ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2015. Випуск 56. Ч. 1. С. 53–61 Visnyk of the Lviv University. Series Chemistry. 2015. Issue 56. Pt. 1. P. 53–61

УДК 546:548.736.4

СИСТЕМИ {La, Tb}-Zn-{Sn, Pb}

І. Ощаповський, В. Павлюк

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005, Львів, Україна e-mail: romaniuk@ua.fm

Методами рентгенофазового, рентгеноструктурного і, частково, локального рентгеноспектрального аналізів досліджено взаємодію компонентів у системах {La, Tb}–Zn–{Sn, Pb}, уперше побудовано ізотермічні перерізи діаграм стану при 600 °C. Знайдено 17 нових тернарних сполук, для 14 з яких уперше визначено кристалічні структури. Знайдено 5 нових структурних типів: Tb₁₃ZnSn₁₃, Tb_{0.83}Zn_{0.14}Sn_{2,86}, LaZn₄, β Tb₃Sn₇ та Tb₁₀ZnPb₉.

Ключові слова: Лантан, Тербій, Цинк, Станум, Плюмбум, потрійна система, фазові рівноваги, кристалічна структура, тернарні сполуки.

Сьогодні системи P3M–Zn–{Sn, Pb} є мало вивченими. Відомі ізотермічні перерізи діаграм стану лише для систем {Nd, Gd}–Zn–{Sn, Pb} [1, 2]. Інші дослідження присвячені, головно, пошуку тернарних сполук та визначенню їхніх структур [3–10]. Вивчення систем {La, Tb}–Zn–{Sn, Pb}, що містять P3M з ітрієвої та церієвої підгруп, дасть змогу визначити основні закономірності утворення сполук і фазові рівноваги в системах P3M–Zn–{Sn, Pb} та зробити прогноз для ще не досліджених систем.

У процесі дослідження систем {La, Tb}–Zn–{Sn, Pb} готували зразки з чистих компонентів методами дугового плавлення в атмосфері аргону, плавленням у танталових контейнерах, корундових тиглях та вакуумованих кварцових ампулах, а також спіканням порошків чистих компонентів (для систем із Tb) і лігатур La–Zn, La–Sn, La–Pb (для систем із La). Спікання порошків металів було основним методом синтезу. Надалі всі зразки піддавали гомогенізаційному відпалу протягом 30 діб при 600 °C.

Масиви дифракційних даних одержано на порошкових дифрактометрах ДРОН-2.0, ДРОН-3.0, АДП-2, STOE STADI P, Philipps X'PERT Pro та на монокристальних дифрактометрах XCALIBUR, Bruker Kappa APEX II, Xcalibur Eos Gemini ultra, Agilent SuperNova Dual, Stoe IPDS-IIT, IPDS-II.

Система Tb–Zn–Sn. Фазові рівноваги в системі Tb–Zn–Sn при 600 °C визначено на підставі досліджень 94 подвійних і потрійних сплавів 69 складів (рис. 1). За температури відпалу в системі утворюється сім тернарних сполук: TbZnSn, TbZnSn₂, ~TbZn₃Sn, TbZn₃Sn₂, TbZn₃Sn₂, TbZn₃Sn₂, TbZn₃Sn₂, TbZn₃Sn₂, TbZn₃Sn₂, TbZn₃Sn₂, TbZn₃Sn₂, TbZn₃Sn₃, TbZn₃, TbZn₃Sn₃, TbZn₃Sn₃, TbZn₃, TbZn₃Sn₃, TbZn₃Sn₃, TbZn₃Sn₃, TbZn₃Sn₃, TbZn₃Sn₃, TbZn₃, TbZn₃,

Ми вперше знайшли сполуки TbZnSn₂, ~TbZn₃Sn, TbZn_xSn_{2-x}, Tb₁₃ZnSn₁₃ i Tb_{0,83}Zn_{0,14}Sn_{2,86} та монокристал метастабільної за температури відпалу сполуки TbZn₂₀Sn₂. Підтверджено існування бінарних сполук при 600 °C: TbZn, TbZn₂, TbZn₃, Tb₃Zn₁₁, Tb₁₃Zn₋₅₈, Tb₂Zn₁₇ i TbZn₁₂, Tb₅Sn₃, Tb₅Sn₄, Tb₁₁Sn₁₀, TbSn₂, α Tb₃Sn₇.

[©] Ощаповський І., Павлюк В., 2015

Рис. 1. Ізотермічний переріз діаграми стану системи Тb-Zn-Sn при 600 °С.

Окрім них утворюються дві фази, стабілізовані додаванням третього компонента: Tb₆Zn_{23-x}Sn_x i TbZn_xSn_{3-x} (структурний тип (CT) AuCu₃).

