ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2014. Випуск 55. Ч. 1. С. 135–141 Visnyk of the Lviv University. Series Chemistry. 2014. Issue 55. Pt. 1. P. 135–141

УДК 548.736.5

НОВІ ПРЕДСТАВНИКИ СТРУКТУРНОГО ТИПУ У 3NiAl 3Ge2

Н. Семусьо, Ю. Луцишин, С. Пукас, Я. Токайчук, Р. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна, e-mail: nakonechna n@franko.lviv.ua

Проведено пошук нових тетрарних алюмогерманідів у системах R–Fe–Al–Ge. Синтезовано та за допомогою рентгенівської порошкової дифракції визначено кристалічну структуру дев'яти нових сполук R_3 FeAl₃Ge₂ (R = Y, Sm, Gd, Tb, Dy, Ho, Tm, Yb, Lu). З'ясовано, що сполуки є ізоструктурними, а їхня кристалічна структура належить до типу Y_3 NiAl₃Ge₂ (символ Пірсона *hP*9, просторова група *P*-62*m*). Для структури характерне впорядковане розташування всіх атомів і кожен сорт атома займає лише одну правильну систему точок.

Ключові слова: тетрарний алюмогерманід, рентгенівський дифракційний метод порошку, ряд ізоструктурних сполук, кристалічна структура.

Нашою метою був синтез нових тетрарних алюмогерманідів *f*- та *d*-елементів. Сьогодні є відомості про існування 17 сполук у чотирикомпонентних системах R-{Fe,Co,Ni,Au}-Al-Ge [1], кристалічна структура яких належить до п'яти структурних типів (Y₃NiAl₃Ge₂ [2], Tb₂NiAl₄Ge₂, Ce₂NiAl_{5,77}Ge_{2,64} [3], SmNiAl₄Ge₂ [4], Er₅Ni₃Al₃Ge₄ [5]). Більша кількість алюмогерманідів утворюється з рідкісноземельними металами ітрієвої підгрупи – 12 сполук, тоді як з металами церієвої підгрупи – лише 5 сполук. Зазначимо, що всі структурні типи визначені на сполуках систем із Ni. Максимальна кількість сполук (4) знайдена для типу Y₃NiAl₃Ge₂: Er₃FeAl₃Ge₂ [6], Er₃CoAl₃Ge₂ [7], Y₃NiAl₃Ge₂ [2] та Er₃NiAl₃Ge₂ [8].

Для проведення досліджень синтезовано зразки складу R_3 FeAl₃Ge₂ (R = Y, Sm, Gd-Lu) сплавлянням чистих металів (вміст основного компонента: Y ≥ 99,76, $Sm \ge 99,83$, $Gd \ge 99,86$, $Tb \ge 99,83$, $Dy \ge 99,83$, $Ho \ge 99,83$, $Er \ge 99,83$, $Tm \ge 99,82$, Yb ≥ 99,82, Lu ≥ 99,83, Fe ≥ 99,99, Al ≥ 99,998 та Ge 99,999 мас.%) в атмосфері аргону на водоохолоджуваному мідному поді електродугової печі, оснащеної вольфрамовим електродом. Для очищення аргону як гетер використано пористий титан. Сплави гомогенізовано у вакуумованих кварцових ампулах при 600 °C протягом 1 800 год. після чого загартовано у холодній воді. Після сплавляння зразки перевірено на втрату маси, яка в середньому не перевищувала 1 %. Масиви дифракційних даних від полікристалічних зразків отримано на дифрактометрах ДРОН-2.0М (проміння Fe Ka) та STOE STADI Р (проміння Cu $K\alpha_1$). Уточнення кристалічної структури здійснено методом Рітвельда з використанням програми DBWS-9807 [9]. Виявлено, що всі сплави є однофазовими та містять сполуку зі структурою типу Y₃NiAl₃Ge₂. Підтверджено існування сполуки з Ег та вперше встановлено утворення сполук з Ү, Sm, Gd, Tb, Dy, Ho, Tm, Yb та Lu. У табл. 1 наведено параметри елементарних комірок ізоструктурних сполук R₃FeAl₃Ge₂. Визначені нами параметри комірки для

[©] Семусьо Н., Луцишин Ю., Пукас С. та ін., 2014

Н. Семусьо, Ю. Луцишин, С. Пукас та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2014. Випуск 55. Ч.1

сполуки $Er_3FeAl_3Ge_2$ добре узгоджуються з літературними відомостями [6]. У разі переходу від Sm до Lu параметри елементарної комірки закономірно зменшуються (рис. 1). Експериментальні умови одержання масиву дифракційних даних і результати уточнення структури тетрарної сполуки $Y_3FeAl_3Ge_2$ наведено в табл. 2, графічний результат уточнення структури зображено на рис. 2.

