ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2013. Випуск 54. Ч. 1. С. 84–91 Visnyk of the Lviv University. Series Chemistry. 2013. Issue 54. Pt. 1. P. 84–91

УДК 546.64.181.1+662.018.234

КРИСТАЛІЧНА СТРУКТУРА НОВОГО ФОСФІДУ У₃Рd₂₀P₆

О. Жак, В. Пастерніцька, Х. Маланяк

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: olgazhak@yahoo.com

Рентгеноструктурним методом полікристала вивчено кристалічну структуру нового тернарного фосфіду $Y_3Pd_{20}P_6$: структурний тип $Cr_{23}C_6$, просторова група *Fm*-3*m*, *a* = 1,21248(8) нм, $R_1 = 0,0479$ $R_P = 0,1104$.

Ключові слова: кристалічна структура, рідкісноземельний метал, Паладій, фосфід.

Систему Y–Pd–P, як і більшість систем *Ln*–Pd–P, раніше вивчали лише для синтезу окремих тернарних сполук та вивчення їхніх кристалічних структур. Сьогодні в цій системі відомо про існування двох фосфідів: YPd₂P₂ (CT CeAl₂Ga₂) [1] та ~YPd₇P (CT Er_{1+x}Pd_{7-x}P, x = 0,24) [2], проте для жодного з них не проведено повного дослідження кристалічної структури.

Про існування серії ізоструктурних сполук $Ln_3Pd_{20}P_6$, де Ln = La-Lu, повідомляють автори праці [3], які довели належність їхньої структури до типу $Cr_{23}C_6$, причому для сполук з Еи та Yb параметри атомів у структурі визначено рентгеноструктурним методом монокристала. Наша мета – синтез і дослідження кристалічної структури нового тернарного фосфіду $Y_3Pd_{20}P_6$, існування якого ми виявили під час дослідження системи Y–Pd–P.

Для приготування зразків використовували компактний ітрій і порошки паладію та червоного фосфору (усі матеріали чистотою не менше 0,999 мас. част. основного компонента). Для синтезу зразків стружку ітрію перемішували з порошками паладію і червоного фосфору, спресовували у сталевій пресформі та запаювали у вакуумовані кварцові ампули. Спресовані брикети вихідних компонентів спікали за поступового (200 град/добу) підвищення температури до 800 °C протягом 100–150 год. Потім зразки повільно охолоджували разом із піччю і переплавляли в електродуговій печі в атмосфері очищеного аргону (Ті-гетер) на мідному водоохолоджуваному поді. Для гомогенізації зразки відпалювали у вакуумованих кварцових ампулах у муфельних печах з автоматичним регулюванням температури при 800 °C не менше 700 год, після чого їх гартували у холодній воді, не розбиваючи ампул.

Дифрактограми всіх синтезованих зразків одержали на порошковому дифрактометрі Huber Imaging Plate Guinier Camera G670 (Си $K_{\alpha 1}$ -випромінювання, $2\theta_{\text{макс}} = 100^{\circ}$). Окремі фази ідентифікували, розраховуючи одержану дифрактограму з уточненням параметрів елементарних комірок виявлених сполук. Для обчислень використовували комплекси програм WinCSD [4] і FullProf.2k [5].

[©] Жак О., Пастерніцька В., Маланяк Х., 2013

За результатами рентгенофазового аналізу дифрактограми зразків $Y_{10,3}Pd_{69}P_{21,7}$, $Y_{14,3}Pd_{57,1}P_{28,6}$ та $Y_{21,4}Pd_{50}P_{28,6}$ у значній кількості містили відбиття, які вдалося проіндексувати в кубічній сингонії (просторова група *Fm*-3*m*) з параметром елементарної комірки $a \approx 1,212(1)$ нм. Аналіз літературних даних засвідчив, що такі метричні характеристики притаманні фосфідам складу $Ln_3Pd_{20}P_6$, які мають структуру типу $Cr_{23}C_6$ і утворюють ряд ізоструктурних сполук від лантану до лютецію включно [3].

