ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2014. Випуск 55. Ч. 1. С. 12–20 Visnyk of the Lviv University. Series Chemistry. 2014. Issue 55. Pt. 1. P. 12–20

УДК [664+74]:546:548.734:544.015.35

УТОЧНЕННЯ ФАЗОВИХ РІВНОВАГ У СИСТЕМІ Dy-Ni ПРИ 800 °C В ІНТЕРВАЛІ 0-25 ат. % Dy

В. Левицький, В. Бабіжецький, Б. Котур

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна, e-mail: v.levyckyy@gmail.com

Методами рентгенофазового, рентгеноструктурного аналізів та енергодисперсійної рентгенівської спектроскопії уточнено фазові рівноваги в системі Dy–Ni при 800 °C в концентраційному інтервалі 0–25 ат. % Dy. Підтверджено існування сполук Dy₂Ni₁₇, DyNi₅, Dy₂Ni₇, DyNi₃ та нерівноважне співіснування двох модифікацій сполуки Dy₂Ni₇ навіть після тривалого відпалювання при 800 °C. За температури дослідження не виявлено існування сполук Dy₄Ni₁₇ та DyNi₄. Уперше методом монокристала уточнено кристалічну структуру сполуки DyNi₅ (CT CaCu₅; ПГ *P6/mmm*; *Z* = 1; *a* = 0,4900(3) нм; *c* = 0,3974(4) нм; *R*₁ = 0,019 (*wR*₂ = 0,036) для 65 рефлексів з $I_0 > 2\sigma(I_0)$).

Ключові слова: Диспрозій, Нікол, діаграма стану, кристалічна структура, монокристал, поліморфізм.

Діаграма стану системи Dy–Ni побудована за результатами диференційного термічного аналізу (ДТА) у праці [1]. Згідно з цими даними, у системі виявлено існування десяти бінарних сполук. У концентраційному інтервалі 19–21 ат. % Dy методом ДТА зафіксовано утворення двох нових сполук, кристалічні структури яких не досліджені, та з'ясовано, що вони утворюються за перитектичними реакціями:

1) Dy₄Ni₁₇:

 $L(\sim 29,5 \text{ at. } \% \text{ Dy}) + \text{DyNi}_5 \xrightarrow{1352 \circ C} \text{Dy}_4 \text{Ni}_{17}$ 2) DyNi₄ :

 $L(\sim 31,7 \text{ at. } \% \text{ Dy}) + \text{Dy}_4 \text{Ni}_{17} \xrightarrow{1336 \circ C} \text{DyNi}_4.$

У праці [2] наведено результати обчислення термодинамічних параметрів діаграми стану системи Dy–Ni з урахуванням утворення Dy₄Ni₁₇ та DyNi₄ на підставі експериментальних даних [1]. Сьогодні немає відомостей про кристалічні структури бінарних сполук Dy₄Ni₁₇ та DyNi₄. Ще однією особливістю цієї системи в області ~22,2 ат. % Dy є існування двох поліморфних модифікацій сполуки Dy₂Ni₇ [3], що не відображено на діаграмі стану, наведеній у праці [1].

Для дослідження трикомпонентної системи Dy–Ni–C при 800 °C, яке є продовженням систематичних досліджень потрійних карбідних систем R–M–C (R = P3M, M = 3d-елемент) [4], ми перевірили існування бінарних сполук системи Dy–Ni та виявили невідповідність даних, наведених у літературі, і наших результатів. Для усунення цієї невідповідності уточнено відрізок ізотермічного перерізу діаграми стану двокомпонентної системи Dy–Ni в концентраційному інтервалі 0–25 ат. % Dy при 800 °C методами рентгенівської дифрактометрії та енергодисперсійної рентгенівської спектроскопії (ЕДРС).

