ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2014. Випуск 55. Ч. 1. С. 47–53 Visnyk of the Lviv University. Series Chemistry. 2014. Issue 55. Pt. 1. P. 47–53

УДК 546:548.736.4

СТРУКТУРНІ ПЕРЕТВОРЕННЯ В DyGa_{2-x}Ge_x ($0 \le x \le 0,6$)

Я. Токайчук, Т. Деленко, Р. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна, e-mail: tokaychuk@mail.lviv.ua

Заміщення атомів Ga на атоми Ge у бінарній сполуці DyGa2 приводить до утворення твердого розчину заміщення DyGa_{2-x}Ge_x (x = 0-0,45) зі структурою типу AlB2 (символ Пірсона hP3, просторова група P6/mmm, a = 4,17600(13), c = 4,0951(2) Å для x = 0,45) і тернарної сполуки DyGa1,4Ge0,6 (структурний тип α -ThSi2, символ Пірсона tI12, просторова група I41/*amd*, a = 4,16411(9), c = 14,4832(3) Å). Зі збільшенням вмісту Ge у твердому розчині DyGa_{2-x}Ge_x збільшується частка ковалентного зв'язку між атомами статистичної суміші Ga/Ge і, відповідно, параметр a елементарної комірки зменшується, а параметр c - 36ільшується.

Ключові слова: диспрозій, галій, германій, рентгенівський дифракційний метод порошку, твердий розчин, тернарна сполука, кристалічна структура.

Наша мета – визначення кристалічної структури фаз на ізоконцентраті 33,3 ат.% Dy в області, багатій на Ga, системи Dy–Ga–Ge при 600°C, що є частиною систематичних досліджень взаємодії компонентів у потрійних системах за участю рідкісноземельних металів і двох *р*-елементів, які проводять на кафедрі неорганічної хімії Львівського національного університету імені Івана Франка. Аналіз літературних відомостей засвідчив, що заміщення атомів Ga на атоми Ge у бінарних галідах RGa2 зі структурою типу AlB2 (символ Пірсона hP3, просторова група Р6/mmm) у потрійних системах {Y,Ce,Pr,Nd,Sm,Gd}-Ga-Ge приводить до утворення твердих розчинів заміщення на основі RGa2 і утворення тернарних сполук зі структурою типу α-ThSi2 (символ Пірсона tl12, просторова група I41/amd) [1–3]. До початку нашого дослідження у системі Dy-Ga-Ge було відомо лише про існування тернарної фази DyGa0,15Ge1,85 зі структурою типу PrGe1,91 (символ Пірсона oS24, просторова група *Сттт, a* = 4,102, *b* = 29,896, *c* = 3,339 Å) [4]. Зразки для дослідження (склади Dy_{33,3}Ga_{61,7}Ge₅, Dy_{33,3}Ga_{56,7}Ge₁₀, Dy_{33,3}Ga_{51,7}Ge₁₅ та Dy_{33.3}Ga_{46.7}Ge₂₀) синтезували електродуговим сплавлянням чистих металів (вміст основного компонента: Dy \ge 99,9, Ga \ge 99,99, Ge \ge 99,999 мас.%) в атмосфері аргону на водоохолоджуваному мідному поді електродугової печі, оснащеної вольфрамовим електродом. Для очищення атмосфери як гетер використали пористий титан. Сплави гомогенізували у вакуумованій кварцовій ампулі при 600 °С протягом 720 год, після чого загартували у холодній воді. Після сплавляння, а також після розбивання ампули зразки перевірили на втрату маси, яка не перевищила 1 %. Фазовий аналіз і уточнення параметрів елементарних комірок провели за масивами рентгенівських порошкових дифракційних даних, отриманими на дифрактометрах ДРОН-2.0М (проміння Fe Ka) і STOE STADI Р (проміння Cu Ka₁) за допомогою пакета програм