Оскільки за даними рентгенофазового аналізу зразок вихідного складу $Y_{10,3}Pd_{69}P_{21,7}$ практично не містив домішок інших фаз (табл. 1), то для нього уточнили параметри атомів у структурі фази $Y_3Pd_{20}P_6$, використавши координати атомів у структурі сполуки $Er_3Pd_{20}P_6$ [6] як вихідну модель. Масив експериментальних інтенсивностей та кутів відбить від полікристалічного зразка $Y_{10,3}Pd_{69}P_{21,7}$ отримували, застосовуючи дифрактометр STOE STADI P з лінійним позиційно-прецизійним детектором за схемою модифікованої геометрії Гіньє, метод на проходження (Cu K_{a1} -випромінювання, увігнутий Ge-монохроматор (111) типу Іоганна, 20/ ω -сканування, інтервал кутів 6 $\leq 20 \leq 110$ із кроком 0,015 °20, крок детектора 0,480 °20, час сканування в кроці 200 с). Рентгенівський профільний аналіз та рентгеноструктурний аналіз проведено за допомогою пакета програм WinCSD [4]).

Уточнені координати та параметри зміщення атомів у структурі фосфіду $Y_3Pd_{20}P_6$ наведено в табл. 2. Як бачимо, ця структура належить до типу $Cr_{23}C_6$ з майже впорядкованим розподілом атомів, лише у позиції 4*a*, яку займають атоми Ітрію, простежується невелика дефектність, коефіцієнт заповнення позиції становить 96(1) %.

Таблиця 1

Вихідний склад зразка	Y _{10,3} Pd ₆₉ P _{21,7}	Y _{14,3} Pd _{57,1} P _{28,6}	
Структурний тип	Cr ₂₃ C ₆		
Просторова група	Fm-3m		
Параметри елементарної комірки:			
а, нм	1,21248(8)	1,21196(7)	
<i>V</i> , нм ³	1,78216(3)	1,7802(2)	
Кількість формульних одиниць, Z	4		
Кількість атомів в елементарній комірці	116		
Обчислена густина, г/см ³	9,603	9,630	
Дифрактометр	STOE STADI P	Guinier	
Випромінювання і довжина хвилі	Cu $K_{\alpha 1}$, $\lambda = 1,54056$ Å		
Спосіб уточнення структури	Повнопрофільний		
Кількість атомних позицій	5		
Кількість параметрів, які уточнювали	10	11	
Межі 20	6-110	8-100	
Фактори розбіжності	$R_I = 0,0479$	$R_{\rm f} = 0,0437$	
	$R_P = 0,1104$	$R_{\text{Bragg}} = 0,0540$	
Комплекс програм	WinCSD [4]	FullProf.2k[5]	

Умови дослідження та кристалографічні характеристики
сполуки Y ₃ Pd ₂₀ P ₆ у зразках різного складу

Таблиця 2

(10,31,0,91,21,7)					
Атоми	ПСТ	Координати			$P_{10}^2 m^2$
		x/a	y/b	z/c	D_{130} 10, HM
Y1*	4 <i>a</i>	0	0	0	1,22(14)
Y2	8 <i>c</i>	1/4	1/4	1/4	1,23(10)
Pd1	48h	0	0,1729(1)	0,1729(1)	1,55(4)
Pd2	32 <i>f</i>	0,3846(1)	0,3846(1)	0,3846(1)	1,31(5)
Р	24 <i>e</i>	0,2624(8)	0	0	1,40(2)

Координати та ізотропні параметри теплового зміщення атомів у структурі сполуки Y₃Pd₂₀P₆ (зразок складу Y_{10,3}Pd₆₉P_{21,7})

* Коефіцієнт заповнення позиції G = 0.96(1).

На рис. 1 зображено експериментальну, обчислену та різницеву дифрактограми зразка $Y_{10,3}Pd_{69}P_{20,7}$ із зазначенням положень брегівських кутів для сполуки $Y_3Pd_{20}P_6$.

