ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2013. Випуск 54. Ч. 1. С. 11–18 Visnyk of the Lviv University. Series Chemistry. 2013. Issue 54. Pt. 1. P. 11–18

УДК 548.736.4

#### ФАЗОВІ РІВНОВАГИ В СИСТЕМАХ {Ce,Yb}–Fe–Ge–Sb ПРИ 500 °C. КРИСТАЛОГРАФІЧНІ ПАРАМЕТРИ СПОЛУК CeFe<sub>2</sub>Ge<sub>2</sub> ТА CeFe<sub>0,72</sub>Ge<sub>2</sub>

#### В. Гвоздецький, Н. Герман, Р. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: aaadddad@gmail.com

Досліджено фазові рівноваги в системах {Ce,Yb}–Fe–Ge–Sb у концентраційній області вмісту рідкісноземельного металу  $\leq$  33,3 ат.% при 500 °C та побудовано відповідні ізотермічні перерізи. Визначено кристалографічні параметри сполук CeFe<sub>2</sub>Ge<sub>2</sub> та CeFe<sub>1-x</sub>Ge<sub>2</sub>. Параметри елементарної комірки для фази CeFe<sub>2</sub>Ge<sub>2</sub> (структурний тип CeAl<sub>2</sub>Ga<sub>2</sub>, *t1*10, *14/mmm*, a = 4,0713(3), c = 10,496(1) Å) добре узгоджуються з літературними даними, тоді як вміст феруму та параметри для фази CeFe<sub>1-x</sub>Ge<sub>2</sub> (x = 0,28, структурний тип CeNiSi<sub>2</sub>, *oS*16, *Cmcm*, a = 4,2830(3), b = 16,549(2), c = 4,1665(6) Å) є більшими, ніж повідомлено раніше.

Ключові слова: церій, ферум, германій, фазові рівноваги, кристалічна структура.

У потрійній системі Ce-Fe-Sb [1-4] утворюються такі сполуки: Ce<sub>0.892</sub>Fe<sub>4</sub>Sb<sub>12</sub> (структурний тип (СТ) LaFe<sub>4</sub>P<sub>12</sub>, символ Пірсона сІЗ4, просторова група Іт-3, параметр комірки a = 9,136 Å), CeFe<sub>1-x</sub>Sb<sub>2</sub> (CT HfCuSi<sub>2</sub>, tP8, P4/nmm, a = 4,3751c = 9,8218 Å для сплаву складу Ce<sub>30</sub>Fe<sub>13</sub>Sb<sub>57</sub>, a = 4,3768, c = 9,8271 Å для сплаву складу Се<sub>28</sub>Fe<sub>17</sub>Sb<sub>55</sub>), Се<sub>2</sub>Fe<sub>3,84</sub>Sb<sub>4,92</sub> (СТ La<sub>2</sub>Fe<sub>3,88</sub>Sb<sub>4,92</sub>, *tI*32, *I*4/*mmm*, *a* = 4,3098, c = 25,994 Å, вперше знайдена на ізотермічному перерізі діаграми стану системи Ce-Fe-Sb при 625 °C за приблизного складу Ce<sub>2</sub>Fe<sub>4</sub>Sb<sub>5</sub> авторами праці [1]). У системі Се-Fе-Ge [5,6] при 600 °С визначено існування тернарних сполук CeFe<sub>0,53</sub>Ge<sub>2</sub> (CT CeNiSi<sub>2</sub>, oS16, Cmcm, a = 4,278, b = 16,608, c = 4,150 Å), CeFeGe<sub>3</sub> (CT BaNiSn<sub>3</sub>, t110, t4/mmm, a = 4,339, c = 9,974 Å), CeFe<sub>2</sub>Ge<sub>2</sub> (CT CeAl<sub>2</sub>Ga<sub>2</sub>, t110, t4/mmm, a = 4,070, t110, t4/mmm, a = 4,070, t110, t14/mmm, a = 4,070, t14/mmm, ac = 10,483 Å), а також виявлено невідомі фази такого складу: CeFe<sub>10</sub>Ge<sub>9</sub>, Ce<sub>3</sub>Fe<sub>2</sub>Ge<sub>7</sub>, Ce<sub>2</sub>FeGe<sub>4</sub> та Ce<sub>6</sub>FeGe<sub>13</sub>. У системі Yb-Fe-Sb при 530 °C [7] знайдено тернарну сполуку YbFe<sub>4</sub>Sb<sub>12</sub> (CT LaFe<sub>4</sub>P<sub>12</sub>, cl34, Im-3, a = 9,1571 Å), склад якої уточнено до Yb<sub>0.93</sub>Fe<sub>4</sub>Sb<sub>12</sub> (a = 9,154 Å) [8]. У системі Yb−Fe−Ge [9] при 400 °C визначено існування таких тернарних сполук: YbFe<sub>4</sub>Ge<sub>2</sub> (CT ZrFe<sub>4</sub>Si<sub>2</sub>, tP14,  $P4_2/mnm$ , a = 7,206, c = 3,859 Å), Yb<sub>0.5</sub>Fe<sub>3</sub>Ge<sub>3</sub> (CT Y<sub>0.5</sub>Co<sub>3</sub>Ge<sub>3</sub>, hP8, P6/mmm, a = 5,093, c = 4,038 Å), YbFe<sub>0,43</sub>Ge<sub>2,15</sub> (CT CeNiSi<sub>2</sub>, oS16, Cmcm, a = 4,070, b = 15,475, c = 3,961 Å), YbFe<sub>2</sub>Ge<sub>2</sub> (СТ CeAl<sub>2</sub>Ga<sub>2</sub>, tI10, I4/mmm, a = 3,906, c = 10,408 Å) та Yb<sub>9</sub>Fe<sub>10</sub>Ge<sub>10</sub> (структура не визначена, припущено ізоструктурність до СТ Тт<sub>9</sub>Fe<sub>10</sub>Ge<sub>10</sub>, *Immm*). Сполуку, близьку за складом до останньої фази, знайдено авторами праці [9] – YbFeGe (CT YbFeGe,  $mS12, C2/m, a = 10,607, b = 3,904, c = 6,715 Å, \beta = 127,58 °$ ). У праці [11] повідомлено про сполуку YbFe<sub>6</sub>Ge<sub>6</sub> (CT MgFe<sub>6</sub>Ge<sub>6</sub>, hP13, P6/mmm, a = 5,097, c = 8,092 Å). У системі Ce-Ge-Sb [12] при 400 °C визначено існування тернарних сполук Ce<sub>2</sub>GeSb<sub>3</sub> (CT Ag<sub>3</sub>TITe<sub>2</sub>, oS12, Cmmm, a = 4,650, b = 18,894, c = 4,299 Å) ta Ce<sub>5</sub>Ge<sub>3</sub>Sb<sub>2</sub> (структура не розшифрована), Ce<sub>3</sub>GeSb (CT Gd<sub>3</sub>Ga<sub>2</sub>, *tI*80, *I*4/*mcm*, a = 12,012, c = 15,485 Å).