[©] Левицький В., Бабіжецький В., Котур Б., 2014

Для дослідження синтезовано вісім зразків складів Dy_9Ni_{91} , $Dy_{15}Ni_{85}$, $Dy_{19}Ni_{81}$, $Dy_{20}Ni_{80}$, $Dy_{21}Ni_{79}$, $Dy_{22}Ni_{78}$, $Dy_{24}Ni_{76}$ та $Dy_{25}Ni_{75}$. Методика експерименту детально описана у праці [4]. Фазовий аналіз синтезованих зразків виконували за масивами експериментальних даних дифракції рентгенівського випромінювання методом порошку, одержаних за допомогою дифрактометрів ДРОН-2,0М (випромінювання Fe K_a) і STOE STADI P (випромінювання CuK_{a1} та MoK_{a1}) з використанням комп'ютерної програми STOE WinXPOW [5]. Фазовий склад окремих сплавів підтверджували повнопрофільним уточненням дифрактограм методом Рітвельда, застосовуючи пакет програм WinCSD [6, 7]. Кристалічну будову сполуки DyNi₅ досліджено методом монокристала за масивом експериментальних даних, отриманих на дифрактометрі STOE IPDS II (MoK_a -випромінювання) та з використанням комп'ютерних програм, що входять до пакета WinGX [8, 9], і програми SHELXL-2013 [10, 11]. Для підтвердження фазового складу деяких концентраційних областей системи застосовували метод ЕДРС у поєднанні з растровими електронними мікроскопами VEGA TS-5130MM та РЭММА-102-2.

Згідно з діаграмою стану системи Dy–Ni (рис. 1) [1] та обчисленими термодинамічними параметрами її сполук [2], фаза DyNi₅ (СТ CaCu₅) є найбільш стійкою в інтервалі низького вмісту Диспрозію. Решта сполук, для яких вивчені кристалічні структури (Dy₂Ni₁₇, Dy₂Ni₇, DyNi₃), є похідними від структурного типу CaCu₅. Донедавна для згаданих сполук були відомі лише параметри елементарних комірок, визначені за допомогою методу порошкової дифрактометрії [3, 12].

У ході дослідження монокристалів, відібраних зі зразків, склади яких наведено вище, уперше методом монокристала вивчено кристалічну структуру бінарних сполук системи Dy–Ni в інтервалі 0–25 ат. % Dy. Опубліковані результати їхнього дослідження підтвердили та доповнили дані щодо їхніх кристалічних структур: DyNi₃ (CT PuNi₃) [13], Dy₂Ni₇ (CT β-Gd₂Co₇) [14], Dy₂Ni₁₇ (CT Th₂Ni₁₇) [15].

Для підтвердження літературних даних щодо структури DyNi5, дослідженої методом порошку [16, 17], зі зразка складу Dy15Ni85 відібрано монокристал сполуки DyNi₅ та виконано рентгеноструктурне дослідження її кристалічної структури. Аналіз масиву дифракційних даних засвідчив належність структури сполуки до гексагональної сингонії. Періоди елементарної комірки уточнено за 749 рефлексами. Відсутність систематичних загасань та хороше узгодження періодів з літературними даними сприяли вибору просторової групи Р6/ттт. Розв'язок прямими методами та уточнення параметрів структури сполуки повністю підтвердили її ізоморфізм зі структурним типом CaCu₅. Деталі цього уточнення наведено у табл. 1. Координати та ізотропні параметри зміщення атомів сполуки DyNi5 наведено в табл. 2, а параметри анізотропних коливань атомів – у табл. З. На рис. 2 зображено елементарну комірку та координаційні багатогранники для всіх кристалографічних сортів атомів уточненої структури. Атоми відображені еліпсоїдами їхніх анізотропних параметрів зміщення з імовірністю 99,99 % (програма DIAMOND [18]). Спостережувана анізотропія добре узгоджується з результатами досліджень фізичних властивостей сполуки DyNi5, що наведені в працях [19, 20].