20 (град)

Міжатомні віддалі у структурі тернарного фосфіду $Y_3Pd_{20}P_6$ (табл. 3) близькі до відповідних сум атомних радіусів чистих компонентів ($r_Y = 0,1766$ нм, $r_{Pd} = 0,1376$ нм, $r_P = 0,110$ нм [7]). Зменшення віддалей, яке простежується між атомами Pd1 і P ($\delta = 0,2360(5)$ нм), не перевищує 5 % від суми атомних радіусів, що засвідчує переважання металічного типу зв'язку в цій сполуці. Значніше зменшення віддалей між атомами Y2 і Pd2, що займають позиції 8*c* і 32*f*, відповідно, ($\delta = 0,2828$ (1) нм), яке досягає 10 % від суми радіусів компонентів, простежували й раніше у структурах ізотипних сполук, зокрема, для боридів з надструктурою складу $R_3X_{20}B_6$ (R – рідкісноземельний, X – перехідний метал), що можна пояснити частковою іонізацією атомів *R*-компонента [9], оскільки у структурі $Cr_{23}C_6$ зменшення віддалей немає. Зазначимо, що аналогічне як у структурі $Y_3Pd_{20}P_6$ упорядковане розташування атомів у кристалографічних позиціях раніше спостережено в структурі тернарного бориду $Mg_3Ni_{20}B_6$: атоми Магнію – в 4*a* і 8*c*, Нікелю – в 48*h* і 32*f*, а Бору – у 24*e* [10].

Таблиця 3

Атоми	δ, нм	КЧ	Атоми	δ, нм	КЧ
Y1 - 12Pd1	0,2964(1)	18	Pd2 - 3P	0,2472(6)	13
6P	0,3181(10)		3Pd2	0,2797(2)	
Y2 - 4Pd2	0,2828(1)	16	Y2	0,2828(1)	
12Pd1	0,3307(5)		6Pd1	0,3006(2)	
Pd1 - 2P1	0,2360(5)	14	P - 4Pd1	0,2360(5)	9
Pd1	0,2645(2)		4Pd2	0,2472(6)	
4Pd1	0,2964(1)		Y1	0,3181(10)	
Y1	0,2964(1)				
4Pd2	0,3006(2)				
2Y2	0,3307(5)				

Міжатомні віддалі (δ) та координаційні числа атомів у структурі Y₃Pd₂₀P₆

За результатами рентгенофазового аналізу зразок вихідного складу $Y_{14,3}Pd_{57,1}P_{28,6}$ містив як головну фазу нову тернарну сполуку $Y_3Pd_{20}P_6$, а також у меншій кількості другу фазу, склад якої можна записати формулою YPd_3P_x і яка, очевидно, є одним зі складів твердого розчину фосфору на основі бінарної сполуки YPd_3 зі структурою типу AuCu₃. Про утворення таких фаз повідомляли раніше [2, 3], зокрема, у праці [3] наведено результати дослідження структури фази YPd_3P_x (x = 0,15) рентгеноструктурним методом монокристала, проте сьогодні остаточно не вирішено, чи ця фаза є індивідуальною тернарною сполукою, чи твердим розчином включення фосфору в бінарну фазу $YbPd_3$ з кубічною структурою типу $AuCu_3$.

Ми уточнили параметри атомів у структурі сполуки $Y_3Pd_{20}P_6$ методом порошку за дифрактограмою двофазового зразка $Y_{14,3}Pd_{57,1}P_{28,6}$ з урахуванням наявності як другої фази сполуки YPd_3P_x (x = 0,15). У табл. 4 зазначено вміст кожної фази, виявленої у зразку вихідного складу $Y_{14,3}Pd_{57,1}P_{28,6}$. Координати та параметри теплового зміщення атомів у структурі $Y_3Pd_{20}P_6$ (табл. 5) визначено методом повнопрофільного уточнення за Рітвельдом за допомогою комплексу FullProf.2k [5]. На рис. 2 показано експериментальну, розраховану та різницеву дифрактограми зразка $Y_{14,3}Pd_{57,1}P_{28,6}$.

Таблиця 4

Уточнені значення параметрів комірок, факторів розбіжності та вміст кожної фази, виявленої у зразку Y_{14,3}Pd_{57,1}P_{28,6}

Сполука	Параметр комірки <i>а</i> , нм	$R_{ m f}$	$R_{ m Bragg}$	Вміст фази у зразку, % мас.
$Y_3Pd_{20}P_6$	1,21196(7)	0,0437	0,0540	70,8
$YPd_{3}P_{x} (x = 0, 15)$	0,41416(2)	0,0335	0,0327	29,2

Як бачимо з табл. 5, на відміну від результатів уточнення структури $Y_3Pd_{20}P_6$ за дифрактограмою зразка вихідного складу $Y_{10,3}Pd_{69}P_{20,7}$, у цьому випадку всі правильні системи точок зайняті атомами Ітрію, Паладію та Фосфору повністю, як це спостерігали, зокрема, для ізоструктурної сполуки $Er_3Pd_{20}P_6$, структуру якої дослідили методом монокристала [6].

