УДК 621.311.086.5

В.П. СТЕПАНЕНКО, канд. техн. наук, доц., Московский горный институт НИТУ «МИСиС»

ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ И РЕСУРСОСБЕРЕЖЕНИЯ РУДНИЧНОГО ЭЛЕКТРОВОЗНОГО ТРАНСПОРТА

Рассмотрены способы повышения энергоэффективности и ресурсосбережения рудничного электровозного транспорта с использованием накопителей энергии. Определены энергоемкость, мощность и места размещения суперконденсаторных и гибридных накопителей на рудничном электровозном транспорте. Гибридные накопители рекомендуется устанавливать на электровозах при пиковых нагрузках в 4-7 раз превышающих среднее значение. Установлено, что применение накопителей энергии позволит уменьшить расход энергии на 15-20% и снизить капитальные затраты. Большая часть, примерно10- 12%, снижения расхода энергии будет получена в системе тягового электроснабжения. Снижение капитальных затрат будет достигнуто за счет уменьшения длины контактных сетей, количества подстанций и электровозов. Потери энергии на буксование за счет увеличения жесткости характеристик рудничных электровозов можно снизить на 3-5%.

Ключевые слова: рудничный электровоз, коэффициент сцепления, буксование, энергоэффективность, ресурсосбережение, накопители энергии, суперконденсатор, аккумуляторная батарея.

Проблема и ее связь с научными и практическими задачами. В ведущих горнодобывающих странах накоплен большой опыт повышения производительности, энергоэффективности и ресурсосбережения горного локомотивного транспорта [1-14].

Анализ исследований и публикаций. Многочисленные исследования установили, что снижение энергоэффективности и ресурсосбережения рудничного электровозного транспорта происходит вследствие значительных потерь на буксование, неудовлетворительного состояния электровозов, вагонеток, аккумуляторных батарей, зарядных устройств, контактных сетей, рельсового пути, наличия в горных откаточных выработках завышенных и волнистых профилей, а также недостаточной точности применяемых методик проектирования электровозной откатки [3,4,5,7,8,9,10].

Изложение материала и результаты. В настоящее время на контактной откатке средний удельный расход электрической энергии остается на уровне 120Вт·ч/т·км, на аккумуляторной откатке - 240 Вт·ч/т·км [1,2,4,5]. Рассмотрим возможные пути повышения энергоэффективности и ресурсосбережения. В табл. 1 приведены кпд тягового электропривода и системы электроснабжения, а также потери энергии на собственные нужды и буксование.

КПД и потери энергии на электровозной откатке

Таблица 1

VIII	Тип электровоза		
КПД и потери энергии	аккумуляторный	контактный	
КПД тяговых электродвигателей постоянного тока	82-85%	85-90%	
КПД редуктора электровоза	94%	95%	
КПД реостатной системы управления	85-95%	70-85%	
КПД безреостатной системы управления	93-95%	90-92%	
КПД стройств для заряда аккумуляторных батарей	92-97%	-	
КПД тяговой подстанции (с учетом питающего трансформатора)	-	92-97%	
КПД тяговой сети	-	80 -95%	
КПД щелочные никель - железные	13,5 %	-	
КПД свинцово- кислотных батареи	17%	-	
ПОТЕРИ энергии на собственные нужды	3%	4%	
ПОТЕРИ энергии на буксование	10-21%	5-10%	

В настоящее время «Основные положения по проектированию подземного транспорта новых и действующих шахт» и другие нормативные материалы в части расчетов электровозной откатки устарели и нуждаются в корректировке [11-14]. Изложенная в них методика пригодна только для прикидочных расчетов, поскольку для рудничных дизелевозов, контактных и аккумуляторных электровозов коэффициент сцепления Ψ выбирается без учета типа локомотива (см. табл. 2). Кроме типа локомотива сильное влияние на коэффициент сцепления Ψ оказыва-

ет абразивность загрязнений головок рельсов, что также не учтено в «Основные положениях...». Использование в расчетах значений коэффициента сцепления Ψ из табл. 2, дает завышенное значение массы состава. При движении состава с завышенной массой на подъем потери энергии на буксование могут возрастать до 15-20 %. При выборе коэффициента сцепления из табл. 3 с учетом типа электровоза и абразивности загрязнений головок рельсов сила тяги реализуется при 1-3 % проскальзывании колес относительно рельсов и потери энергии на буксовании не превышают 2-3% [9,10].