136

Таблиця 1

Параметри елементарних комірок сполук R_3 FeAl₃Ge₂ (структурний тип Y₃NiAl₃Ge₂, *hP*9, *P*-62*m*)

Сполука	<i>a</i> , Å	<i>c</i> , Å	V, Å ³
Y ₃ FeAl ₃ Ge ₂	6,95551(8)	4,18077(5)	175,164(3)
Sm ₃ FeAl ₃ Ge ₂	7,0343(3)	4,2566(2)	182,40(2)
Gd ₃ FeAl ₃ Ge ₂	7,0023(8)	4,2256(6)	179,43(4)
Tb ₃ FeAl ₃ Ge ₂	6,9559(6)	4,1970(5)	175,86(3)
Dy ₃ FeAl ₃ Ge ₂	6,9337(7)	4,1790(5)	173,99(3)
Ho ₃ FeAl ₃ Ge ₂	6,9145(7)	4,1623(5)	172,34(3)
Er ₃ FeAl ₃ Ge ₂ [6]	6,88975	4,14619	170,446
Er ₃ FeAl ₃ Ge ₂	6,8868(7)	4,1482(6)	170,38(3)
Tm ₃ FeAl ₃ Ge ₂	6,8637(6)	4,1327(5)	168,61(3)
Yb ₃ FeAl ₃ Ge ₂	6,8423(7)	4,1279(5)	167,37(3)
Lu ₃ FeAl ₃ Ge ₂	6,8331(6)	4,1122(5)	166,28(3)

Рис. 1. Залежність параметрів елементарних комірок сполук *R*₃FeAl₃Ge₂ від рідкісноземельного металу

Н. Семусьо, Ю. Луцишин, С. Пукас та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2014. Випуск 55. Ч.1

Таблиия 2

137

струк	тури сполуки	Y ₃ FeAl ₃ Ge ₂	
Структурний тип		Y ₃ NiAl ₃ Ge ₂	
Символ Пірсона		hP9	
Просторова група		P-62m	
Параметри елементарної комірки	<i>a</i> , Å	6,95551(8)	
	<i>c</i> , Å	4,18077(5)	
Об'єм комірки V , $Å^3$		175,164(3)	
Кількість формульних одиниць Z		1	
Густина $D_{\rm X}$, г см ⁻³		7,183	
Дифрактометр		STOE STADI P	
Проміння		$Cu K\alpha_1$	
Метод сканування		$\theta/2\theta$	
Інтервал 20, град.	6-121,35		
Крок сканування, град.	0,015		
Час сканування в точці, с	250		
Параметр текстури G [напрям]	0,924(1) [001]		
Кількість відбить	77		
Фактор достовірності $R_{\rm B}$	0,0853		
Нульове значення 20, град.	0,0021(6)		
Параметри ширини піків U, V, W	0,054(3), -0,007(2), 0,010(1)		
Параметр змішування η	0,682(6)		
Параметр асиметрії піків С _М	-0,141(5)		
Кількість уточнених параметрів	16		
Фактор достовірності $R_{\rm p}, R_{\rm wp}$	0,0263, 0,0361		
Фактор добротності S	0.72		

Експериментальні умови одержання масиву дифракційних даних і результати уточнення

Структурний тип $Y_3NiAl_3Ge_2$ має впорядковане розташування всіх атомів, кожен сорт атома займає лише одну правильну систему точок просторової групи *P*-62*m*. У табл. З наведено координати та ізотропні параметри зміщення атомів у структурі сполуки $Y_3FeAl_3Ge_2$.