<sup>©</sup> Гвоздецький В., Герман Н., Гладишевський Р., 2013

У існування праці [13] e відомості щодо  $\phi_{a3}$  Ce<sub>6</sub>Ge<sub>3.6</sub>Sb<sub>12.4</sub> (CT Gd<sub>6</sub>Ge(Ge<sub>0.83</sub>Sb<sub>0.17</sub>)<sub>4</sub>Sb<sub>11</sub>, oI46, Immm, a = 4,2972, b = 10,740, c = 26,791 Å). Автори праці [14] подали інформацію стосовно сполуки Ce12Ge5,2Sb26,8 (CT Ce12Ge5,2Sb26,8, oS184, C222, a = 8,6075, b = 21,5154, c = 26,8227 Å). V системі Yb-Ge-Sb [15] знайдено тернарну сполуку Yb<sub>8</sub>Ge<sub>3</sub>Sb<sub>5</sub> (СТ Yb<sub>8</sub>Ge<sub>3</sub>Sb<sub>5</sub>, *tI*64, *I*4/*mmm*, *a* = 15,8965, c = 6,8206 Å). У системі Fe–Ge–Sb [16] визначено існування тернарних сполук FeGe<sub>0.3</sub>Sb<sub>0.7</sub> (CT NiAs, hP4,  $P6_3/mmc$ , a = 4,025, c = 5,09 Å), Fe<sub>3</sub>Ge<sub>2</sub>Sb (CT Co<sub>3</sub>Ge<sub>2</sub>Sb, hP36, P6/mmm, a = 8,9885, c = 7,9043 Å) та Fe<sub>3</sub>Ge<sub>2,4</sub>Sb<sub>0.6</sub> (СТ власний Fe<sub>3</sub>Ge<sub>2,4</sub>Sb<sub>0.6</sub>, hP44, P6<sub>3</sub>/mmc, a = 8,7958, c = 8,0042 Å). Ми вивчили взаємодію компонентів у чотирикомпонентних системах Ce-Fe-Ge-Sb та Yb-Fe-Ge-Sb з вмістом рідкісноземельного металу (РЗМ) до 33,3 ат. %.

