ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2013. Випуск 54. Ч. 1. С. 98–104 Visnyk of the Lviv University. Series Chemistry. 2013. Issue 54. Pt. 1. P. 98–104

УДК 548.736.4

КРИСТАЛІЧНА ТА ЕЛЕКТРОННА СТРУКТУРА І МАГНІТНІ ВЛАСТИВОСТІ СПОЛУКИ УМп_{0.30}Ge₂

М. Коник, Л. Ромака, Н. Кульматицька

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: m konyk@franko.lviv.ua

Рентгенівським дифракційним методом порошку досліджено кристалічну структуру тернарної сполуки $YMn_{0.30}Ge_2$ (структурний тип CeNiSi₂, просторова група Cmcm, a = 4,11623(3), b = 15,8971(2), c = 3,99490(3) (Å) $R_I = 0,0577, R_{prof} = 0,0746$). Вимірюванням магнітних властивостей виявлено парамагнетизм сполуки $YMn_{0.30}Ge_2$ з ефективним магнітним моментом Mn 2,71 μ_5 , що відповідає Mn(V). Розрахунки електронної структури узгоджуються з даними структурних і магнітних досліджень.

Ключові слова: тернарна сполука, кристалічна структура, електронна структура, магнітні властивості.

Структурний тип CeNiSi₂ (символ Пірсона oS16, просторова група Cmcm) [1] попирений серед структур тернарних германідів рідкісноземельних (P3M) і перехідних металів завдяки систематичним дослідженням потрійних систем за участю цих елементів (R–M–Ge), які активно проводять з 80-х років XX ст. Сьогодні є відомості про 50 досліджених потрійних систем R–{Mn,Fe,Co,Ni,Cu}–Ge [2–10]. Огляд літератури засвідчує, що практично в кожній з цих систем утворюється сполука зі структурою типу CeNiSi₂. Про утворення сполук зі структурою цього типу загального складу RM_{1-x}Ge₂ у системах R–M–X (M = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Re, Pt; X = Ge, Sn) додатково повідомлено в працях [11, 12]. Більшості з них притаманна нестехіометричність складу, зумовлена частковим заповненням однієї з правильних систем точок (4c) атомами перехідного металу (M). Гомологічні серії інтерметалічних сполук на основі P3M з германієм найповніше представлені для M= Mn, Fe, Co, Ni, Cu: RMn_{1-x}Ge₂ (R=Nd, Sm, Gd-Tm, Lu); RFe_{1-x}Ge₂ (R= Y, La-Sm, Gd-Lu); RCo_{1-x}Ge₂ (R = Y, La-Sm, Gd-Lu); RNi_{1-x}Ge₂ (R = Y, La-Lu); RCu_{1-x}Ge₂ (R = La-Sm, Gd-Tm, Lu) [13].

Відомостей про існування сполуки YMn_{1-x}Ge₂ в літературі нема. Оскільки в разі дослідження магнітних властивостей інтерметалідів рідкісноземельних металів, особливо з магнітними перехідними елементами, сполуки за участю немагнітного ітрію можуть слугувати еталонним матеріалом, то синтез і вивчення структурних та магнітних характеристик відповідних сполук є надзвичайно важливим. Тому наша мета – дослідження кристалічної та електронної структури, а також магнітних властивостей нового тернарного германіду YMn_{1-x}Ge₂.

Зразок для дослідження виготовляли методом електродугового плавлення шихти вихідних компонентів (вміст основного компонента не менше 99,9 мас. %) з подальшим гомогенізувальним відпалюванням при 870 К протягом 720 год. Рентгенофазовий аналіз проводили з використанням дифрактометра ДРОН-2.0М,

[©] Коник М., Ромака Л., Кульматицька Н., 2013

Fe K_{α} випромінювання (Mn-фільтр). Кристалічну структуру сполуки YMn_{1-x}Ge₂ уточнювали для зразка складу Y₃₀Mn₁₀Ge₆₀ методом порошку з використанням масиву відбить, одержаного на автоматичному дифрактометрі STOE STADI P з лінійним позиційно-чутливим детектором PSD (Cu Ka₁-випромінювання, увігнутий Ge-монохроматор [1 1 1] типу Іоганна, 20/ю-скануваня). Усі обчислення, пов'язані з розрахунком кристалічної структури сполуки, виконували з використанням комплексу програм CSD [14]. Дослідження залежності магнітної сприйнятливості від температури проводили відносним методом Фарадея в температурному інтервалі 300–850 K [15].