Гексагональний структурний тип Y₃NiAl₃Ge₂ є тетрарним варіантом тернарного типу ZrNiAl (Zr₃NiAl₃Ni₂) [10] та бінарного типу Fe₂P (Fe₃PFe₃P₂) [11]. Відомі й інші тернарні варіанти бінарного типу Fe_2P : β_1 - K_2UF_6 [12], $Zr_3Cu_4Si_2$ [13] і Lu₃CoGa₅ [14]. Елементарна комірка структури сполуки Y₃FeAl₃Ge₂ та координаційні многогранники атомів зображені за допомогою програми ATOMS [15] (рис. 3). Атоми Fe та Ge займають положення атомів Ni та P в тернарному та бінарному прототипах, відповідно. Структура належить до класу структур із тригонально-призматичним оточенням атомів меншого розміру (Fe та Ge). У вершинах тригональної призми навколо атома Fe є атоми Al та три атоми Y навпроти бокових граней. У вершинах тригональної призми навколо атома Ge ϵ атоми Y, а навпроти прямокутних граней – три атоми Al. Атом Al центрує тетрагональну призму, побудовану з двох атомів Fe та шести атомів Y, навпроти усіх бокових граней є атоми Ge або Al. Атом Y центрує пентагональну призму, у вершинах якої є чотири атоми Ge та шість атомів Al, навпроти однієї прямокутної грані – атом Fe, навпроти чотирьох інших прямокутних і двох п'ятикутних граней розміщені атоми У та ще один атом Fe є навпроти одного із ребер призми. Структуру можна розглядати

Н. Семусьо, Ю. Луцишин, С. Пукас та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2014. Випуск 55. Ч.1

тривимірний каркас із нескінченних колон тригональних призм GeY₆, утворених за рахунок спільних основ, які зв'язані між собою ребрами бокових граней. У каналах цього каркасу розміщені ізольовані колони, утворені за рахунок з'єднаних основами тригональних призм FeAl₆ (рис. 4).

Рис. 2. Експериментальна, розрахована та різницева дифрактограми тетрарної сполуки Y₃FeAl₃Ge₂ (проміння Cu Kα₁)

Рис. 3. Елементарна комірка структури Y₃FeAl₃Ge₂ та координаційні многогранники атомів

138

Рис. 4. Каркас із колон тригональних призм GeY₆ та ізольовані колони тригональних призм FeAl₆ у каналах каркаса в структурі Y₃FeAl₃Ge₂

- 1. *Villars P., Cenzual K.* (Eds.) Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds. Materials Park: ASM International (OH), Release 2013/14.
- 2. *Zhao J.T., Parthé E.* Y₃NiAl₃Ge₂, a quaternary substitution variant of the hexagonal Fe₂P type // Acta Crystallogr. C. 1990. Vol. 46. P. 2273–2276.
- Sieve B., Trikalitis P.N., Kanatzidis M.G. Quaternary Germanides Formed in Molten Aluminum: Tb₂NiAl₄Ge₂ and Ce₂NiAl_{6-x}Ge_{4-y} (x~ 0.24, y~ 1.34) // Z. Anorg. Allg. Chem. 2002. Vol. 628. P. 1568–1574.
- Sieve B., Chen X., Cowen J. et al. Multinary Intermetallics from Molten Al. Synthesis of SmAl₄Ge₂ and YNiAl₄Ge₂. Possible Spin Frustration in Separated Triangular Sm³⁺ Layers // Chem. Mater. 1999. Vol. 11. P. 2451–2455.
- 5. Demchenko P., Konczyk J., Demchenko G. et al. Er₅Ni₃Al₃Ge₄: a quaternary variant of the NbCoB type // Acta Crystallogr. C. 2006. Vol. 62. P. i29–i31.
- 6. Демченко Г., Демченко П. Нові алюмогерманіди ербію та заліза // Вісн. Львів. ун-ту. Сер. хім. 2010. Вип. 51. С. 45–51.
- 7. Демченко Г., Кончик І., Демченко П. та ін. Система Er–Co–Al–Ge в області 10– 40 ат.% Er // Вісн. Львів. ун-ту. Сер. хім. 2009. Вип. 50. С. 50–58.
- 8. *Demchenko G., Konczyk J., Demchenko P.* et al. Trierbium nickel trialuminium digermanide, Er₃NiAl₃Ge₂ // Acta Crystallogr. E. 2005. Vol. 61. P. i273–i274.
- Young R.A., Sakthivel A., Moss T.S., Paiva-Santos C.O. DBWS-9411 an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers // J. Appl. Crystallogr. 1995. Vol. 28. P. 366–367.
- 10. Крип'якевич П.І., Марків В.Я., Мельник Е.В. Кристалічні структури сполук ZrNiAl, ZrCuGa і їх аналогів // Доп. АН УРСР. Сер. А. 1967. № 8. С. 750–753.