Таблица 2 Коэффициент сцепления рудничных локомотивов, рекомендуемый для прикидочных расчетов

Состояние рельсов	Коэффициент Ψ
Покрыты жидкой угольной или породной грязью	0,07-0,08
Влажные, практически чистые	0,09
Мокрые, чистые	0,12-0,13
Сухие, практически чистые	0,17
Посыпаны песком	0,18-0,24
Покрыты раздавленным песком	0,14-0,18

Потенциальный коэффициент сцепления $\Psi_{\rm o}$ при максимальной силе тяги определяется из выражения:

$$\Psi_{\rm o} = F_{\rm Makc}/Q_{\rm cli}$$
 (1)

где F_{\max} - максимальная сила тяги на крюке локомотива, кН; $Q_{\text{сц}}$ - сцепной вес электровоза, кН. Рудничный локомотив передвигается по горным выработкам с поступательной скоростью V и скоростью скольжения колес относительно рельсов u. Коэффициент сцепления Ψ в этом случае вычисляется по формуле

$$\Psi = \Psi_{o}(1 - \rho u), \tag{2}$$

где р - жесткость характеристики сцепления, с/м.

$$\rho = d\Psi/\Psi_0 du \tag{3}$$

Значения коэффициента сцепления $\Psi_{\rm o}$ в зависимости от абразивности загрязнения головок рельсов приведены в табл. 3.

Значения коэффициента сцепления Ψ_0

Таблица 3

		Коэффициент $\Psi_{ m o}$ *			
Загрязнения головок рельсов	Абразив- ность, Мг/км	рельсы мокрые		рельсы сухие	
		режим питания тяговых двигателей			
		аккумуляторная	контактная	аккумуляторная	контакт-
		батарея	сеть	батарея	ная сеть
Чистые рельсы	-	0,136	0,145	0,191	0,21
Мокрая глина (туронская)	10	0,05	0,05	-	-
Угли: коксующиеся Ж,ПЖ,КС,СС,КСН,К	20-40	0,07	0,07	0,1	0,12
Глинистый сланец	40-350	0,073	0,073	0,091	0,11
Углисто-глинистый сланец, горючий сланец, бурый уголь	800	0,13	0,12	0,17	0,18
Антрацит А	800-1000	0,145	0,136	0,182	0,191
Углистые сланцы, силур С1	1500	0,19	0,2	0,22	0,23
Известняки глинистые и песчанистые (силур C2)	2300	0,19	0,22	0,19	0,24
Слюдисто-глинистые сланцы ОЖ (ордовик)	3000	0,24	0,23	0,25	0,26
Песок из песочницы	8000	0,22	0,22	0,25	0,27

Для электровозов, оборудованных системами плавного пуска и торможения, а также при использовании ДПТ независимого и смешанного возбуждения, значение коэффициента $\Psi_{\rm o}$ принимается на 20-25 % большим.

Уменьшения потерь на буксование можно добиться, увеличив жесткость характеристики сцепления ρ . Этого можно достичь заменой на электровозе последовательного возбуждения тяговых двигателей постоянного тока электровоза на смешанное или независимое. Необходимые для расчетов значения жесткости ρ и $\Psi_{\rm o}$ определяются опытным путем для каждого типа электровоза.

Энергоэффективность и ресурсосбережение и в значительной степени зависят от типа аккумуляторной батареи. Свинцово-кислотные аккумуляторы имеют среднее разрядное напряжение 2,1 В на элемента щелочные 1,1 В.

В табл. 4 приведены сравнительные характеристики тяговых свинцово- кислотных панцирных аккумуляторных батарей и щелочных никель-железных в пятичасовом режиме разряда.

кумуляторных остарси и щелочных никель-железных в пятичасовом режиме разряда.

Таблица 4

Характеристики тяговых свинцово- кислотных и щелочных никель-железных аккумуляторных батарей

Тип аккумуляторной батареи	Тип аккумуляторного электровоза	Среднее разрядное напряжение, В	Энергоемкость батарей, кВтч
Свинцово-кислотная 50×7PzSL560	АРП7	101	63
Никель- железная 50 ТНЖШ-550	4,5АРП, А5	60	33
Свинцово-кислотная 60 x7PzSL-805	AM8-600	120	108,6
Никель-железная 60 ТНЖШ-550	АРП7-600	72	39,6
Свинцово-кислотная 72×7PzSL(430-805)	АМ8Д-900	144	130,32
Никель-железная 72 ТНЖШ-550	АРП7-900	86,4	47,5
Свинцово-кислотная 120 x7PzSL-805	2АМ8Д	240	217,2
Никель- железная 120 ТНЖШ-550	АМ8Д-900	144	79,2
Свинцово-кислотная 144x7PzSL-805	2АМ8Д-900	288	260,64
Никель- железная 144 ТНЖШ-550	АРП14-900	172,8	95,4

Анализ табл. 4 показывает, что в 5-часовом режиме разряда энергия, отдаваемая кислотными аккумуляторами, в 1,9–3,27 раза выше, чем щелочными. С учетом всех потерь приведенный к шинам переменного тока зарядных устройств кпд аккумуляторной откатки с использованием свинцово- кислотных батарей не превышает 15-17% и никель - железных - 13,5 %. Из анализа табл. 4 следует, что замена тяговых никель - железных аккумуляторных батарей свинцово-кислотными или никель-кадмиевыми повысит энергоэффективность аккумуляторной откатки не менее, чем на 3-5%. Снижение удельного расхода энергии до 110-150 Вт.ч/т.км достигается заменой двухступенчатой откатки на одноступенчатую с использованием контактно-аккумуляторных электровозов. При этом количество электровозов, аккумуляторных батарей, зарядных устройств и зарядных столов уменьшается примерно в 2 раза, срок службы аккумуляторов повышается до 7 лет [1,3,9].