Таблиця 1

Деталі дифрактометричного дослідження та уточнення структури сполуки DvNis

• - F J J F • •)
Уточнений склад	DyNi ₅
Символ Пірсона та Z	hP6, 1
Просторова група	P6/mmm (№ 191)
Структурний тип	CaCu ₅
Пераметри комірки:	
<i>a</i> , HM	0,4899(3)
С, НМ	0,3973(3)
<i>V</i> , нм ³	0,08258(9)
Обчислена густина, г/см ³	9,171
Коефіцієнт абсорбції, мм ⁻¹	49,95
Випромінювання і довжина хвилі, Å	Mo <i>K</i> _α ; 0,71073
Дифрактометр	STOE IPDS II
Кількість уточнюваних параметрів	9
Уточнення	F^2
$2θ_{max}$ τα $(sinθ/\lambda)_{max}$	57,2; 0,673
$h, \overline{k}, \overline{l}$	$-6 \le h \le 2$
	-6≤ <i>k</i> ≤6
	$-4 \le l \le 5$
Загальна кількість відбить	362
Кількість незалежних відбить	65 ($R_{int} = 0,079$)
Кількість відбить з $I_0 \ge 2\sigma(I_0)$	$65 (R_{\sigma} = 0.041)$
Фактор розбіжності $R_1 (R_1$ усі відбиття) ^а	0,019 (0,019)
$wR_2 (wR_2$ усі відбиття) ⁶	0,036 (0,036)
<i>S</i> по <i>F</i> ² :	1,24
Коефіцієнт екстинкції ^в , k (метод)	0,045(9) (SHELXL)
$\Delta \rho_{\min}$ ta $\Delta \rho_{\max}$ (e·Å ⁻³)	-1,09; +1,19
${}^{a}R_{1} = [\Sigma(F_{0} - F_{0})] / \Sigma F_{0} $	

 $\int_{0}^{K_{1}} \frac{1}{|L^{2}(1^{\alpha} \circ ||^{\alpha} c||^{1/2} c^{||^{\alpha} \circ ||^{\alpha}} \circ ||^{\alpha} c^{||^{\alpha}} wR_{2} = [\Sigma[w(F_{0}^{2} - F_{c}^{2})^{2})^{2}[w(F_{0}^{2})^{2}]]^{1/2}; w = 1/[\sigma^{2}(F_{0})^{2} + (0,0P)^{2} + 0,3093P],$ $\int_{0}^{K_{1}} P = (F_{0}^{2} + 2F_{c}^{2})/3;$ $\int_{0}^{B} F_{c}^{*} = kF_{c}[1 + 0,001F_{c}^{2}\lambda^{3}/sin(2\theta)]^{-1/4}$

ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2014. Випуск 55. Ч.1

Таблиця 2

15

Координати та ізотропні параметри зміщення атомів					
Атом	ПСТ	x	у	Z	U_{i30} , Å ²
Dy1	1 a	0	0	0	0,0090(4)
Ni1	2 c	1/3	2/3	0	0,0081(4)
Ni2	3 g	1/2	0	1/2	0,0087(4)

Таблиця 3

Анізотропні параметри зміщення атомів у структурі DyNi ₅ , A ²				
Атом	U_{11}	U_{22}	U_{33}	U_{12}
Dy1	0,0074(4)	0,0074(4)	0,0122(4)	0,0037(2)
Ni1	0,0093(5)	0,0063(6)	0,0076(4)	0,0032(3)
Ni2	0,0099(6)	0,0099(6)	0.0064(5)	0,0050(3)

 $*U_{13} = U_{23} = 0$

Рис. 2. Елементарна комірка та координаційні багатогранники атомів у структурі сполуки DyNi₅. Атоми позначені еліпсоїдами їхніх анізотропних коливань з імовірністю 99,99 %

У структурі сполуки DyNi₅ для атомів Диспрозію характерний координаційний багатогранник (КБ) *псевдо*-Франка–Каспера та відповідне йому координаційне число (КЧ) – 20. Для атомів Ніколу КБ – антикубооктаедр та кубооктаедр, КЧ = 12 (рис. 2). Таке ж оточення типове й для відповідних сортів атомів в інших структурах сполук, багатих на Нікол: Dy₂Ni₁₇, Dy₂Ni₇ та DyNi₃ [13–15].