- 11. *Carlsson B., Gölin M., Rundqvist S.* Determination of the homogeneity range and refinement of the crystal structure of Fe₂P // J. Solid State Chem. 1973. Vol. 8. P. 57–67.
- 12. *Brunton G.D.* Refinement of the crystal structure of β_1 -K₂UF₆ // Acta Crystallogr. B. 1969. Vol. 25. P. 2163–2164.
- 13. *Sprenger H.* Die ternären systeme (Titan, Zirkonium, Hafnium)-Kupfer-Silizium // J. Less-Common Met. 1974. Bd. 34. S. 39–71.
- 14. Гладышевский Р.Е. Кристаллическая структура соединения Lu₃Ga₅Co // Тез. докл. IV Всесоюз. конф. кристаллохим. интерметал. соединений. Львов, 1983. С. 48–49.
- 15. *Dowty E.* ATOMS A Computer Program for Displaying Atomic Structures. Kingsport (TN), 1999.

NEW REPRESENTATIVES OF THE STRUCTURE TYPE Y₃NiAl₃Ge₂

N. Semuso, Yu. Lutsyshyn, S. Pukas, Ya. Tokaychuk, R. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str. 6, 79005 Lviv, Ukraine e-mail: nakonechna n@franko.lviv.ua

A search for new quaternary alumogermanides in *R*–Fe–Al–Ge systems was carried out. Ten alloys of nominal composition R_3 FeAl₃Ge₂ (R = Y, Sm, Gd-Lu) were synthesized from high-purity metals by arc-melting and annealed at 600°C for 1800 hours. Phase and structural analyses were performed based on X-ray powder diffraction data collected on diffractometers DRON-2.0M (Fe K α radiation) and STOE STADI P (Cu $K\alpha_1$ radiation). The structural parameters were refined by the Rietveld method.

All of the alloys appeared to be single-phase. The phase R_3 FeAl₃Ge₂ was observed for the first time for Y, Sm, Gd, Tb, Dy, Ho, Tm, Yb, and Lu, but has been reported earlier for Er. The compounds are isotypic and their crystal structures belong to the type Y_3 NiAl₃Ge₂ (Pearson symbol *hP*9, space group *P*-62*m*), which is characterized by an ordered arrangement of atoms where each kind of atom occupies only one Wyckoff position. As expected, the cell parameters decrease with decreasing radius of the rare-earth metal, from Sm to Lu.

The hexagonal structure type $Y_3NiAl_3Ge_2$ is a quaternary variant of the ternary type ZrNiAl and the binary type Fe_2P . The Fe and Ge atoms occupy the sites occupied by Ni and P in the ternary and binary prototypes. The structure type belongs to a family of structures with trigonal prismatic coordination of the small atoms (Fe and Ge). It can be described as a 3D-framework of infinite columns of based-linked GeY₆ trigonal prisms sharing edges. The channels of the framework contain isolated columns formed by base-sharing FeAl₆ trigonal prisms.

Key words: quaternary alumogermanide, X-ray powder diffraction, isotypic compounds, crystal structure.

НОВЫЕ ПРЕДСТАВИТЕЛИ СТРУКТУРНОГО ТИПА У₃NiAl₃Ge₂

Н. Семусьо, Ю. Луцишин, С. Пукас, Я. Токайчук, Р. Гладышевский

Львовский национальный университет имени Ивана Франко, ул. Кирилла и Мефодия, 6, 79005 Львов, Украина, e-mail: nakonechna n@franko.lviv.ua

Проведен поиск новых четверных алюмогерманидов в системах R–Fe–Al–Ge. Синтезировано и с помощью рентгеновской порошковой дифракции определено кристаллическую структуру девяти новых соединений R_3 FeAl₃Ge₂ (R = Y, Sm, Gd, Tb, Dy, Ho, Tm, Yb и Lu). Установлено, что соединения являются изоструктурными и их кристаллическая структура принадлежит к типу Y_3 NiAl₃Ge₂ (символ Пирсона hP9, пространственная группа P-62m). Структура характеризируется упорядоченным расположением всех атомов и каждый сорт атома занимает только одну правильную систему точек.

Ключевые слова: четверный алюмогерманид, рентгеновский дифракционный метод порошка, ряд изоструктурных соединений, кристаллическая структура.

Стаття надійшла до редколегії 31.10.2013 Прийнята до друку 19.12.2013