У всех типов аккумуляторных батарей отдаваемая при разряде энергия зависит от температуры и еличины разрядного тока.

В табл. 5 представлены характеристики аккумуляторных батарей в относительных едининах.

Таблица 5 Характеристики электрохимических накопителей энергии ЭХН

Время разряда,ч	Отношение токовІр/Ірн	Отдаваемая емкость,%	Отдаваемая энер- гия,%	КПД процесса зарядразряд, %
5,0	1,0	100	100	42,00
4,0	1,25	85	83,6	35,1
3,0	1,66	70	67,1	28,11
2,0	2,50	55	49,5	20,7
1,5	3,33	47,5	40,375	17,1
1.0	5.0	40	28.13	12.3

В качестве номинального режима был выбран пятичасовый разрядный режим. Анализ табл. 5 свидетельствует, что при возрастании отношения разрядного тока аккумуляторной батареи ${\rm I}_{\rm p}$

к номинальному I_{ph} от 2,5 до 5 отдаваемая энергия уменьшается от 49,5 до 28,13%, а КПД процесса заряд-разряд от 20,7 до 12,3%.

Указанные в табл. 4 и 5 значения отдаваемой при разряде энергии справедливы при температурах окружающего воздуха от +15 °C до +35 °C. Ниже температуры +15 °C отдаваемая энергия резко падает. Например, при температуре ниже минус 25 °C кпд разряда аккумуляторных батарей не превышает 5-10 %. При температуре выше плюс 55 °C аккумуляторные батареи не принимают заряд. При пиковом увеличении разрядного тока и отрицательных температурах кпд и отдаваемая энергия аккумуляторов резко уменьшаются, что является их существенным недостатком. Этого недостатка лишены конденсаторы с двойным электрическим слоем КДЭС (суперконденсаторы). В табл. 6 приведены параметры перспективного суперконденсаторного модуля МЛСК-130-57 с органическим электролитом.

Параметры суперконденсаторного модуля МЛСК-130-57

Таблица 6

Параметр	Величина		
Рабочее напряжение	130 B		
Емкость	57 Ф		
Запасаемая энергия	0,5 МДж /0,150 кВтч		
Номинальная мощность,	84 кВт		
Максимальная мощность	560 кВт		
Macca	50 кг		
Габаритные размеры	1200×450×310 мм		
Объем	0,167 м³		
Рабочая температура	- 50°C÷+65° C		
Степень защиты корпуса	IP65		
Ресурсы, циклы	100 000		
Срок службы	10 лет		
Тип электролита	органический		
Изготовитель	ООО «ТЭЭМП», Москва		
Параметр	Величина		

Электрические схемы суперконденсаторных накопителей проще, а кпд выше, чем инерционных ИН и индуктивных накопителей энергии. Их можно использовать для поддержания на аккумуляторных батареях стабильного напряжения в течение рабочей смены электровоза. Применять гибридные накопители, состоящие из аккумуляторной батареи и суперконденсатора, рекомендуется, если пиковые значения токов нагрузки превышают средние значения не менее, чем в 5-7 раз Гибридный накопитель, предпочтительно устанавливать на аккумуляторных, контактно - аккумуляторных электровозах и на тяговых агрегатах. В системах тягового электроснабжения и на контактных электровозах использовать гибридные накопители малоэффективно. В гибридных накопителях величину энергоемкости суперконденсаторов следует выбрать не более 2-3% от общей энергоемкости накопителя [6-8]. Для приема и хранения тормозной рекуперативной энергии суперконденсаторные накопители целесообразно размещать на электровозах, в пунктах секционирования контактных сетей, на тяговых и передвижных накопительных подстанциях. В. табл. 7 представлены параметры суперконденсаторов в гибридных накопителях аккумуляторных электровозов.

Таблица 7 Параметры суперконденсаторов для размещения на аккумуляторных электровозах

Тип электровоза	Напряжение, В	Запасаемая энергия, МДж	Мощность, кВт
АРП7-900	150-120	5,06	280
АМ8Д-600	150-120	5,06	280
АМ8Д-900	180-130	6,072	336
2АМ8Д-600	300-240	10,12	560
2×АМ8Д-900	360-260	12,144	762
АРП14-900	240-160	7,084	393

Параметры суперконденсаторных накопителей энергии для размещения в системе тягового электроснабжения на накопительных и тяговых подстанциях, приведены в табл. 8.