Для дослідження синтезували 22 сплави із вмістом P3M  $\leq$  33,3 ат. %. Зразки готували сплавлянням шихти з компактних металів (вміст основного компонента Ce  $\geq$  99,4 мас. %, Yb  $\geq$  99,4 мас. %, Fe  $\geq$  99,985 мас. %, Ge  $\geq$  99,999 мас. %, Sb  $\geq$  99,999 мас. %) в електродуговій печі в атмосфері аргону під тиском ~50 кПа. Сплави гомогенізували у вакуумованих кварцових ампулах при 500 °C впродовж 1 440 год у печі Vulcan A-550 з автоматичним регулюванням температури  $\pm$  1–2 °C. Відпалені сплави гартували в холодній воді без попереднього розбивання ампул. Рентгенівський фазовий і структурний аналізи проведено за масивами дифрактограм, одержаних на дифрактометрах ДРОН-2.0 М та ДРОН-4.0 (проміння Fe K $\alpha$ ). Для індексування порошкограм використано теоретичні дифрактограми, розраховані за допомогою програми POWDER CELL-2.4 [17] та баз даних TYPIX [18] (структурні типи неорганічних сполук) і PEARSON'S CRYSTAL DATA [19] (структурні характеристики неорганічних сполук). Параметри структури уточнено методом Рітвельда з використанням програм DBWS-9807 [20] та FullProf [21].

За результатами рентгенофазового та рентгеноструктурного аналізів визначено фазові рівноваги в певних концентраційних інтервалах чотирикомпонентних систем Се-Fе-Ge-Sb та Yb-Fe-Ge-Sb при 500 °С (рис. 1, 2). Тетрарних сполук не знайдено. На дифрактограмах переважної більшості зразків домінують відбиття фази CeSb із кубічною структурою типу NaCl (*Fm*-3*m*, a = 6,4216(6) Å) і твердого розчину на основі  $Yb_{11}Sb_{10}$  із тетрагональною структурою типу  $Ho_{11}Ge_{10}$  (I4/mmm, a = 11,871(5)-11,93(1), c = 17,070(9)-17,22(2) Å). У фазових рівновагах також беруть участь такі бінарні та тернарні сполуки: FeGe2 (СТ CuAl2, I4/mcm), FeGe (СТ CoSn, P6/mmm), Fe1,7Ge (CT Ni2In, P63/mmc), Fe3Ge (CT Mg3Cd, P63/mmc), Ce2Fe3,84Sb4,92 (CT La<sub>2</sub>Fe<sub>3,88</sub>Sb<sub>4,92</sub>, *I*4/mmm), CeFe<sub>2</sub>Ge<sub>2</sub> (CT CeAl<sub>2</sub>Ga<sub>2</sub>, *I*4/mmm), CeFeGe<sub>3</sub> (CT BaNiSn<sub>3</sub>, I4mm), CeFe<sub>0,72</sub>Ge<sub>2</sub> (CT CeNiSi<sub>2</sub>, Cmcm), YbSb (CT NaCl, Fm-3m), твердий розчин на основі YbSb<sub>2</sub> (CT ZrSi<sub>2</sub>, *Стем*, a = 4,543(1)-4,564(6), b = 16,711(6)-16,753(6), c = 4,250(6)-4,265(1) Å), Yb<sub>8</sub>Ge<sub>3</sub>Sb<sub>5</sub> (CT Yb<sub>8</sub>Ge<sub>3</sub>Sb<sub>5</sub>, *I*4/*mmm*), YbFe<sub>0,33</sub>Ge<sub>2</sub> (CT CeNiSi<sub>2</sub>, *Стст*), Yb<sub>0.5</sub>Fe<sub>3</sub>Ge<sub>3</sub> (СТ Y<sub>0.5</sub>Co<sub>3</sub>Ge<sub>3</sub>, *P6/ттт*). Хімічний та фазовий склади для деяких синтезованих сплавів, а також уточнені параметри елементарних комірок індивідуальних фаз наведено в табл. 1.