Розподіл густини електронних станів розраховано із застосуванням методу СРМD, який використовували за умов наближення псевдопотенціалу в представленні плоских хвиль. Як обмінно-кореляційні потенціали використовували наближення локальної густини (LDA) [16, 17].

Експериментальні умови одержання масиву дифракційних даних та результати уточнення кристалічної структури сполуки $YMn_{0,30}Ge_2$ наведені в табл. 1. Експериментальна, розрахована та різницева дифрактограми однофазового зразка складу $Y_{30}Mn_{10}Ge_{60}$ зображені на рис. 1. Уточнені координати та ізотропні параметри теплових коливань атомів у структурі сполуки $YMn_{0,30}Ge_2$ наведено в табл. 2, а міжатомні віддалі (δ) та координаційні числа (KЧ) атомів – у табл. 3. Результати уточнення кристалічної структури германіду $YMn_{0,30}Ge_2$ підтвердили наші припущення про належність цієї сполуки до структурного типу CeNiSi₂. Координаційні многогранники атомів Y, Ge1 та Ge2 є аналогічними до многогранників структури CeNiSi₂. КМ атомів Mn – десятивершинники [**Mn**Ge5Y5]. У найближчому координаційному оточенні є атоми Германію, які утворюють тетрагональну піраміду навколо атомів Мангану.

Рис. 1. Теоретична (суцільна лінія), експериментальна (точки) та різницева (внизу) дифрактограми сполуки YMn_{0.30}Ge₂

Таблиця 1

Умови експерименту та результати уточнення с	структури сполуки YMn _{0,30} Ge ₂
Склад зразка	$Y_{30}Mn_{10}Ge_{60}$
Уточнений склад сполуки	YMn _{0,299(6)} Ge ₂
Структурний тип, просторова група	CeNiSi ₂ , Cmcm
Символ Пірсона	oS16-2,8
Параметри комірки: <i>а</i> , Å	4,11623(3)
b, Å	15,8971(2)
c, Å	3,99490(3)
Об'єм комірки V , Å ³	261,411(7)
Кількість формульних одиниць, Z	4
F(000)	441,9
Кількість атомів у комірці	13,2
Густина <i>D</i> _х , г см⁻³	6,3647(2)
Коефіцієнт абсорбції, см ⁻¹	700,47
Параметр текстури G [напрям]	0,635(5) [100]
Крок сканування, °	0,05
Час сканування в точці, с	20
$2 heta_{ m max}$	119,97
Фактори достовірності: R_I R_{prof}	0,0577 0,0746

Таблиця 2

Координати та ізотропні параметри коливання атомів у структурі сполуки YMn_{0,30}Ge₂

Атом	ПСТ	x	У	Z	КЗП	$B_{iso}, Å^2$
Y	4 <i>c</i>	0	0,10349(8)	1/4	1	0,42(4)
Mn	4c	0	0,30009(5)	1/4	0,299(6)	0,7(2)
Ge1	4c	0	0,44854(9)	1/4	1	0,57(6)
Ge2	4 <i>c</i>	0	0,74786(9)	1/4	1	1,21(7)

Значення міжатомних віддалей добре узгоджуються з сумами атомних радіусів відповідних компонентів. Найбільше скорочення міжатомних віддалей ($\Delta = \delta - \Sigma r / \Sigma r \cdot 100 \%$; ($r_{\rm Y}$ =1,81 Å, $r_{\rm Mn}$ =1,12 Å, $r_{\rm Ge}$ = 1,39 Å) [18]) зафіксовано між атомами Mn–Ge (~ 12–15 %) і Ge–Ge (~ 6–8 %), що відповідає частці ковалентного зв'язку між ними.

Таблиця 3

Міжатомні віддалі (б) та координаційні числа (КЧ) атомів у структурі сполуки $YMn_{0,30}Ge_2$

	-				
Атоми	δ, Å	КЧ	Атоми	δ, Å	КЧ
Y - 4Ge1	2,9849(6)		Y	3,138(7)	
2Ge2	3,083(2)		4Y	3,246(3)	
2Ge2	3,094(2)		Gel - Mn	2,347(7)	
Mn	3,138(7)		2Ge1	2,582(1)	9
2Ge1	3,210(2)	21	4Y	2,9849(6)	
4Mn	3,246(3)		2Y	3,210(2)	
2Y	3,849(2)				
2Y	3,9949(1)		Ge2-2Mn	2,143(3)	
2Y	4,1162(1)		2Mn	2,224(3)	
Mn – 2Ge2	2,143(3)		4Ge2	2,8688(1)	12
2Ge2	2,224(3)	10	2Y	3,0383(2)	
1Ge1	2,347(7)		2Y	3,094(2)	

