+273)}{p'},$$
(10)

$$V'_{\text{napa}} = \frac{m'_{\text{napa}}}{\mu_{\text{pollul}}} \cdot \frac{R(t'+273)}{p'}, \tag{10}$$

где буквой V обозначен объем соответствующей компоненты, M^3 ; R - универсальная газовая

постоянная (R=8,314 Дж/(моль·К)); μ - молярная масса (для воздуха μ =0,029 кг/моль, для воды μ =0,018 кг/моль).

В соотношениях (6), (8) и (10) используется тот факт, что смесь на входе в систему находится в тепловом равновесии. Это значит, что температуры воздуха, воды и пара равны между собой и равны t'.

Рассмотрим вопрос о нахождении $m'_{\text{пара}}$. По определению влагосодержания d'

$$m'_{\text{пара}} = d'm_{\text{возд.}}.$$
 (11)

Влагосодержание определяется по формуле, с учетом (5),

$$d' = 0,622 \frac{p'_{\text{пара}}}{p' - p'_{\text{пара}}}.$$
 (12)

Объем является экстенсивной величиной, поэтому сумма (8), (9) и (10) равна (7). С учетом формул (6), (11) и (12) можно получить соотношение, связывающее давление, температуру и скорость на входе в систему

$$W'S'p' = 287m_{\text{Воздуха}}(t'+273)+139W'S't',$$
 (13)

где S' - площадь поперечного сечения сопла на входе, M^2 . В этом выражении, во избежание излишней громоздкости, были отброшены малые члены. Относительная погрешность от такого упрощения не превышает 1%.

Формула (12) с учетом (13) и (6) принимает вид

$$d' = 0.3 \frac{W'S'}{m_{\text{Воздуха}}} \frac{t' + 0.286}{t' + 273}.$$
(14)

Все предыдущие рассуждения справедливы и для выходного сечения сопла, с естественной заменой обозначений.

Однако на выходе из сопла известно только давление. Температура и скорость – неизвестны. Поэтому необходимо привлечь еще одно соотношение.

Таким соотношением является первый закон термодинамики для потоков. В случае адиабатического потока он сводится к виду

$$H + \frac{mW^2}{2} = const,\tag{15}$$

где H - энтальпия потока, Дж.

Энтальпия является экстенсивной величиной. Тогда

$$H = H_{\text{возд.}} + H_{\text{волы}} + H_{\text{папа}}. \tag{16}$$

По определению

$$H = C_p t, (17)$$

где $C_{\rm p}$ - изобарная теплоемкость, Дж/°С, t – температура, °С.

Изобарная теплоемкость определяется через удельную изобарную теплоемкость c_p , Дж/(кг \cdot °С)

$$C_p = mc_p. (18)$$

Значения удельных изобарных теплоемкостей являются табличными [2] $c_{\text{рвозд.}}=1000$ Дж/(кг·°С) и $c_{\text{рвозд.}}=4190$ Дж/(кг·°С).

Рассмотрим энтальпию на входе в систему.

Используя (17) и (18)

$$H'_{6030} = m_{6030} c_{n6030} t'.$$
 (19)

Что же касается воды, то ее исходная масса, как уже было отмечено, каким-то образом распределяется между водой и паром в смеси. Характер этого распределения зависит от температуры t' в соответствии с (14).

Чтобы упростить построения, необходимо рассмотреть энтальпию воды и пара совместно. Для воды, согласно (17), (18) и (3),

$$H'_{\text{BOJIM}} = (m_{\text{BOJIM}} - m'_{\text{IJana}})c_{nsodyl}t'. \tag{20}$$

Энтальпия пара складывается из двух слагаемых: энтальпии воды и теплоты парообразования

$$H'_{\text{napa}} = m'_{\text{napa}} (c_{peo\partial bl} t' + r'), \tag{21}$$

где r' - удельная теплота парообразования, Дж/кг.

Нетрудно видеть, что при сложении выражений (20) и (21) получим

$$H'_{\text{воды}} + H'_{\text{пара}} = m_{\text{воды}} c_{p \theta o \partial b i} t' + m'_{\text{пара}} r',$$
 (22)

т.е. масса пара войдет в сумму только в виде множителя при величине удельной теплоты парообразования. Анализ выражения (22) говорит о том, что помимо отдельной энтальпии для воды, при возникновении в системе пара добавляется теплота парообразования, связанная с фазовым переходом воды в пар.