Для тернарних сполук CeFe<sub>2</sub>Ge<sub>2</sub> та CeFe<sub>1-x</sub>Ge<sub>2</sub> були відомі лише параметри елементарних комірок. Ми визначили координати атомів у відповідних структурах (табл. 2) на підставі рентгенівських порошкових дифракційних даних (рис. 3) для багатофазового зразка із вмістом основних фаз CeFe<sub>2</sub>Ge<sub>2</sub> (CT CeAl<sub>2</sub>Ga<sub>2</sub>, *I4/mmm*) та CeFe<sub>0,72</sub>Ge<sub>2</sub> (CT CeNiSi<sub>2</sub>, *Cmcm*) – 33,9 і 37,9 мас. %, відповідно. Параметри

12



Рис. 1. Окремі фазові рівноваги в системі Се-Fe-Ge-Sb при 500 °C



Рис. 2. Окремі фазові рівноваги в системі Yb-Fe-Ge-Sb при 500 °C

| Таблиця 1 | l |
|-----------|---|
|-----------|---|

| Хімічний склад,<br>ат. % |      |       |      | ί,       | Фазовий Вміст фази.                               |         | Структурний                                      | Параметри комірки, Å |           |            |
|--------------------------|------|-------|------|----------|---------------------------------------------------|---------|--------------------------------------------------|----------------------|-----------|------------|
| Ce                       | Yb   | Fe    | Ge   | Sb       | склад                                             | Mac. %  | тип                                              | а                    | b         | С          |
| 20,0                     |      |       |      |          | CeSb                                              | 33,7(1) | NaCl                                             | 6,4246(3)            | -         | -          |
|                          | _    | 10.0  | 20,0 | 20,0     | Fe <sub>1.7</sub> Ge                              | 27,4(1) | Ni <sub>2</sub> In                               | 4,0140(3)            | _         | 5,0214(6)  |
|                          |      | 40,0  |      |          | Fe <sub>3</sub> Ge                                | 25,1(1) | Mg <sub>3</sub> Cd                               | 5,1787(5)            | -         | 4,2266(6)  |
|                          |      |       |      |          | CeFe <sub>2</sub> Ge <sub>2</sub>                 | 13,8(1) | CeAl <sub>2</sub> Ga <sub>2</sub>                | 4,0657(8)            | -         | 10,519(3)  |
|                          |      | 20,0  | 40,0 | 20,0     | FeGe <sub>2</sub>                                 | 83(2)   | CuAl <sub>2</sub>                                | 5,9052(8)            | -         | 4,968(1)   |
| 20,0                     | Ι    |       |      |          | CeSb                                              | 15,6(2) | NaCl                                             | 6,4226(3)            | -         | -          |
|                          |      |       |      |          | Ge                                                | 1,4(1)  | С                                                | 5,661(2)             | -         | -          |
|                          |      |       | 36,0 | 8,0      | CeFe <sub>2</sub> Ge <sub>2</sub>                 | 46,7(4) | CeAl <sub>2</sub> Ga <sub>2</sub>                | 4,0731(2)            | -         | 10,5021(9) |
| 20.0                     | -    | 36.0  |      |          | Fe <sub>1,7</sub> Ge                              | 18,4(2) | Ni <sub>2</sub> In                               | 3,9991(3)            | -         | 5,0106(6)  |
| 20,0                     |      | 50,0  |      |          | CeSb                                              | 18,2(1) | NaCl                                             | 6,262(9)             | -         | -          |
|                          |      |       |      |          | CeFeGe <sub>3</sub>                               | 16,7(2) | BaNiSn <sub>3</sub>                              | 4,3032(4)            | _         | 10,123(3)  |
|                          |      |       |      |          | CeFe <sub>0,72</sub> Ge <sub>2</sub>              | 37,9(3) | CeNiSi <sub>2</sub>                              | 4,2830(3)            | 16,549(2) | 4,1665(6)  |
| 33,3                     | _    | 16,7  | 33,3 | 16,7     | CeFe <sub>2</sub> Ge <sub>2</sub>                 | 33,9(3) | CeAl <sub>2</sub> Ga <sub>2</sub>                | 4,0713(3)            | -         | 10,496(1)  |
|                          |      |       |      |          | CeSb                                              | 28,2(2) | NaCl                                             | 6,4211(2)            | —         | -          |
| 25.0                     |      | 25.0  | 25,0 | 25,0     | CeSb                                              | 55,5(5) | NaCl                                             | 6,4233(3)            | -         | -          |
| 25,0                     |      | 25,0  |      |          | FeGe                                              | 44,5(7) | CoSn                                             | 5,0155(5)            | -         | 4,0568(8)  |