Бінарна сполука TbSn₃ зі структурою типу Gd_4Sn_{11} розкладається при ~450 °C і за температури відпалу у подвійних та потрійних сплавах її нема. Існування сполук TbSn і Tb₄Sn₅ у потрійних сплавах не підтверджено рентгенівськими методами.

Тернарні сполуки TbZn_xSn_{2-x} та TbZn_{2-x}Sn_x мають невеликі області гомогенності. Простежується утворення твердих розчинів заміщення на основі бінарних сполук TbZn_{2-x}Sn_x (x = 0-0,30), TbZn_{1-x}Sn_x (x = 0-0,17), Tb₂Zn_{17-x}Sn_x (x = 0-2,6) і стабілізованої фази Tb₆Zn_{23-x}Sn_x (x < 2,4). У сплавах системи трапляються обидві модифікації сполуки Tb₂Zn₁₇. На ізоконцентраті 33,3 ат. % Тербію є концентраційний поліморфізм фази TbZn_{2-x}Sn_x: твердий розчин з x = 0-0,30 у разі зміни вмісту Стануму перетворюється в тернарну сполуку з x = 0,5-0,76. Параметри структури, межі областей гомогенності тернарних і досліджених бінарних сполук систем {La, Tb}–Zn–{Sn, Pb} наведені в табл. 1.

54

Таблиця 1

55

Кристалографічні характеристики тернарних, досліджених бінарних сполук систем {La, Tb}–Zn–{Sn, Pb}. Виділено нові сполуки та результати, вперше отримані нами.

Формула	СТ	ПГ	x	Параметри комірки, Å			Посилання
				а	b	С	
$TbZn_xSn_{2-x}$	CeNiSi ₂	Cmcm	0,2	4,407(1)	16,308(3)	4,306(1)	[11]
x = 0,2-0,37			0,37	4,4056(3)	16,300(1)	4,3070(3)	
TbZnSn ₂	HfCuSi ₂	P4/nmm		4,3365(1)	-	9,8754(5)	[7]
TbZnSn	YPtAs	$P6_3/mmc$		4,4799(6)	-	15,816(3)	[7,10]
Tb ₁₃ ZnSn ₁₃	власний	I4/mmm		11,599(2)	-	27,247(5)	[12]
$TbZn_{2-x}Sn_x$	CaIn ₂	P6 ₃ /mmc	0,5	4,5390(3)	-	7,261(1)	[5]
x = 0,5-0,76			0,76	4,535(1)	-	7,250(1)	
~TbZn ₃ Sn	невідомий						
Tb _{0,83} Zn _{0,14} Sn _{2,86}	власний	Pmm2		4,332(3)	4,427(3)	5,479(4)	
βTb ₃ Sn ₇	власний	Pmmm		4,3352(1)	4,4251(1)	26,7006(9)	[13]
TbZn ₂₀ Sn ₂	CeCr ₂ Al ₂₀	Fd-3m		14,2205(3)	-	-	[14]
$LaZn_{1+x}Sn_2$	UCo _{1,41} Sn _{1,85}	P4/nmm		4,485(1)	-	10,569(3)	[15]
x = 0,74-0,44				4,498(1)	-	10,556(1)	
LaZnSn	YPtAs	$P6_3/mmc$		4,588	-	17,044	[10]
La ₅ Zn ₂ Sn	Mo ₅ SiB ₂	I4/mcm		8,3277(1)	-	14,3339(3)	[16]
$LaZn_{2-x}Sn_x$	AlB ₂	P6/mmm		4,640	-	3,965	[5]
x = 0,5-0,6				4,701(2)	-	3,970(2)	
LaZnSn ₂	CuInPt ₂	P-42m		4,754(5)	-	4,764(9)	
$La(Zn,Sn)_2$	невідомий						
LaZn _{0,26} Sn _{0,49}	NaCl	Fm-3m		5,6437	-	-	
LaZn ₄	власний	Cmcm		6,340(2)	10,312(3)	6,122(2)	[17]
LaZn ₅	CaCu ₅	P6/mmm		5,465(2)	-	4,257(2)	[18]
LaZn _{12,37}	NaZn ₁₃	Fm-3c		12,094(1)	-	-	[19]
Tb ₁₀ ZnPb ₉	власний	Fmmm		16,579(3)	17,099(3)	39,850(8)	
~TbZnPb ₂	невідомий						
$\sim Tb_{1,6}ZnPb_{1,2}$	невідомий						
$TbPb_{2-x}(x \approx 0,5)$	$CuZr_2$	I4/mmm		3,232(1)	-	15,875(1)	
$La_5Zn_{2-x}Pb_{1+x}$	Mo_5SiB_2	I4/mcm	0,20	8,167(1)	-	15,367(3)	
x = 0,20-0,32			0,32	8,133(2)	-	15,635(4)	
$La_5 Zn_{1-x} Pb_{2+x}$ $x = 0,6$	Nb ₅ Sn ₂ Si	I4/mcm		12,763(2)	-	6,368(1)	[20]
$LaZnPb_2$	AuCu ₃	Pm-3m		4,9011(1)	-	-	
LaPb ₃				4,9028	-	-	[21]
LaZnPb	YPtAs	$P6_3/mmc$		4,6492(2)	-	17,011(1)	
$LaZn_{2-x}Pb_x$ $x = 0,22$	AlB_2	P6/mmm		4,660(4)	-	4,016(4)	