[©] Токайчук Я., Деленко Т., Гладишевський Р., 2014

FULLPROF Suite [5]. Уточнення параметрів профілю та структури виконано методом Рітвельда. Умови експерименту та результати уточнення структур наведено в табл. 1. Експериментальні, розраховані та різницеві дифрактограми окремих зразків зображені на рис. 1. З огляду на подібні значення факторів розсіювання рентгенівського проміння атомами Ga i Ge, їхні співвідношення у статистичних сумішах приймали такими, що дорівнюють співвідношенням компонентів у вихідних складах сплавів. Хімічний склад двох сплавів підтвердили локальним енергодисперсійним рентгенівським спектральним аналізом, використовуючи спектрометр ЕДАР і скануючий електронний мікроскоп РЕММА-102-02. Фотографії мікроструктур сплавів зображено на рис. 2, а визначений вміст елементів у сплавах наведено в табл. 2.

Таблиця	1

Умови експерименту та результати уточнення кристалічної структури фаз DyGa _{2-x} Ge _x						
Склад зразка, ат.%		$Dy_{33,3}Ga_{61,7}Ge_5Dy_{33,3}Ga_{56,7}Ge_{10}Dy_{33,3}Ga_{51,7}Ge_{15}Dy_{33,3}Ga_{46,7}Ge_2$				
Фаза		$DyGa_{1,85}Ge_{0,15}$	$DyGa_{1,7}Ge_{0,3}$	$DyGa_{1,55}Ge_{0,45}$	$DyGa_{1,4}Ge_{0,6}$	
Структурний тип		AlB_2	AlB_2	AlB_2	α -ThSi ₂	
Символ Пірсона		hP3	hP3	hP3	<i>tI</i> 12	
Просторова група		P6/mmm	P6/mmm	P6/mmm	$I4_1/amd$	
Параметри елементарної						
комірки:	а,	4,19572(7)	4,18454(15)	4,17600(13)	4,16411(9)	
Å		4,07403(7)	4,0844(3)	4,0951(2)	14,4832(3)	
	С,					
Å						
Об'єм комірки V , Å ³		62,111(2)	61,938(5)	61,847(4)	251,135(9)	
Кількість формульних		1	1	1	4	
одиниць Z		1	1	1		
Параметр текстури	G	0,832(4)	0,952(4)	0,911(4)	0,959(3)	
[напрям]		[110]	[001]	[001]	[110]	
Дифрактометр		Stoe Stadi P	ДРОН-2.0М	ДРОН-2.0М	Stoe Stadi P	
Проміння		Cu $K\alpha_1$	Fe Kα	Fe Ka	Cu $K\alpha_1$	
Метод сканування		$\theta/2\theta$	$\theta/2\theta$	$\theta/2\theta$	$\theta/2\theta$	
Інтервал 2 θ , град.		6-107	20-100	20-100	6-118	
Крок сканування, град.		0,015	0,05	0,05	0,015	
Час сканування в точці, с		380	3	3	380	
Параметри профілю:	U	0,0110(15)	-0,09(2)	-0,068(18)	0,0093(16)	
	V	-0,0005(16)	0,017(3)	0,16(2)	-0,0007(17)	
	W	0,0132(4)	0,022(7)	0,008(6)	0,0108(4)	
Параметр змішування		0,432(16)	0,401(18)	0,416(19)	0,40(2)	
Кількість уточнених		17	17	17	21	
параметрів		17	17	17	21	
Фактори достовірності:	$R_{\rm B}$	0,0542	0,0411	0,0334	0,0562	
	R_F	0,0644	0,0443	0,0377	0,0518	
	$R_{\rm p}$	0,0165	0,0191	0,0285	0,0145	
	$R_{\rm wp}$	0,0210	0,0358	0,0369	0,0185	
	χ^2	1,25	1,14	1,17	1,76	

48

Рис. 1. Експериментальні (кружки), розраховані (лінії) та різницеві між експериментальними та розрахованими (знизу) дифрактограми зразків складу $Dy_{33,3}Ga_{61,7}Ge_5$ (*a*) та $Dy_{33,3}Ga_{46,7}Ge_{20}$ (δ) (проміння Cu *Ka*). Вертикальні риски позначають положення відбить індивідуальних фаз