|                          | _    | 33,3  | 16,7 | 16,7     | CeFe <sub>2</sub> Ge <sub>2</sub>                 | 43,2(9) | CeAl <sub>2</sub> Ga <sub>2</sub>                | 4,0640(8)            | -         | 10,520(3)  |
| 33,3                     |      |       |      |          | CeSb                                              | 29,9(5) | NaCl                                             | 6,4190(7)            | -         | -          |
|                          |      |       |      |          | Fe                                                | 26,9(8) | W                                                | 2,8757(5)            | -         | -          |
|                          | 25,0 | _     | 25,0 | 25,0     | Yb <sub>0,5</sub> Fe <sub>3</sub> Ge <sub>3</sub> | 43(2)   | Y <sub>0,5</sub> Co <sub>3</sub> Ge <sub>3</sub> | 5,103(1)             | -         | 4,042(2)   |
| 25.0                     |      |       |      |          | $Yb_{11}Sb_{10}$                                  | 25(1)   | $Ho_{11}Ge_{10}$                                 | 11,908(4)            | -         | 17,174(9)  |
| 25,0                     |      |       |      |          | YbSb <sub>2</sub>                                 | 23(1)   | ZrSi <sub>2</sub>                                | 4,547(2)             | 16,743(8) | 4,257(2)   |
|                          |      |       |      |          | Fe <sub>1.7</sub> Ge                              | 9(1)    | Ni <sub>2</sub> In                               | 4,012(1)             | -         | 5,023(2)   |
|                          |      | .0 –  | 20,0 | 0,0 20,0 | YbSb                                              | 59(2)   | NaCl                                             | 6,0910(8)            | -         | -          |
| 20,0                     | 40,0 |       |      |          | YbSb <sub>2</sub>                                 | 25(1)   | ZrSi <sub>2</sub>                                | 4,547(2)             | 16,740(7) | 4,256(2)   |
|                          |      |       |      |          | Fe <sub>1.7</sub> Ge                              | 9(1)    | Ni <sub>2</sub> In                               | 4,025(2)             | -         | 5,029(5)   |
|                          | 36.0 | 36.0  | _    | 8.0      | Yb <sub>0,5</sub> Fe <sub>3</sub> Ge <sub>3</sub> | 74(2)   | Y <sub>0,5</sub> Co <sub>3</sub> Ge <sub>3</sub> | 5,1025(2)            | -         | 4,0413(2)  |
| 20.0                     |      |       |      |          | $Yb_{11}Sb_{10}$                                  | 11,8(4) | $Ho_{11}Ge_{10}$                                 | 11,909(2)            | -         | 17,114(6)  |
| 20,0                     | 50,0 | 50,0  |      | 0,0      | Yb <sub>8</sub> Sb <sub>5</sub> Ge <sub>3</sub>   | 10,0(4) | Yb <sub>8</sub> Ge <sub>3</sub> Sb <sub>5</sub>  | 16,338(3)            | -         | 6,830(2)   |
|                          |      |       |      |          | YbFe <sub>0,33</sub> Ge <sub>2</sub>              | 4,2(3)  | CeNiSi <sub>2</sub>                              | 4,070(2)             | 15,59(1)  | 3,973(2)   |
|                          | 16,7 | 7 —   | 33,3 | 16,7     | $Yb_{11}Sb_{10}$                                  | 47(1)   | $Ho_{11}Ge_{10}$                                 | 11,872(2)            | -         | 17,105(4)  |
| 33,3                     |      |       |      |          | Yb <sub>0,5</sub> Fe <sub>3</sub> Ge <sub>3</sub> | 37(2)   | $Y_{0,5}Co_3Ge_3$                                | 5,0977(8)            | -         | 4,048(1)   |
|                          |      |       |      |          | YbFe <sub>0,33</sub> Ge <sub>2</sub>              | 13(1)   | CeNiSi <sub>2</sub>                              | 4,078(2)             | 15,467(9) | 3,968(2)   |
|                          |      |       |      |          | Ge                                                | 3(1)    | С                                                | 5,6530(7)            | -         | -          |
|                          |      | 0,0 – | 16,7 | 7 16,7   | Fe <sub>3</sub> Ge                                | 61(2)   | Mg <sub>3</sub> Cd                               | 5,181(2)             |           | 4,226(3)   |
| 16,7                     | 50,0 |       |      |          | YbSb <sub>2</sub>                                 | 16(1)   | ZrSi <sub>2</sub>                                | 4,564(6)             | 16,73(2)  | 4,250(6)   |
|                          |      |       |      |          | YbSb                                              | 13(1)   | NaCl                                             | 6,080(4)             | -         | -          |
|                          |      |       |      |          | $Yb_{11}Sb_{10}$                                  | 10(1)   | $Ho_{11}Ge_{10}$                                 | 11,93(1)             | -         | 17,22(2)   |