Згідно з проведеним рентгенофазовим аналізом (РФА) дифрактограм синтезованих зразків, у концентраційному інтервалі 19–22 ат. % Dy за температури дослідження не виявлено додаткових відбить, які б свідчили про наявність сполук Dy₄Ni₁₇ та DyNi₄. Унаслідок експерименту підтверджено дані щодо співіснування за температури дослідження обох модифікацій сполуки Dy₂Ni₇, виявлених раніше [3]. За допомогою повнопрофільного аналізу дифрактограм порошку уточнено фазовий склад досліджених зразків. Для підтвердження результатів РФА додатково виготовлено шліфи з досліджуваних зразків та досліджено їхні мікроструктури і склади методом ЕДРС. Порівняння даних, одержаних методами РФА та ЕДРС, свідчить про їхнє повне узгодження. На рис. 3 показано уточнену дифрактограму двофазового зразка складу Dy₂₂Ni₇₈. У ньому методами мікроструктурного та рентгенофазового аналізів виявлено співіснування обох модифікацій Dy₂Ni₇ за температури дослідження, що підтверджує дані праці [3]. У зразку складу Dy₂₀Ni₈₀

методами мікроструктурного та рентгенофазового аналізів виявлено співіснування обох модифікацій Dy_2Ni_7 та фазу $DyNi_5$, що заперечує дані діаграми стану, наведеної у праці [1]. Уточнену дифрактограму цього зразка зображено на рис. 4. Додаткових відбить, що свідчили б про наявність інших фаз, не виявлено. Дані рентгенофазового аналізу досліджуваних зразків добре узгоджуються з результатами ЕДРС (рис. 5).

Рис. 3. Уточнена дифрактограма двофазового зразка Dy 22 Ni 78, відпаленого при 800 °C (випромінювання $MoK_{\alpha 1}$, $R_p = 0,161$; $R_{dbw} = 0,046$): $l - rh-Dy_2Ni_7$ (СТ β -Gd₂Co₇, ПГ $R\bar{3}m$); $2 - h-Dy_2Ni_7$ (СТ Ce₂Ni₇, ПГ $P6_3/mmc$)

(випромінювання Cu $K_{\alpha 1}$, $R_p = 0,144$; $R_{dbw} = 0,037$): $1 - \text{rh-Dy}_2\text{Ni}_7 (\text{CT }\beta\text{-Gd}_2\text{Co}_7, \Pi\Gamma R\bar{3}m); 2 - \text{h-Dy}_2\text{Ni}_7 (\text{CT }\text{Ce}_2\text{Ni}_7, \Pi\Gamma P6_3/mmc);$ 3 – DyNi₅ (CT CaCu₅, ПГ P6/mmm)

В. Левицький, В. Бабіжецький, Б. Котур ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2014. Випуск 55. Ч.1

Рис. 5. Мікроструктури зразків складів Dy₂₂Ni₇₈ (*a*) та Dy₂₀Ni₈₀ (б), відпалених при 800 °С

За дифрактограмою зразка складу $Dy_{20}Ni_{80}$ (див. рис. 4) уточнено склад ромбоедричної модифікації сполуки $Dy_2Ni_7 - rh-Dy_{2x}Ni_7$ (x = 0,28), який є близьким до гіпотетичного складу "DyNi₄" (табл. 4) та свідчить про утворення області гомогенності цієї сполуки. Це підтверджує також зафіксована зміна параметрів елементарної комірки для уточнених складів сполуки: з a = 0,49467(5), c = 3,6299(4) нм для складу $Dy_{22}Ni_{78}$ до a = 0,49399(2), c = 3,6207(3) нм для складу $Dy_{20}Ni_{80}$. Зазначимо, що в ході дослідження монокристала ромбоедричної модифікації г-Dy₂Ni₇ [14] відхилень від стехіометричного складу, спричиненого дефіцитом заповнення кристалографічних позицій атомами, не виявлено. Ці результати добре узгоджуються з даними, які отримані методом порошку для зразка $Dy_{22}Ni_{78}$, з якого вибрано монокристал (після відпалювання зразка тривалістю 720 год).