Таблиця 5

Атоми ПСТ	ПСТ	Координати			$R_{10}^2 m^2$
	ner	x	У	Z	$D_{130} = 10^{\circ}$, HM
Y1	4 <i>a</i>	0	0	0	0,93(1)
Y2	8 <i>c</i>	1/4	1/4	1/4	0,93(1)
Pd1	48 <i>h</i>	0	0,1728(4)	0,1728(4)	0,93(1)
Pd2	32 <i>f</i>	0,3849(3)	0,3849(3)	0,3849(3)	0,93(1)
Р	24 <i>e</i>	0,237(3)	0	0	0,98(4)

Координати та ізотропні параметри теплового зміщення атомів у структурі сполуки $Y_3Pd_{20}P_6$ (зразок складу $Y_{14,3}Pd_{57,1}P_{28,6}$)

Зазначимо, що з літератури [3] відомо про існування ізоструктурної сполуки Eu_{2,7}Pd₂₀P₆, структуру якої також досліджено методом монокристала. У структурі цього фосфіду позиція 4*a* заповнена атомами Європію лише на 66 %.

У ході нашого дослідження також виявлено, що параметр *a* елементарної комірки структури фосфіду $Y_3Pd_{20}P_6$ дещо змінювався у зразках різного складу (див. табл. 1). Це дало нам змогу припустити можливість існування у фосфіду $Y_3Pd_{20}P_6$ невеликої області гомогенності, утвореної внаслідок часткового заповнення атомами Ітрію правильної системи точок 4*a* у структурі.

Рис. 2. Експериментальна (точки), обчислена (суцільна лінія) дифрактограми зразка Y_{14,3}Pd_{57,1}P_{28,6} та різницева діаграма (внизу): *1* – відбиття фази Y₃Pd₂₀P₆; *2* – відбиття фази YPd₃P_x (*x* = 0,15)

88

Рис. 3. Проекція структури сполуки Y₃Pd₂₀P₆ на площину XY та координаційні поліедри атомів

Проекцію структури сполуки $Y_3Pd_{20}P_6$ на площину XY та координаційні поліедри атомів зображено на рис. 3, вони є подібними до відповідних поліедрів атомів у структурі типу $Cr_{23}C_6$. Найбільшим за розміром атомам Ітрію притаманні великі КЧ і поліедри у вигляді кубооктаедра з атомів Паладію з шістьма додатковими атомами Р (для Y1) та нормального 16-вершинника (для Y2) [8], також ці поліедри можна розглядати як псевдо Франк-Касперівський 18-вершинник та Франк-Касперівський 16-вершинник [11].

Менші за розміром атоми Паладію мають поліедри у вигляді нормального 14вершинника (Pd1) та 13-вершинника (Pd2), який є дефектною похідною від 16вершинника. Аналогічні поліедри притаманні атомам $Cr^{(3)}$ і $Cr^{(4)}$ у структурі прототипу $Cr_{23}C_6$ [8].

Найменші за розміром атоми Фосфору центрують тетрагональні антипризми, утворені атомами Паладію, з одним додатковим атомом Ітрію (КЧ 9), тому за класифікацією П. Крип'якевича [8] ця структура належить до класу 9 – сполуки з тетрагонально-антипризматичною координацією атомів найменшого розміру. Як і в структурі прототипу $Cr_{23}C_6$, так і в структурі сполуки $Y_3Pd_{20}P_6$ у напрямах, паралельних до осей четвертого порядку, можна виділити фрагменти колон, побудованих з тетрагональних антипризм [PPd₈], які з'єднані через порожній куб [ПРd₈]. Ці фрагменти розділені кубооктаедрами [Y1Pd₁₂], як показано на рис. 3. Подібні фрагменти можна виділити і в структурі типу Sn_7Ru_3 [8], тому П. Крип'якевич виділив ці типи в окремий підклас – з колонами антипризм і кубів.