Рис. 2. Фотографії мікроструктур зразків Dy_{33,3}Ga_{61,7}Ge₅ (*a*) та Dy_{33,3}Ga_{46,7}Ge₂₀ (*б*)

Таблиця 2

Результати локального енергодисперсійного рентгенівського спектрального аналізу сплавів Dy_{33.3}Ga_{61.7}Ge₅ та Dy_{33.3}Ga_{46.7}Ge₂₀

	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Вихідний склад сплаву		Вміст елементів, ат. %	ŧ
Dy _{33,3} Ga _{61,7} Ge ₅	33(1)	62(1)	5(1)
Dy _{33,3} Ga _{46,7} Ge ₂₀	36(1)	42(2)	21(2)

За результатами усереднення трьох значень.

Заміщення атомів Ga на атоми Ge у бінарній сполуці DyGa₂ (структурний тип AlB₂, символ Пірсона *hP*3, просторова група *P6/mmm*, a = 4,199, c = 4,066 Å [6]) приводить до утворення твердого розчину заміщення DyGa_{2-1,55}Ge_{0-0,45} (0–15 ат.% Ge) вздовж ізоконцентрати 33,3 ат.% Dy. Кристалічну структуру цього твердого розчину уточнили за дифрактограмами трьох зразків різних складів (див. табл. 1). У межах області гомогенності зі збільшенням вмісту Ge параметр *a* елементарної комірки зменшується, тоді як параметр *c* збільшується (a = 4,199-4,17600(13), c = 4,066-4,0951(2) Å). Подальше збільшення вмісту Ge приводить до утворення тернарної сполуки DyGa_{1,4}Ge_{0,6} (структурний тип α-ThSi₂, символ Пірсона *tI*12, просторова група *I*4₁/*amd*, a = 4,16411(9), c = 14,4832(3) Å). Координати та ізотропні параметри зміщення атомів у структурах DyGa_{1,85}Ge_{0,15} та DyGa_{1,4}Ge_{0,6} наведено в табл. 3, 4, а елементарні комірки і координаційні многогранники зображено на рис. 3. Міжатомні віддалі та координаційні числа атомів наведено в табл. 5, 6.

Таблиця 3

Координати та ізотропні параметри зміщення атомів у структурі DyGa₁₈₅Ge₀₁₅

		<u> </u>		1 1 1 1	00 0,100
Атом	ПСТ	x	У	Z	$B_{\rm iso}, {\rm \AA}^2$
Dy	1 <i>a</i>	0	0	0	0,49(3)
M	2d	1/3	2/3	1/2	1,61(4)
16 0.0050	0.0750				

M = 0.925Ga + 0.075Ge

Таблиця 4

					тиолиця +
Координати та ізотропні параметри зміщення атомів у структурі DyGa $_{ m 1.4}{ m Ge}_{ m 0.6}$					
Атом	ПСТ	x	у	Z	$B_{\rm iso}, {\rm \AA}^2$
Dy	4 <i>e</i>	0	3/4	1/8	0,43(4)
М	8 <i>d</i>	0	1/4	0,29290(9)	1,78(6)
M = 0.7 Ga + 0.3 Ge					

Таблиця 5

Міжатомні віддалі та координаційні числа атомів у структурі DyGa_{1.85}Ge_{0.15}

Атс	ОМИ	<i>δ</i> , Å	КЧ
Dy	– 12 M	3,16502(3)	
	– 2 Dy	4,07403(7)	20
	– 6 Dy	4,19572(7)	
М	- 3 M	2,42257(9)	0
	- 6 Dy	3,16502(3)	9

M = 0.925Ga + 0.075Ge

Таблиця б

Міжатомні віддалі та координаційні числа атомів у структурі DyGa _{1.4} Ge _{0.6}				
Ате	ОМИ	<i>δ</i> , Å	КЧ	
Dy	– 12 M	3,1755(5)		
	- 2 Dy	4,16411(9)	20	
	– 6 Dy	4,17674(7)		
М	- 3 M	2,3781(18)	0	
	– 6 Dy	3,1755(5)	9	
$M = 0.7C_{2} \pm 0.2C_{2}$				