100

101

Рис. 2. Елементарна комірка структури сполуки YMn_{0,30}Ge₂ та координаційні многогранники атомів

Вимірювання температурної залежності магнітної сприйнятливості сполуки $YMn_{0,30}Ge_2$ засвідчили її парамагнітний характер у температурному інтервалі 300–850 К з парамагнітною температурою Кюрі θ_p =406 К. Розрахований ефективний магнітний момент на атом Mn становить 2,71(1) $\mu_{\rm b}$ і є близьким до теоретичного значення для іона Mn⁺⁵ (2,83 $\mu_{\rm b}$).

Рис. 3. Розподіл електронної густини (DOS) у сполуці YMn_{0.30}Ge₂

Розрахунки зонної структури сполуки $YMn_{0,30}Ge_2$ дали змогу виявити її парамагнетизм та металічний тип провідності (рис. 3). Простежується сильне перекривання *s*- і *p*-орбіталей германію з *d*-орбіталями перехідного металу. Електронні стани атомів Ge і Mn переважають у валентній зоні, тоді як електронні стани атомів Y, головно, роблять свій внесок у зону провідності (рис. 4). Отримані

результати добре узгоджуються з кристалохімічним аналізом структури $YMn_{0,30}Ge_2$, у якій атоми Mn і Y розділені атомами Ge. В найближчому координаційному оточенні атомів Mn перебувають п'ять атомів германію, така конфігурація відповідає іонам Mn (V) і пояснює парамагнітний стан атомів Mn у сполуці $YMn_{0,30}Ge_2$.

Рис. 4. Розрахунок DOS для атомів Y (а), Mn (б), Ge1 (в), Ge2 (г)

Дослідження в області кристалохімії тернарних германідів RM_{1-x} Ge₂, проведені раніше [11, 12], засвідчують, що ці сполуки, а отже, і YMn_{0,30}Ge₂, можна розглядати як частково дефектну структуру типу CeNiSi₂ (при x \leq 0,5) або як структуру часткового включення типу ZrSi₂ (x > 0,5).

Автори висловлюють подяку канд. хім. наук В.В. Ромаці за виконані розрахунки й аналіз електронної структури інтерметаліду.

1. Бодак О.И., Гладышевский Е.И. Кристаллическая структура соединения CeNiSi₂ и родственных соединений // Кристаллография. 1969. Т. 14. № 6. С. 990–994.