Система La–Zn–Sn. Фазові рівноваги в системі La–Zn–Sn визначено на підставі досліджень 62 подвійних і потрійних сплавів 59 складів (рис. 2). У системі La–Zn–Sn за температури відпалу існує сім тернарних сполук: LaZnSn, LaZnSn₂, LaZn_{2-x}Sn_x (x = 0,5-0,6), LaZn_{1+x}Sn₂ (x = 0,44-0,74), La(Zn,Sn)₂, La₅Zn₂Sn, LaZn_{0,26}Sn_{0,49}. Сполуки LaZnSn₂, LaZn_{1+x}Sn₂, La₅Zn₂Sn i LaZn_{0,26}Sn_{0,49}. Знайдено нами вперше. Зафіксовано утворення таких бінарних сполук при 600 °C: LaZn, LaZn₂, LaZn₄, La₃Zn₂, LaZn₅, La₂Zn₁₇, LaZn₁₁ i LaZn_{12,37}, La₅Sn₃, La₅Sn₄, La₁₁Sn₁₀, αLaSn, La₃Sn₄, La₂Sn₃, La₃Sn₅, LaSn₅, LaSn₅, LaSn₇ i LaSn₃. Сполуку βLaSn (утворюється у подвійних сплавах понад 1000 °C [22]) та гіпотетичну сполуку LaSn₂ у сплавах не знайдено. Підтверджено існування фази La₃Sn, можливо, стабілізованої додаванням Цинку.

Уперше визначено структури сполук LaZn₄, LaZn₅ i LaZn_{12,37} методом монокристала, перша з яких є новим структурним типом. Серед досліджених фаз помітні області гомогенності мають тернарні сполуки LaZn_{1+x}Sn₂ i LaZn_{2-x}Sn_x (x = 0,5-0,6, CT AlB₂) та тверді розчини заміщення на основі бінарних сполук LaZn_{2-x}Sn_x (x = 0-0,4, CT KHg₂) і LaZn_{12,37} (у межах LaZn_{12,37}–LaZn_{11,5}Sn_{0,8}, CT NaZn₁₃). Межі області гомогенності LaZn_{12,37} визначали за даними рентгеноструктурного аналізу (PCA) сплаву La₂Zn₁₅Sn₂.

Рис. 2. Ізотермічний переріз діаграми стану системи La-Zn-Sn при 600 °C.

На ізоконцентраті 33,3 ат. % La подібно до системи Tb–Zn–Sn простежується утворення твердого розчину заміщення на основі бінарної сполуки LaZn₂, структура якого споріднена зі структурою тернарної сполуки LaZn_{2-x}Sn_x (x = 0,5-0,6). У разі зміни вмісту Sn структури цих двох фаз можуть переходити одна в одну.

56

Система Тb-Zn-Pb. Фазові рівноваги в системі Tb-Zn-Pb при 600 °C визначено на підставі досліджень 56 подвійних і потрійних сплавів 53 складів (рис. 3). За температури відпалу знайдено три нові тернарні сполуки складів Tb₁₀ZnPb₉, ~TbZnPb₂ та ~Tb_{1,6}ZnPb_{1,2}. Перша з них є новим структурним типом, дві інші – невідомої структури. Окрім них, у сплавах перебувають у рівновазі такі бінарні сполуки: TbZn, TbZn₂, TbZn₃, Tb₃Zn₁₁, Tb₁₃Zn_{~58}, Tb₂Zn₁₇ i TbZn₁₂, Tb₅Pb₃, Tb₅Pb₄, TbPb_{2-x} i TbPb₃. Бінарну сполуку TbPb_{2-х} ми знайшли вперше і для неї запропонували модель структури. Подібно до раніше вивченої нами системи Tb-Zn-Sn, у системі Tb-Zn-Pb знайдено стабілізовану додаванням третього компонента фазу Tb₆Zn_{23-x}Pb_x. За результатами рентгенофазового (РФА) та рентгеноструктурного аналізу (РСА) потрійних сплавів встановлено помітну розчинність Pb у бінарних сполуках TbZn (TbZn_{1-x}Pb_x, x = 0-0,09) та Tb_2Zn_{17} ($Tb_2Zn_{17-x}Pb_x$, x = 0-2). Сполука Tb_5Pb_3 утворює твердий розчин Тb_{5-4.63}Zn_{0-0.42}Pb_{3-2.67} унаслідок включення атомів Zn в октаедричні пустоти з одночасним відніманням атомів Tb і заміщенням частини атомів Pb на Zn. За даними EDX-аналізу, TbPb_{2-х}, може розчиняти до 4 ат. % Zn. У сплавах системи за температури відпалу трапляється, головно, фаза $Tb_2Zn_{17-x}Pb_x$ зі структурою типу $Th_2Ni_{17-x}Pb_x$

Рис. 3. Ізотермічний переріз діаграми стану системи Тb-Zn-Pb при 600 °C.