Величина r' уменьшается с ростом температуры по закону [2]

$$r' = r_o - 2.3t', (23)$$

где r_0 - значение r' при 0 °C, равное 2,5·10⁶ Дж/кг. Зависимость от температуры очень слабая. При перепаде температуры в сто градусов второе слагаемое в правой части (23) вносит вклад в сумму менее 0,01 %. Поэтому зависимостью r' от температуры вполне можно пренебречь, и считать просто

$$r' = r_o \tag{24}$$

Для энтальпии на выходе из системы все рассуждения проводятся совершенно аналогично. Приведем окончательные соотношения. Запишем первый закон термодинамики потоков (15) для параметров на входе в систему. С учетом (16), (19), (22), (11) и (24), получим

$$m'_{603\partial.} c_{p603\partial.} t' + m'_{60\partial bl} c_{p60\partial bl} t' + d' \cdot m'_{803Д} r_o + \frac{m'W'^2}{2} = const.$$
 (25)

Выражение (25) описывает полную энергию потока. Она включает в себя энтальпию, или теплосодержание, и кинетическую энергию.

Полная энергия после прохождения через сопло сохраняется. Это приводит к тому, что на выходе из системы полная энергия должна равняться той же константе. Значение константы определяется по (25).

Первый закон термодинамики на выходе из сопла записывается совершенно аналогично (25), с очевидной заменой обозначений. Можно показать, что это соотношение с точностью до 1% сводится к квадратному уравнению относительно t''

$$At''^2 + Bt'' + C = 0, (26)$$

где A,B,C - коэффициенты, определяемые по формулам

$$A = \left(m_{\text{возд}}c_{p \text{ возд.}} + m_{\text{воды}}c_{p \text{ воды}}\right)p"+43,2m_{\text{возд.}}r_{o} - 148,2m\frac{m_{\text{возд.}}^{2}}{S"^{2}} + 69,4const,$$

$$B = -0,0036\left(m_{\text{возд.}}c_{p \text{ возд.}} + m_{\text{воды}}c_{p \text{вооды}}\right)p"^{2} - 0,311m_{\text{возд.}}r_{o}p"-80935 m\frac{m_{\text{возд.}}^{2}}{S"^{2}} - p"const,$$

$$C = -11,04 \cdot 10^{6} m\frac{m_{\text{возд.}}^{2}}{S"^{2}} + 0,0036 p"^{2} const.$$

$$(27)$$

2. Определение параметров в конце процесса

В состав параметров состояния в конце процесса входят температура T'' или t'', давление p'' и плотности $\rho'', \rho''_{so30}, \rho''_{so0bi}, \rho''_{napa}$. Состав смеси также характеризуется массовыми g_i или объемными r_i долями.

Рассмотрим определение этих параметров. t'' определяется как решение уравнения (26). T''=273+t''. Давление p'' задано и равно атмосферному. Плотности определяются из формулы

$$\rho = m/V$$
 (28)

на основе известных массовых и объемных расходов. Массовые расходы находятся с использованием формул (1-3), (11) и (14). Объемные - по формулам (7-10).

Массовой долей, по определению, называется величина

$$g_i = m_i / m_{\text{смеси}} \tag{29}$$

Определим массовые доли воздуха, воды и пара. Объемной долей, по определению, называется величина

$$r_i = V_i / V_{\text{CMECH}} \tag{30}$$

Эта величина также может быть определена. Таким образом, найдены все величины, которые могут пригодиться при описании смеси на выходе из сопла.

3. *Пример*. Рассмотрим конкретный пример установки для охлаждения горных выработок. Исходные данные и результаты расчетов приведены в таблицах.

Таблица 1

Геометрические параметры установки				
d'	2,00	дюйма		
d"	0,35	M		

Таблица 2

Параметры на входе и на выходе			
Параметры	Вход	Выход	
t, °C	16,01	9,41	
р, атм	8,33	0	
W, м/с	36,52	7,09	
<i>т</i> , г/с	1 130,50	1 130,50	
$m_{ ext{возд}}, \Gamma/ ext{c}$	830,50	830,50	
$m_{ ext{воды}}$, $\Gamma/ ext{c}$	298,75	292,97	
тпара,г/с	1,25	7,03	
V, л/с	74,25	681,87	
$V_{ m {\tiny BO3Д.}}$,л/с	73,77	672,41	
$V_{ m Boды}, { m \pi/c}$	0,30	0,29	
$V_{ m пара},\ { m J/c}$	0,18	9,17	
ρ , kg/m ³	15,23	1,66	
$ ho_{ exttt{возд.}},$ кг/м 3	11,26	1,24	
$ ho_{ m воды}$, кг/ $ m M^3$	1 000,00	1 000,00	
$ ho_{ m пара}$, кг/м 3	6,99	0,77	

Таблица 3

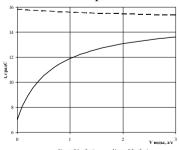

N	Тассовые доли компонентов, %	
	Вход	Выход
Воздух	73,46	73,46
Вода	26,43	25,92
Пар	0,11	0,62
Сумма	100,00	100,00
	Вход	Выход

Таблица 4

Ооъемные доли компонентов, %				
	Вход	Выход		
Воздух	99,36	98,61		
Вода	0,40	0,04		
Пар	0,24	1,34		
Сумма	100,00	100,00		

4. Качественный анализ процесса

Интересно проследить характер зависимости температуры на выходе из системы от заданных объемных расходов воздуха и воды на входе (рис. 2).