Таблиця 4

$CuK_{\alpha 1}, R_1 = 0,104;$ вміст фази за РФА 66,7 мас. %)						
	Уточнени	Уточнений склад Dy _{1.72(1)} Ni ₇				
	Символ Пірсона та Z $hR54, 6$					
	Просторова група		$R\bar{3}m$ (No 166)			
	Структур	Структурний тип β-Gd ₂ Co ₇				
			Параметри	і комірки		
а, нм 0,49399(2)						
с, нм 3			3,6207(3)			
V , HM^3			0,7652(1)			
	Координати та ізотропні параметри зміщення атомів					
Атом	КЗП	ПСТ	X	У	Ζ	$B_{i30}, Å^2$
Dy1	1	6 c	0	0	0,0491(3)	0,42(6)
Dy2	0,72(1)	6 c	0	0	0,1524(3)	0,52(2)
Ni1	1	18 h	0,5159(9)	0,4841(9)	0,1123(3)	0,73(2)
Ni2	1	9 e	1/2	0	0	0,82(4)
Ni3	1	6 c	0	0	0,2810(6)	0,84(3)
Ni4	1	6 c	0	0	0,3829(5)	0,67(5)
Ni5	1	3 <i>b</i>	0	0	1/2	0,63(4)

Кристалографічні параметри ромбоедричної модифікації сполуки rh-Dy₂Ni₇ (випромінювання $CuK_{a,1}$, $R_I = 0.104$; вміст фази за РФА 66,7 мас. %)

Для дослідження кількісного співвідношення обох модифікацій Dy₂Ni₇ проведено повторний тривалий відпал (1 680 год) зразка складу Dy₂₂Ni₇₈ при 800 °C. Співвідношення обох модифікацій Dy₂Ni₇ після відпалювання впродовж 720 год і, додатково, 1 680 год суттєво не змінилося. Це пов'язано з повільним мартенситним (дифузним) типом цього перетворення, про яке повідомлено у праці [3]. Дифузне розширення піків, спричинене перетворенням однієї модифікації в іншу (згідно з РФА, належать гексагональній модифікації h-Dy₂Ni₇), чітко простежується на дифрактограмах (рис. 3, 4) в інтервалі малих значень кутів 20. Оскільки у невідпалених зразках основна модифікація (>70 мас. %) гексагональна (СТ Ce₂Ni₇), то можна вважати, що вона є високотемпературною (ВТМ). У відпалених при 800 °C зразках переважає (>65 мас. %) низькотемпературна, ромбоедрична модифікація (HTM) rh-Dy₂Ni₇ (СТ β -Gd₂Co₇). Отже, поліморфне перетворення ВТМ у НТМ відбувається за вищої температури, ніж 800 °C. У праці [3] зафіксовано перетворення ВТМ у HTM сполуки Dy₂Ni₇ за температури 950 °C.

Детальний рентгенофазовий аналіз усіх синтезованих зразків (ДРОН-2,0М; Fe K_{α} -випромінювання), доповнений результатами ЕДРС, засвідчив, що при 800 °С у системі Dy–Ni в інтервалі 0–25 ат. % Dy існують такі фазові області:

- ~0 ат. % Dy: область нікелю, який практично не розчиняє Диспрозію;
- 0–10,5 ат. % Dy: двофазова область {Ni + Dy₂Ni₁₇};
- ~10,5 ат. % Dy: Dy₂Ni₁₇ сполука точкового складу [15];
- 10,5–16,7 ат. % Dу: двофазова область {Dy₂Ni₁₇ + DyNi₅};
- □ ~16,7 ат. % Dy: DyNi₅ сполука точкового складу;
- □ 16,7–19,7 ат. % Dy: нерівноважна трифазова область {DyNi₅ + rh-Dy_{2-x}Ni₇ (CT β-Gd₂Co₇) + h-Dy₂Ni₇ (CT Ce₂Ni₇)}. Згідно з результатами цього дослідження, при 800 °C термодинамічно рівноважною повинна бути область {DyNi₅ + rh-Dy_{2-x}Ni₇};
- ~19,7–22,2 ат. % Dy: r-Dy_{2-x}Ni₇, яку характеризує область гомогенності в бік зменшення вмісту Диспрозію від ідеального стехіометричного складу;
- ~22,2–25 ат. % Dy: нерівноважна трифазова область {rh-Dy_{2-x}Ni₇ + h-Dy₂Ni₇ + DyNi₃}. Передбачаємо, що при 800 °C рівноважною повинна бути двофазова область {rh-Dy_{2-x}Ni₇ + DyNi₃}. У цій рівновазі сполука rh-Dy₂Ni₇ має ідеальний стехіометричний склад [14];
- 25 ат. % Dy: DyNi₃ сполука точкового складу [13].
 За результатами проведеного дослідження з'ясовано таке:
- При 800 °С співіснують дві модифікації сполуки Dy₂Ni₇. Тривала температурна обробка не змінює кількісного співвідношення фаз, що свідчить про його мартенситний механізм. Уточнений склад ромбоедричної модифікації Dy₂Ni₇ доводить існування області гомогенності цієї сполуки, який описує формула rh-Dy_{2-x}Ni₇ (0 ≤ x ≤ 0,28). Високотемпературна модифікація h-Dy₂Ni₇ має сталий склад.
- Методом монокристала досліджено кристалічну структуру сполуки DyNi₅. Підтверджено її належність до структурного типу CaCu₅.
- 3. Унаслідок проведених досліджень за температури 800 °С не підтверджено існування сполук Dy₄Ni₁₇ та DyNi₄, повідомлених у праці [1].