Автори вдячні канд. хім. наук І.С. Антонишин (Інститут хімічної фізики твердих тіл Макса Планка, м. Дрезден, Німеччина) та ст. наук. співроб. П.Ю. Демченку (міжфакультетська науково-навчальна лабораторія рентгеноструктурного аналізу ЛНУ ім. Івана Франка) за допомогу в отриманні дифрактограм зразків.

- Jeitschko W., Hofmann W.K. Ternary alkaline-earth and rare-earth metal palladium phosphides with ThCr₂Si₂ type and La₆Ni₆P₁₇-type structures // J. Less-Common Met. 1983. Vol. 95. N 2. P. 317–322.
- 2. Зелінська М.В. Синтез, кристалічна структура та властивості тернарних пніктидів у системах Er-{Ni, Pd}-{P, As, Sb} та споріднених з ними. Автореф. дис. ... канд. хім. наук. Львів, 2007.
- Budnyk S.L., Prots Yu., Grin Yu., Kuz'ma Yu.B. New ternary rare-earth palladium phosphides R₃Pd₂₀P₆ with Cr₂₃C₆ structure // Abstr. 8th Int. Conf. Cryst. Chem. Intermet. Compd. Lviv, September 25–28, 2002. P. 87.
- 4. Akselrud L., Grin Yu., Pecharsky V. et al. Use of the CSD program package for structure determination from powder data // Materials Science Forum, Proceedings of the Second European Powder Diffraction Conference (EPDIC 2), Enschede, The Netherlands, Trans. Tech. Pub. 1993. Pt. 1. P. 335–340.
- 5. *Rodriguez-Carvajal J.* Recent developments of the program FULLPROF // Commission on Powder Diffraction (IUCr). Newsletter. 2001. Vol. 26. P. 12–19.
- 6. *Zelinska M., Pivan J.-Y., Oryshchyn S.* et al. Crystal Structure of the Erbium Palladium Phosphor (3:20:6), Er₃Pd₂₀P₆ // Z. Krystallogr. NCS. 2006. Vol. 221. P. 435–436.
- 7. *Wiberg N.* Lehrbuch der Anorganischen Chemie. Berlin–New-York: Walter de Gruyter, 1995. P. 1838–1841.
- 8. *Крипякевич П.И*. Структурные типы интерметаллических соединений. М.: Наука, 1977.
- 9. Кузьма Ю.Б. Кристаллохимия боридов. Львов: Вища школа, 1983.
- Stadelmaier H.H., Draughn R.A., Hofer G. Die Struktur der ternaeren Boride vom Chromkarbid - C₂₃C₆-Typ // Z. Metallkd. 1963. Bd. 54. S. 640–644.
- 11. Пирсон У. Кристаллохимия и физика металлов и сплавов. М.: Мир, 1977. Ч. 1.

CRYSTAL STRUCTURE OF THE NEW PHOSPHIDE Y₃Pd₂₀P₆

O. Zhak, V. Pasternitska, Kr. Malanyak

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: olgazhak@yahoo.com

Crystal structure of the new phosphide $Y_3Pd_{20}P_6$ has been studied by powder X-ray method: Cr₂₃C₆ type structure, space group *Fm*-3*m*, *a* = 1.21248(8) nm, *R*₁ = 0.0479, *R*_P = 0.1104.

Key words: crystal structure, rare-earth metal, palladium, phosphide.

90

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВОГО ФОСФИДА Y₃Pd₂₀P₆

О. Жак, В. Пастерницкая, К. Маланяк

Львовский национальный университет имени Ивана Франко, ул. Кирилла и Мефодия, 6, 79005 Львов, Украина e-mail: olgazhak@yahoo.com

Кристаллическую структуру нового тройного фосфида $Y_3Pd_{20}P_6$ исследовано рентгеноструктурным методом порошка: структурный тип $Cr_{23}C_6$, пространственная группа *Fm*-3*m*, *a* = 1,21248(8) нм, *R*_I = 0,0479 *R*_P = 0,1104.

Ключевые слова: кристаллическая структура, редкоземельный металл, палладий, фосфид.

Стаття надійшла до редколегії 26.10.2012 Прийнята до друку 26.12.2012