Накопители энергии для контактной электровозной откатки

Таблица 8

Место установки	Диапазон рабочих напряжений, В	Запасаемая энергия, МДж	Максимальная мощность, кВт
Электровозы контактные	540-270	3,64	1080
Накопительные подстанции	540-270	7,28	2160
Тяговые подстанции	540-270	14,56	4320

Применение накопителей энергии на контактной откатке позволит поддерживать стабильное напряжение питания на токоприемнике независимо от расстояния от тяговой подстанции, устранить броски тока, снизить искрение и износ контактных проводов и токоприемников электровозов, принимать и хранить энергию торможения, снизить капитальные затраты за счет сокращения количества тяговых подстанций и протяженности контактных сетей.

Выводы. Основные выводы по работе заключаются в следующем:

Применение накопителей энергии позволит уменьшить расход энергии на 15-30%.

Большая часть экономического эффекта от применения накопителей энергии будет получена в системе тягового электроснабжения за счет снижения потери электроэнергии на 10-12%. в тяговых трансформаторах, преобразователях, тяговых сетях, тяговых двигателях, а также вследствие уменьшения количества подстанций и электровозов, сокращения длины контактных сетей.

Установлены способы снижения на 3-5 % потерь энергии на буксование.

Определены энергоемкость, мощность и места размещения суперконденсаторных и гибридных накопителей на рудничном электровозном транспорта.

Список литературы

- 1. Степаненко В.П., Венцлафф В., Дейнеке Р., Василенко В.И. Разработка и испытание контактно-аккумуляторных электровозов V-860. Уголь,-1986. № 12- C.32,33.
- 2. **Синчук О.Н., Гузов Э.С., Степаненко В.П.**, Шахтный контактно-аккумуляторный электровоз. Горный журнал.-1988. -№6. -С.55-57.
- 3. Степаненко В.П., Иващенко В.В. Сравнительное исследование процессов газовыделения из тяговых никель железных и никель-кадмиевых батарей рудничных контактно-аккумуляторных электровозов. Научные сообщения ИГД им. Скочинского. Горная механика, рудничный транспорт, техническое обслуживание и ремонт ГШО. М. 1988, с.123-130.
- 4. **Степаненко В.П.** Особенности организации локомотивной откатки с использованием комбинированных электровозов. Научные сообщения ИГД им. Скочинского. Горная механика, рудничный транспорт, техническое обслуживание и ремонт ГШО. М. 1988, с. 130-138.
- 5. **Степаненко В.П.** Применение комбинированных (гибридных) энергосиловых установок в горной промышленности. //Горный информационно-аналитический бюллетень.- М.-. Горная книга.-2014.-№11.-C.322-328.
- 6. Степаненко В.П., Белозеров В.И. Применение комбинированных (гибридных) энергосиловых установок горнотранспортных машин. //Горный информационно-аналитический бюллетень.- М-. Горная книга.-2015.-№2.- С 174-181
- 7. Степаненко В.П., Сорин Л.Н. Энергоэффективность подземной локомотивной откатки с гибридными накопителями энергии//Горный информационно- аналитический бюллетень.- М.-. Горная книга.-2015.-№6.-С.135-140.
- 8. Степаненко В.П., Сорин Л.Н. Актуальность ресурсо- и энергосбережения на подземных рудничных локомотивах с комбинированными накопителями энергии.//Горный информационно- аналитический бюллетень.- М.-. Горная книга.-2015.-№5.-С.323-328.
- 9. **Степаненко. В.П.** Электровозная откатка на урановых рудниках Советско-германского акционерного общества «Висмут».1980-1987годы. //Горный информационно- аналитический бюллетень.- 2015.- №6.-М.-С. 141-147.
- 10. Степаненко В. П. Исследование зависимости коэффициентов сцепления рудничных электровозов от абразивности горных пород. // Горный информационно- аналитический бюллетень.- 2015.-. №2.-М.-С.168-173.
- 11. Рудничный транспорт и механизация вспомогательных работ под редакцией В.М. Щадова. Каталог-справочник.М . «Альфа Монтана».-, С.550.
- 12. Основные положения по проектированию подземного транспорта новых и действующих шахт. М:- ИГД им. А.А. Скочинского, 1986.- С.350.
- 13. Справочник по шахтному транспорту под редакцией Г.Я. Пейсаховича. И.П. Ремизова, М:-Недра, 1985.-С. 619.
- 14. Рудничный транспорт и механизация вспомогательных работ под редакцией Б.Ф. Братченко. М.:-, Недра, 1978, С.418.

Рукопись поступила в редакцию 29.03.16