Фазовий склад зразків систем Ce-Yb-Fe-Ge-Sb

елементарної комірки для фази CeFe<sub>2</sub>Ge<sub>2</sub> (CT CeAl<sub>2</sub>Ga<sub>2</sub>, *tI*10, *I4/mmm*, *a* = 4,0713(3), *c* = 10,496(1) Å) добре узгоджуються з літературними даними, тоді як вміст Феруму та параметри комірки для фази CeFe<sub>1-x</sub>Ge<sub>2</sub> (*x* = 0,28, CT CeNiSi<sub>2</sub>, *oS*16, *Cmcm*, *a* = 4,2830(3), *b* = 16,549(2), *c* = 4,1665(6) Å) є більшими, ніж повідомлено раніше. Зазначимо, що ми досліджували зразок, відпалений при 500 °C, а автори праць [5,6] – при 600 °C. Наведені вище параметри комірки фази CeFe<sub>0,72</sub>Ge<sub>2</sub> добре узгоджуються з параметрами для складу CeFe<sub>0,63</sub>Ge<sub>2</sub> (a = 4,285, b = 16,55, c = 4,170 Å) зі зразка, відпаленого при 900 °C [22].

Таблиця 2

| $r_{1}$                                                                                                                                                                                            |            |   |           |           |                           |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|-----------|-----------|---------------------------|--|--|--|--|--|
| Сполука CeFe <sub>2</sub> Ge <sub>2</sub> , структура типу CeAl <sub>2</sub> Ga <sub>2</sub> , просторова група <i>I</i> 4/ <i>mmm</i> ,<br>$a = 4.0713(3), c = 10.496(1)$ Å, $R_{\rm B} = 0.0739$ |            |   |           |           |                           |  |  |  |  |  |
| Атом ПСТ                                                                                                                                                                                           |            | x | y y       | Z         | $B_{i_{30}}, \text{HM}^2$ |  |  |  |  |  |
| Ce                                                                                                                                                                                                 | 2 <i>a</i> | 0 | 0         | 0         | 0,004(1)                  |  |  |  |  |  |
| Fe                                                                                                                                                                                                 | 4 <i>d</i> | 0 | 1/2       | 1/4       | 0,007(1)                  |  |  |  |  |  |
| Ge                                                                                                                                                                                                 | 4 <i>e</i> | 0 | 0         | 0,3728(3) | 0,005(1)                  |  |  |  |  |  |
| Сполука CeFe <sub>0,72(2)</sub> Ge <sub>2</sub> , структура типу CeNiSi <sub>2</sub> , просторова група <i>Стст</i> ,<br>$a = 4,2830(3), b = 16,549(2), c = 4,1665(6)$ Å, $R_{\rm B} = 0,0829$     |            |   |           |           |                           |  |  |  |  |  |
| Атом                                                                                                                                                                                               | ПСТ        | x | У         | Z         | $B_{i30}, HM^2$           |  |  |  |  |  |
| Ce                                                                                                                                                                                                 | 4 <i>c</i> | 0 | 0,3937(3) | 1/4       | 0,004(1)                  |  |  |  |  |  |
| Fe <sup>1</sup>                                                                                                                                                                                    | 4 <i>c</i> | 0 | 0,1952(9) | 1/4       | 0,007(2)                  |  |  |  |  |  |
| Ge1                                                                                                                                                                                                | 4 <i>c</i> | 0 | 0,0452(4) | 1/4       | 0,005(1)                  |  |  |  |  |  |
| Ge2                                                                                                                                                                                                | 4c         | 0 | 0.7560(4) | 1/4       | 0.005(1)                  |  |  |  |  |  |

Результати уточнення кристалічної структури сполук CeFe<sub>2</sub>Ge<sub>2</sub> та CeFe<sub>0.72</sub>Ge<sub>2</sub>

1 Коефіцієнт заповнення позиції 0,72(2).



Рис. 3. Дифрактограма зразка Ce<sub>33,3</sub>Fe<sub>16,7</sub>Ge<sub>33,3</sub>Sb<sub>16,7</sub>, що містить фази: *1* – CeFe<sub>0,72</sub>Ge<sub>2</sub> (CT CeNiSi<sub>2</sub>, *Cmcm*); *2* – CeFe<sub>2</sub>Ge<sub>2</sub> (CT CeAl<sub>2</sub>Ga<sub>2</sub>, *I*4/*mmm*); *3* – CeSb (CT NaCl, *Fm*-3*m*)