- 1. Zheng J.-X., Wang C.-Z. Phase diagram of the alloys in Dy–Ni binary system // Acta Phys. Sin. 1982. Vol. 31. P. 668–673. (китайською).
- 2. *Li M., Han W.* Thermodynamic description of the Dy–Ni system // Calphad. 2009. Vol. 33. P. 517–520.
- 3. *Buschow K. H. J., van der Goot A. S.* The crystal structure of rare-earth nickel compounds of the type R₂Ni₇ // J. Less-Common Met. 1970. Vol. 22. P. 419–428.
- 4. Левицький В., Костецька А., Бабіжецький В. та ін. Система Dy-Co-C при 800 °C // Вісн. Львів. ун-ту. Сер. хім. 2013. Вип. 54. Ч. 1. С. 19-27.
- 5. Stoe & Cie. STOE WinXPOW (Version 2.10). 2004.
- 6. Akselrud L. G., Zavalij P. Yu., Grin Yu. N. et al. WinCSD (Version 04.13). 2013.
- Akselrud L. G., Zavalij P. Yu., Grin Yu. N. et al. Use of the CSD program package for structure determination from powder data // Mater. Sci. Forum. 1993. Vol. 133– 136. P. 335–340.
- 8. *Farrugia L. J.* WinGX (Version 2013.2). 2013.
- 9. *Farrugia L. J.* WinGX and ORTEP for Windows: an update // J. Appl. Crystallogr. 2012. Vol. 45. P. 849–854.
- 10. Sheldrick G. M. SHELXL-2013. 2013.
- 11. Sheldrick G. M. A short history of SHELX // Acta Crystallogr. 2008. Vol. A64. P. 112–122.
- Buschow K. H. J. The crystal structures of the rare-earth compounds of the form R₂Ni₁₇, R₂Co₁₇ and R₂Fe₁₇ // J. Less-Common Met. 1966. Vol. 11. P. 204–208.
- 13. Levytskyy V., Babizhetskyy V., Kotur B., Smetana V. Redetermination of dysprosium trinickel from single-crystal X-ray data // Acta Crystallogr. 2012. Vol. E68. P. i83.
- 14. Levytskyy V., Babizhetskyy V., Kotur B., Smetana V. Didysprosium heptanickel // Acta Crystallogr. 2012. Vol. E68. P. i20.
- 15. Levytskyy V., Babizhetskyy V., Myakush O. et al. Crystal structure and hydrogenation features of the hexagonal $Dy_2M_{17}C_x$ (M = Co, Ni; x = 0, 1) compounds // Book Abs. XII Int. Conf. Cryst. Chem. Int. Compd. Lviv, Ukraine, 2013. P. 173.
- 16. *Wernick J. H., Geller S.* Transition element–Rare earth compounds with the Cu₅Ca structure // Acta Crystallogr. 1959. Vol. 12. P. 662–665.
- Baenziger N. C., Moriarty, Jr. J. L. Gadolinium and dysprosium intermetallic phases. II. Laves phases and other structure types // Acta Crystallogr. 1961. Vol. 14. P. 948–950.
- 18. *Brandenburg K.* DIAMOND (Version 2.1e). 2006. Crystal Impact GbR, Bonn, Germany.
- Aubert G., Gignoux D., Hennion B. et al. Bulk magnetization study of a DyNi₅ single crystal // Solid State Commun. 1981. Vol. 37. P. 741–743.
- Blanco J. A., Gignoux D., Schmitt D. et al. Resistivity anomalies in ferromagnetic RNi₅ (R = Tb, Dy or Er) compounds // J. Phys.: Condens. Matter. 1994. Vol. 6. P. 4335–4342.