M = 0,7Ga + 0,3Ge

Рис. 3. Елементарні комірки та координаційні многогранники атомів у структурах DyGa_{1,85}Ge_{0,15} (*a*) та DyGa_{1,4}Ge_{0,6} (*δ*)

Структурні типи AlB₂ та α-ThSi₂ належать до структур з тригональнопризматичною координацією атомів малого розміру (клас 10 за систематикою П.І. Крип'якевича [7]). У структурі типу AlB₂, яка є найпростішою в цьому класі, атоми великого розміру (Al) містяться у вершинах тригональних призм, а атоми малого розміру (В) - у їхніх центрах. Ці призми сполучені основами вздовж кристалографічного напряму [001] і прямокутними гранями перпендикулярно до нього. Структуру типу α-ThSi₂ можна скласти, аналогічно до AlB₂, з тригональних призм, однак, на відміну від структури типу AlB₂, шари призм з атомами малого розміру (Si) в центрах, що чергуються вздовж осей четвертого порядку (кристалографічного напряму [001]), розвернуті один відносно іншого на 90° (рис. 4). Структурні типи AlB₂ та α-ThSi₂ відрізняються один від одного сполученням малих за розміром атомів: у структурі типу AlB₂ ці атоми утворюють плоскі графітоподібні сітки, тоді як у структурі типу α-ThSi₂ – тривимірний каркас. Ця особливість виявляється у характері зміни параметрів елементарної комірки в межах твердого розчину заміщення на основі DyGa₂: зі збільшенням вмісту Ge, що супроводжується збільшенням концентрації валентних електронів, простежується зменшення параметра a та збільшення параметра c. Таку особливість пояснюють тим, що в разі заміщення атомів Ga на атоми Ge збільшується частка ковалентного зв'язку між атомами статистичної суміші Ga/Ge, що приводить до стиснення тригональних призм [MDy₆] (параметр *а* елементарної комірки, який відповідає найкоротшій віддалі М-М) та одночасного їхного видовження вздовж кристалографічного напряму [001] (параметр с). Ця ж тенденція простежується і в разі переходу до тернарної сполуки DyGa_{1.4}Ge_{0.6} зі структурою типу α-ThSi₂: найкоротша віддаль М-М (2,3781(18) Å) є коротшою, ніж відповідна віддаль у структурі DyGa_{1,55}Ge_{0,45} (2,42257(9) Å).

Рис. 4. Укладка тригональних призм $[MDy_6]$ у структурах $DyGa_{1,85}Ge_{0,15}$ (тип AlB_2) (*a*) та $DyGa_{1,4}Ge_{0,6}$ (тип α -ThSi₂) (*b*)

- 1. Спека М.В. Фазові рівноваги в системах Y-{Al,Si,Ge}-Ga, кристалічна структура і властивості потрійних сполук : автореф. дис. ... канд. фіз.-мат. наук. К., 2003. 25 с.
- 2. Red Book. Constitutional Data and Phase Diagrams of Metallic Systems / Ed. G. Effenberg. Materials Park (Ohio) : ASM International. 1999. Vol. 41.
- Токайчук Я.О. Синтез, структура та властивості нових сполук галію з *p*-елементами IV групи та рідкісноземельними металами церієвої підгрупи : автореф. дис. ... канд. хім. наук. Львів, 2004. 20 с.
- Пукас С., Мельник А., Куприсюк В., Гладишевський Р. Вплив добавок Ga(In) на структуру дигерманідів Dy, Но та Ег // Зб. наук. праць 9 наук. конф. "Львівські хімічні читання – 2003". Львів, 2003. С. НЗ6.
- 5. *Rodríguez-Carvajal J.* Recent developments of the Program *FULLPROF //* Commission on Powder Diffraction (IUCr), Newsletter 2001. Vol. 26. P. 12–19.
- 6. *Haszko S.E.* Rare-earth gallium compounds having the aluminum-boride structure // Trans. Metall. Soc. AIME. 1961. Vol. 221. P. 201–204.
- 7. *Крипякевич П.И.* Структурные типы интерметаллических соединений. М.: Наука, 1977. 290 с.