Рис. 2. Температура зависимости от расхода воды

Различный характер графиков объясняет рис. 3.

На рисунке изменение темпе

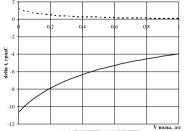


Рис. 3. Влияние различных процессов на изменение температуры

На рисунке приведено изменение температуры в зависимости от объемного расхода воды. Объемный расход воздуха считается заданным: $V_{\text{возд.}}$ =0,1 м³/с.

С одной стороны, наличие воды в потоке воздуха должно приводить к охлаждению за счет ее испарения

с поглощением теплоты.

С другой стороны, на выходе из сопла поток тормозится, а это, как известно, всегда повышает температуру.

Если сравнить рис 3 и 2, можно сделать вывод, что при малых расходах воздуха главную роль играет испарение, при больших - торможение.

Таким образом, проведенное теоретическое исследование поможет в выборе оптимальных значений входных параметров сопла в составе устройства для охлаждения воздуха горных выработок.

Список литературы

- 1. Сборник задач по технической термодинамике и теплопередаче. / Под ред. Б.Н. Юдаева. М.: Высшая школа, 1968. 372 с.
 - 2. **Буляндра О.Ф** Технічна термодинаміка. К.: Техніка, 2001. 320 с.

Рукопис подано до редакції 22.04.12

УДК 622.86: 622.272

А.В. ДАВЫДОВ, ПАО «Евраз Суха Балка», А.М ГОЛЫШЕВ, д-р техн. наук, проф.,

Е.В. ПИЩИКОВА, канд. техн. наук, доц., ГВУЗ «Криворожский национальный университет»

АНАЛИЗ СУЩЕСТВУЮЩИХ МЕТОДОВ И ВЫБОР КРИТЕРИЕВ БАЗОВОЙ ОЦЕНКИ РИСКОВ В ОБЛАСТИ ОХРАНЫ ТРУДА В УСЛОВИЯХ ГОРНЫХ ПРЕДПРИЯТИЙ

Систематизированы существующие количественные и качественные методы и методики оценки рисков в области охраны труда с целью последующего обоснования выбора метода для использования (адаптирования) при расчетах рисков травмирования в условиях ПАО «Евраз Суха Балка».

Ключевые слова: оценка и управление рисками в области охраны труда, вероятность, тяжесть, последствия, несчастный случай

Проблема и ее связь с научными и практическими задачами. Основной целью современной системы управления охраной труда является переход от реагирования на страховые случаи (несчастные случаи, связанные с производством, профессиональные заболевания работников горных предприятий) к управлению рисками в этой области.

Управление и оценку рисков в области охраны труда в условиях горных предприятий работодатели и работники проводили и проводят длительное время, сколько существует понятие «охрана труда», но эта оценка зачастую была интуитивной и неосознанной. Новые технологии заставили общественность по-новому взглянуть на старые проблемы и буквально за последние 5-7 лет представления об охране труда претерпели существенные изменения, которых данный институт не знал со времен своего возникновения.

Сегодня всесторонний подход к охране труда на горных предприятиях предусматривает одновременный мониторинг и учет множества разнообразных рисков. Новая концепция [1] обеспечения безопасных и здоровых условий труда приобретает прочный фундамент, основой которого являются такие критерии, как системность, комплексность, превентивность, гибкость и сотрудничество. Однако, несмотря на значительный объем исследований исследования и разработок ученых, новая концепция охраны труда еще не имеет окончательной формулировки и продолжает развиваться как в направлении изучения методов оценки рисков, так и в направлении выбора наиболее оптимальных из них в условиях горных предприятий.

Анализ исследований и публикаций. Проведенный анализ [2-7] свидетельствует о том, что оценка и управление рисками в области охраны труда, как самостоятельная отрасль знаний является молодой и достаточно динамично развивающейся наукой. В странах Евросоюза даже в относительно стабильных технико-экономических условиях работодатели уделяют пристальное внимание вопросам управления рисками. В то же время, в Украине проблемы анализа и управления рисками в области охраны труда уделяется явно недостаточно освещена.

Передовые технологии, Интернет, информационно-технологическое, производственное развитие и другие немаловажные факторы, влияющие на современный бизнес, радикально изменили подходы к управлению рисками в области охраны труда.

Следует отметить, что проблемой классификации рисков учёные занимаются давно, а устоявшихся критериев, позволяющих однозначно классифицировать все риски в области охраны

-

^{· ©} Давыдов А.В., Голышев А.М., Пищикова Е.В.,2012