15

- Raghavan V. Ce–Fe–Sb (Cerium–Iron–Antimony) // J. Phase Equilib. 1972. Vol. 22/6. P. 666–667.
- Leithe-Jasper A., Rogl P. The crystal structure of NdFe<sub>1-x</sub>Sb<sub>2</sub> and isotypic compounds RE(Fe,Co)<sub>1-x</sub>Sb<sub>2</sub> (RE = La, Ce, Pr, Sm, Gd) // J. Alloys Compd. 1994. Vol. 203. P. 133–136.
- 3. *Braun D.J., Jeitschko W.* Preparation and structural investigations of antimonides with the LaFe<sub>4</sub>P<sub>12</sub> structure // J. Less-Common Met. 1980. Vol. 72. P. 147–156.
- Kaiser J.W., Jeitschko W. The antimony-rich parts of the ternary systems calcium, strontium, barium and cerium with iron and antimony: structure refinements of the LaFe<sub>4</sub>Sb<sub>12</sub> type compounds SrFe<sub>4</sub>Sb<sub>12</sub> and CeFe<sub>4</sub>Sb<sub>12</sub>; the new compounds CaOs<sub>4</sub>Sb<sub>12</sub> and YbOs<sub>4</sub>Sb<sub>12</sub> // J. Alloys Compd. 1999. Vol. 291. P. 66–72.
- 5. *Печарский В.К., Мруз О.Я., Конык М.Б.* и др. Кристаллохимия тернарных германидов *RM*<sub>1-x</sub>Ge<sub>2</sub> (1 > *x* ≥ 0) // Ж. структ. хим. 1989. Т. 30. № 5. С. 96–101.
- Salamakha P., Konyk M., Sologub O., Bodak O. Ce–Fe–Ge, Nd–Fe–Ge and Ho–Fe–Ge phase diagrams: systematics of rare-earth–germanium compounds // J. Alloys Compd. 1996. Vol. 234/1. P. 151–156.
- Liu J., Su K., Yang X. et al. Phase relationship in the Yb–Fe–Sb system at 530 °C // J. Rare Earth. 2009. Vol. 27/1. P. 104–108.
- Bérardan D., Godart C., Alleno E. et al. Chemical properties and thermopower of the new series of skutterudite Ce<sub>1-x</sub>Yb<sub>x</sub>Fe<sub>4</sub>Sb<sub>12</sub> // J. Alloys Compd. 2003. Vol. 351. P. 18–23.
- 9. Дзяный Р.Б., Бодак О.И., Павлюк В.В. Фазовые равновесия в системе Yb-Fe-Ge при 670 К // Изв. РАН. Металлы. 1995. Т. 2. С. 173–174.
- 10. Sologub O., Salamakha P., Bocelli G. et al. YbFeGe, a new structure type of equiatomic ternary germanides // J. Alloys Compd. 2000. Vol. 312. P. 196–200.
- Venturini G., Welter R., Malaman B. Crystallographic data and magnetic properties of RT<sub>6</sub>Ge<sub>6</sub> compounds (R = Sc, Y, Nd, Sm, Gd–Lu; T = Mn, Fe) // J. Alloys Compd. 1992. Vol. 185. P. 99–107.
- 12. *Stetskiv A.O.*, *Pavlyuk V.V.*, *Bodak O.I.* Interaction of the components in the Ce–Ge–Sb system // Pol. J. Chem. 1998. Vol. 72. P. 956–958.
- Lam R., McDonald R., Mar A. Rare-earth germanium antimonides RE<sub>6</sub>Ge<sub>5-x</sub>Sb<sub>11+x</sub> (RE = La–Nd, Sm, Gd–Dy). Synthesis and structures // Inorg. Chem. 2001. Vol. 40. P. 952–959.
- 14. *Nasir N.*, *Grytsiv A.*, *Rogl P.* et al. Phase equilibria in systems Ce–*M*–Sb (M = Si, Ge, Sn) and superstructure Ce<sub>12</sub>Ge<sub>9-x</sub>Sb<sub>23+x</sub>  $(x = 3.8\pm1)$  // J. Solid State Chem. 2009. Vol. 182. P. 645–656.
- Salvador J.R., Bilc D., Mahanti S.D. et al. Yb<sub>8</sub>Ge<sub>3</sub>Sb<sub>5</sub> a metallic mixed-valent Zintl phase containing the polymeric ∞[Ge<sub>3</sub><sup>4-</sup>] anions // J. Am. Chem. Soc. 2004. Vol. 126. P. 4474–4475.
- 16. *Mills A.M., Mar A.* Structures of the ternary iron germanium pnictides  $\text{FeGe}_{1-x}Pn_x$ (Pn = P, As, Sb) // J. Alloys Compd. 2000. Vol. 298. P. 82–92.
- 17. *Kraus W., Nolze G.* PowderCell for Windows. Berlin: Federal Institute for Materials Research and Testing, 1999.