STRUCTURE TRANSFORMATIONS IN DyGa_{2-x}Ge_x ($0 \le x \le 0.6$)

Ya. Tokaychuk, T. Delenko, R. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine, e-mail: tokaychuk@mail.lviv.ua

The interaction between the components in the Ga-rich part of the section $DyGa_{2-x}Ge_x$ was studied by means of X-ray powder diffraction and energy dispersive X-ray spectral analysis.

Progressive replacement of Ga atoms by Ge atoms in the binary compound DyGa₂ leads to the formation of a substitutional solid solution $DyGa_{2-x}Ge_x$ (x = 0–0.45) with AlB₂-type structure (Pearson symbol hP3, space group P6/mmm, a = 4.17600(13), c = 4.0951(2) Å for x = 0.45) and a ternary compound DyGa_{1.4}Ge_{0.6} (x = 0.6) with structure type α -ThSi₂ (Pearson symbol *t*/12, space group $I4_1/amd$, a = 4.16411(9), c = 14.4832(3) Å). Both structure types are characterized by trigonalprismatic coordination of the small atoms. The structure type AlB_2 is built from trigonal prisms formed by Al atoms around B atoms. The prisms are connected by their bases along the crystallographic direction [001] and by rectangular faces along <100>. The structure type α -ThSi₂ is also built from trigonal prisms, here formed by Th atoms around Si atoms. However, consecutive layers of trigonal prisms stacked along the crystallographic direction [001] are rotated by 90°. As a consequence, the structure types AlB₂ and α -ThSi₂ differ also in the connection of the small atoms; in the AlB₂ type these atoms form planar graphite-like nets, whereas in the structure type α -ThSi₂ they form a 3D-network. This peculiarity explains the variation of the unit-cell parameters within the solid solution $DyGa_{2x}Ge_x$ based on the binary compound $DyGa_2$. The fraction of covalent bonding between the atoms of the statistical mixture Ga/Ge increases with increasing Ge content, and therefore, the unit-cell parameter a decreases, while the unit-cell parameter c increases.

Key words: dysprosium, gallium, germanium, X-ray powder diffraction, ternary compound, crystal structure.

СТРУКТУРНЫЕ ПЕРЕОБРАЗОВАНИЯ В DyGa_{2-x}Ge_x ($0 \le x \le 0,6$)

Я. Токайчук, Т. Деленко, Р. Гладышевский

Львовский национальный университет имени Ивана Франко, ул. Кирилла и Мефодия, 6, 79005 Львов, Украина, e-mail: tokaychuk@mail.lviv.ua

Замещение атомов Ga на атомы Ge в двойном соединении DyGa₂ приводит к образованию твердого расствора замещения DyGa_{2-x}Ge_x (x = 0-0,45) со структурой типа AlB₂ (символ Пирсона *hP*3, пространственная группа *P6/mmm*, a = 4,17600(13), c = 4,0951(2) Å для x = 0,45) и тройного соединения DyGa_{1.4}Ge_{0.6} (структурный тип α -ThSi₂, символ Пирсона *tl*12, пространственная группа *I4*₁/*amd*, a = 4,16411(9), c = 14,4832(3) Å). При увеличении содержания Ge в твердом расстворе DyGa_{2-x}Ge_x увеличивается доля ковалентной связи между атомами статистической смеси Ga/Ge и, соответственно, параметр *a* элементарной ячейки уменьшаеться, а параметр *c* увеличиваеться.

Ключевые слова: диспрозий, галлий, германий, рентгеновский дифракционный метод порошка, тройное соединение, кристаллическая структура.

Стаття надійшла до редколегії 31.10.2013 Прийнята до друку 06.01.2014