REFINEMENT OF THE PHASE EQUILIBRIA IN THE Dy–Ni SYSTEM AT 800 °C IN THE RANGE 0–25 at. % Dy

V. Levytskyy, V. Babizhetskyy, B. Kotur

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine, e-mail: v.levyckyy@gmail.com

The phase equilibria in the Dy–Ni system at 800 °C in the range 0–25 at. % Dy have been refined by means of powder X-ray diffraction (XRD) phase and structural analyses and energy-dispersive X-ray spectroscopy (EDXS). Existence of the Dy_2Ni_{17} , $DyNi_5$, Dy_2Ni_7 , $DyNi_3$ binary compounds has been confirmed. Two other phases – Dy_4Ni_{17} and $DyNi_4$ have not been observed. The nonequilibrium coexistence of both Dy_2Ni_7 polymorphous modifications in the samples even after prolonged annealing at 800 °C have been confirmed. Two polymorphous modifications of Dy_2Ni_7 and $DyNi_5$ have been observed in the $Dy_{20}Ni_{80}$ sample. The wide homogeneity range (from 19.7 to

22.2 at. % Dy) have been detected for rh-Dy₂Ni₇. The refined composition of Dy₂Ni₇ is as follows: Dy_{1.72(1)}Ni₇ (or Dy_{2-x}Ni₇, x = 0.28), which is quite close to the composition of "DyNi₄". The crystal structure of the DyNi₅ compound has been refined from the single crystal XRD data for the first time: ST CaCu₅, SG *P6/mmm*, Z = 1, a = 0.4900(3) nm, c = 0.3974(4) nm, $R_1 = 0.019$ ($wR_2 = 0.036$) for 65 reflections with $I_0 > 2\sigma(I_0)$.

Key words: dysprosium, nickel, phase diagram, crystal structure, single crystal, polymorphism.

УТОЧНЕНИЕ ФАЗОВЫХ РАВНОВЕСИЙ В СИСТЕМЕ Dy-Ni ПРИ 800 °С В ОБЛАСТИ 0-25 ат. % Dy

В. Левицкий, В. Бабижецкий, Б. Котур

Львовский национальный университет имени Ивана Франко, ул. Кирилла и Мефодия, 6, 79005 Львов, Украина, e-mail: v.levyckyy@gmail.com

По данным рентгенофазового, рентгеноструктурного анализов (метод порошка) и энергодисперсионной рентгеновской спектроскопии уточнено фазовые равновесия в системе Dy–Ni при 800 °C в концентрационном интервале 0–25 ат. % Dy. Подтверждено существование соединений Dy₂Ni₁₇, DyNi₅, Dy₂Ni₇, DyNi₃ и неравновесное сосуществование двух модификаций соединения Dy₂Ni₇ даже после длительного отжига при 800 °C. При температуре исследования соединения Dy₄Ni₁₇ и DyNi₄ не обнаружены. Впервые методом монокристалла уточнено кристаллическую структуру соединения DyNi₅ (CT CaCu₅; ПГ *Р6/mmm*; *Z* = 1; *a* = 0,4900(3) нм; *c* = 0,3974(4) нм; *R*₁ = 0,019 (*wR*₂ = 0,036) для 65 рефлексов с *I*₀ > 2 σ (*I*₀)).

Ключевые слова: диспрозий, никель, диаграмма состояния, кристаллическая структура, монокристалл, полиморфизм.

Стаття надійшла до редколегії 30.10.2013 Прийнята до друку 19.12.2013