- Salamakha P. S., Sologub O. L., Bodak O. I. Ternary rare-earth germanium systems // Handbook on the Physics and Chemistry of Rare Earths / Eds. K.A. Gschneidner, Jr. L. Eyring. Amsterdam : Elsevier, 1999. Vol. 27. P. 1–223.
- Salamakha P., Konyk M., Sologub O., Bodak O. Ce-Ni-Ge and Nd-Ni-Ge phase diagrams: systematics of rare earth – nickel – germanium compounds // J. Alloys Comp. 1996. Vol. 236. P. 206–211.
- Salamakha P., Konyk M., Sologub O., Bodak O. Ce–Fe–Ge, Nd–Fe–Ge and Ho–Fe–Ge phase diagrams: systematics of rare earth – iron – germanium compounds // J. Alloys Comp. 1996. Vol. 234. P. 151–156.
- Salamakha P.S., Konyk M.B., Dzyanyi R. et al. Systematics of Rare Earth–Copper– Germanium Systems // Polish. J. Chem. 1996. Vol. 70. P. 270–274.
- Fedyna L.O., Bodak O.I., Tokaychuk Ya.O. et al. Ternary system Tm–Cu–Ge isothermal section of the phase diagram at 870 K and crystal structures of the compounds // J. Alloys Compd. 2004. Vol. 367. P.70–75.
- Konyk M.B., Bodak O.I. Isothermal section of the Ce–Mn–Ge ternary system at 670 K // J. Alloys Comp. 2005. Vol. 387. P. 243–245.
- 8. *Федина Л.О.* Взаємодія Празеодиму, Самарію, Диспрозію і Тулію з Купрумом та Германієм або Стибієм: Автореф. дис. ... канд. хім. наук. Львів, 2006. 20 с.
- Коник М.Б., Ромака Л.П., Гореленко Ю.К., Корда В.Б. Ізотермічний переріз діаграми стану Ег–Мп–Ge при 870 К // XII наук. конф. "Львівські хімічні читання – 2009": зб. наук. праць, 1–4 червня, 2009. С. Н33.
- 10. Коник М., Горинь А., Серкіз Р. Потрійна система Ег–Си–Ge при 870 К// Вісн. Львів. ун-ту. Сер. хім. 2012. Вип. 53. С. 42–49.
- 11. Francois M., Venturini G., Malaman B., Rogues B. Noveaux isotypes de CeNiSi2 dans les systemes R-M-X (R = La-Lu, M = metaux des groupes 7 a 11 et X = Ge,Sn).
 I. Compositions et parameters cristallins // J. Less-Common Met. 1990. Vol. 160. P. 197–213.
- 12. *Печарский В.К., Мруз О.Я., Конык М.Б.* и др. Кристаллохимия тернарных германидов *RM*_{1-x}Ge₂ (1>x>0) // Журн. структурной химии. 1989. Т. 30. № 5. С. 96–101.
- 13. *Salamakha P.S.* Crystal structures and crystal chemistry of ternary rare-earth germanides // Handbook on the Physics and Chemistry of Rare Earths / Eds. K.A. Gschneidner, Jr. L. Eyring. Amsterdam: Elsevier. 1999. Vol. 27. P. 225–338.
- 14 Akselrud L.G., Zavalii P.Yu., Grin Yu.N. et al. Use of the CSD program package for structure determination from powder data // Mater. Sci. Forum. 1993. Vol. 133–136. P. 335–340.
- Гореленко Ю.К, Гладишевський Р.Є., Стадник Ю.В. та ін. Методичні вказівки до виконання лабораторних робіт із спецкурсів "Електричні та магнітні властивості неорганічних матеріалів" і "Сучасні неорганічні матеріали" Львів: ВЦ ЛНУ ім. І. Франка, 2008. 30 с.
- Ceperley D.M., Alder B.J. Ground State of the Electron Gas by a Stochastic Method // Phys. Rev. Lett. 1980. Vol. 45. P. 566–569.
- 17. *Perdew J.P., Zunger A.* Self-interaction correction to density-functional approximations for many-electron systems // Phys. Rev. B. 1981. Vol. 23. P. 5048–5079.
- 18. Emsley J. The Elements. Oxford : Oxford University Press. 1997.

CRYSTAL, ELECTRONIC STRUCTURE AND MAGNETIC PROPERTIES OF YMn_{0,30}Ge₂ COMPOUND

M. Konyk, L. Romaka, N. Kulmatytska

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: m konyk@franko.lviv.ua

The crystal structure of the YMn_{0.30}Ge₂ ternary compound was studied using X-ray powder diffraction method (CeNiSi₂ structure type, space group *Cmcm*, a = 4.11623(3), b = 15.8971(2), c = 3.99490(3) (Å) $R_I = 0.0577$, $R_{prof} = 0.0746$). Magnetic property measurements indicated paramagnetic behavior of YMn_{0.30}Ge₂ compound with effective magnetic moment Mn 2.71 μ_B , corresponding to Mn(V). Electronic structure calculations correlate with structural and magnetic data.

Key words: ternary compound, crystal structure, electronic structure, magnetic properties.

КРИСТАЛЛИЧЕСКАЯ, ЭЛЕКТРОННАЯ СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА СОЕДИНЕНИЯ YMn_{0.30}Ge₂

М. Конык, Л. Ромака, Н. Кульматицкая

Львовский национальный университет имени Ивана Франко, ул. Кирилла и Мефодия, 6, 79005 Львов, Украина e-mail: m konyk@franko.lviv.ua

Рентгеновским дифракционным методом порошка исследовано кристаллическую структуру тернарного соединения YMn_{0,30}Ge₂ (структурный тип CeNiSi₂, пространственная группа *Cmcm*, a = 4,11623(3), b = 15,8971(2), c = 3,99490(3) (Å) $R_I = 0,0577$, $R_{prof} = 0,0746$). Измерения магнитных свойств указали на парамагнетизм соединения YMn_{0,30}Ge₂ с эффективным магнитным моментом Mn 2,71 $\mu_{\rm E}$, что соответствует Mn(V). Расчеты электронной структуры соответствуют данным структурных и магнитных исследований.

Ключевые слова: тернарное соединение, кристаллическая структура, электронная структура, магнитные свойства.

Стаття надійшла до редколегії 26.10.2012 Прийнята до друку 26.12.2012