В. Гвоздецький, Н. Герман, Р. Гладишевський ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2013. Випуск 54. Ч. 1

- Parthé E., Gelato L., Chabot B. et al. TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Berlin: Springer-Verlag, 1993/1994.Vol. 1–4.
- 19. *Villars P., Cenzual K.* (Eds.) Pearson's Crystal Data, Crystal Structure Database for Inorganic Compounds. Materials Park (OH): ASM International, 2011.
- Young R.A., Larson A.C., Paiva-Santos C.O. User's Guide to Program DBWS-9807a for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns. Atlanta (GA): School of Physics, Georgia Institute of Technology, 1999.
- 21. *Rodríguez-Carvajal J.* Recent developments of the program FullProf. Commission on Powder Diffraction // IUCr Newsletter. 2001. Vol. 26.
- Francois M., Venturini G., Malaman B., Roques B. Nouveaux isotypes de CeNiSi<sub>2</sub> dans les systemes *R*-*M*-*X* (*R* = La-Lu, *M* = metaux des groupes 7 A 11 et *X* = Ge, Sn). I Compositions et parametres cristallins // J. Less-Common Met. 1980. Vol. 160. P. 197–213.

# PHASE EQUILIBRIA IN THE SYSTEMS {Ce,Yb}-Fe-Ge-Sb AT 500 °C. CRYSTALLOGRAPHIC PARAMETERS OF THE COMPOUNDS CeFe<sub>2</sub>Ge<sub>2</sub> AND CeFe<sub>0.72</sub>Ge<sub>2</sub>

# V. Gvozdetskyi, N. German, R. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: aaadddad@gmail.com

The phase equilibria in the systems {Ce,Yb}–Fe–Ge–Sb were investigated for  $\leq 33.3$  at. % of rare-earth metal at 500 °C, and the corresponding phase diagrams were constructed. Crystal structure refinements were carried out for the compounds CeFe<sub>2</sub>Ge<sub>2</sub> and CeFe<sub>1-x</sub>Ge<sub>2</sub>. The unit-cell parameters of CeFe<sub>2</sub>Ge<sub>2</sub> (structure type CeAl<sub>2</sub>Ga<sub>2</sub>, *t*/10, *1*4/*mmm*, *a* = 4.0713(3), *c* = 10.496(1) Å) are in good agreement with literature data, while the iron content and cell parameters of CeFe<sub>1-x</sub>Ge<sub>2</sub> (*x* = 0.28, structure type CeNiSi<sub>2</sub>, *oS*16, *Cmcm*, *a* = 4.2830(3), *b* = 16.549(2), *c* = 4.1665(6) Å) are larger than previously reported.

Key words: cerium, iron, germanium, phase equilibria, crystal structure.

## ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМАХ {Ce,Yb}-Fe-Ge-Sb ПРИ 500 °C. КРИСТАЛЛОГРАФИЧЕСКИЕ ПАРАМЕТРЫ СОЕДИНЕНИЙ CeFe<sub>2</sub>Ge<sub>2</sub> И CeFe<sub>0,72</sub>Ge<sub>2</sub>

## В. Гвоздецкий, Н. Герман, Р. Гладышевский

Львовский национальный университет имени Ивана Франко, ул. Кирилла и Мефодия, 6, 79005 Львов, Украина e-mail: aaadddad@gmail.com

Исследовано фазовые равновесия в системах {Ce,Yb}-Fe-Ge-Sb в концентрационной области содержания редкоземельного метала  $\leq 33,3$  ат. % при 500 °C и построено соответствующие пространственные диаграммы состояния. Определены кристаллографические параметры соединений CeFe<sub>2</sub>Ge<sub>2</sub> и CeFe<sub>1-x</sub>Ge<sub>2</sub>. Параметры элементарной ячейки для фазы CeFe<sub>2</sub>Ge<sub>2</sub> (структурный тип CeAl<sub>2</sub>Ga<sub>2</sub>, *t*/10, *I*4/*mmm*, *a* = 4,0713(3), *c* = 10,496(1) Å) хорошо согласуются с литературными данными, в то время как содержание железа и параметры ячейки для фазы CeFe<sub>1-x</sub>Ge<sub>2</sub> (*x* = 0,28, структурный тип CeNiSi<sub>2</sub>, *oS*16, *Cmcm*, *a* = 4,2830(3), *b* = 16,549(2), *c* = 4,1665(6) Å) являются большими по сравнению с приведенными ранее.

Ключевые слова: церий, железо, германий, фазовые равновесия, кристаллическая структура.

Стаття надійшла до редколегії 31.10.2012 Прийнята до друку 26.12.2012