Система La–Zn–Pb. Фазові рівноваги у системі La–Zn–Pb при 600 °C визначено на підставі досліджень 53 подвійних і потрійних сплавів 44 складів (рис. 4). За температури відпалу існують чотири тернарні сполуки: LaZnPb, LaZn_{2-x}Pb_x (x = 0,22), La₅Zn_{2-x}Pb_{1+x} (x = 0,20-0,32) і La₅Zn_{1-x}Pb_{2+x} (x = 0,60). Окрім них, ми знайшди нову фазу складу LaZn_xPb_{3-x} (x = 2), що є ізоструктурною до бінарної сполуки LaPb₃ і має близьке значення параметра комірки. Наявні дані РФА, РСА та EDX-аналізу (зерна складу La₂₅Zn₁₄Pb₆₁) не дають однозначної відповіді, чи ця фаза – самостійна сполука, чи твердий розчин заміщення на основі бінарної сполуки LaPb₃. У сплавах системи за температури відпалу підтверджено існування таких бінарних сполук: LaZn, LaZn₂, LaZn₄, La₃Zn₂₂, LaZn₅, La₂Zn₁₇, LaZn₁₁ і LaZn_{12,37}, La₅Pb₃, La₅Pb₄, La₄Pb₃, La₃Pb₄, LaPb₂ і LaPb₃. Сполуку La₃Pb у сплавах системи La–Zn–Pb ми не знайшли.

Рис. 4. Ізотермічний переріз діаграми стану системи La-Zn-Pb при 600 °C.

Серед досліджених сполук помітну область гомогенності має тернарна сполука La₅Zn_{2-x}Pb_{1+x}, зафіксовано утворення твердих розчинів заміщення на основі бінарних сполук LaZn_{12,37} (у межах LaZn_{12,37}–LaZn_{11,6}Pb_{0,91}) та LaPb₃ (LaZn_xPb_{3-x}, принаймні для x = 0-0,56 за даними EDX-аналізу).

На підставі кристалохімічного аналізу тернарних сполук можна стверджувати, що для систем {La, Tb}–Zn–{Sn, Pb} спільним є утворення біля ізоконцентрат 22 ат. % РЗМ сполук зі структурами, спорідненими до СТ AuCu₃ (рис. 5, *a*), та сполук зі структурами, спорідненими до СТ AlB₂ (див. рис. 5, *б*), на ізоконцентратах 33,3 ат. % РЗМ. Лише для систем із Tb характерне утворення сполук із невпорядкованими структурами з гігантськими елементарними комірками (див. рис. 5, *в*) в області, близькій до складів TbSn або TbPb (50 ат. % Tb), для систем із La – утворення сполук на ізоконцентраті 62,5 ат. % La (див. рис. 5, *г*). У сполук із багатої La області (див. рис. 5, *д*) координаційне оточення атома найбільшого розміру (La) поступово перебудовується з ромбододекаедра до тригон-тетрагексаедра і далі до кубооктаедра.

У поки що не вивчених системах R–Zn–{Sn, Pb} можна очікувати утворення сполук у багатій рідкісноземельним металом області для легких P3M та існування сполук зі складними розупорядкованими структурами біля складів RSn або RPb для важких P3M.

Рис. 5. Групи споріднених структур тернарних сполук і стабілізованих фаз. Спільні фрагменти: *a* – координаційний многогранник (КМ) РЗМ похідний від кубооктаедра; *б* – КМ найменшого атома, похідний від тригональної призми; *в* – лише для систем з Tb – KM атомів Zn, Sn або Pb похідні від тетрагональної антипризми;

г – лише для систем з La – КМ атомів Zn, Sn або Pb похідні від тетрагональної антипризми;

д − лише для систем з La − перехід КМ атомів La від ромбододекаедра до кубооктаедра.

- 1. Salamakha P. S., Demchenko P. Y., Sologub O. L., Bodak O. I. X-ray Investigation of the Ternary Nd-Zn-(Sn,Pb) Systems // Polish J. Chem. 1999. Vol. 73. P. 885–888.
- Демченко П. Ю. Фазові рівноваги та кристалічна структура сполук у системах {Nd, Gd}-Zn-{Si, Ge, Sn, Pb} та деяких споріднених системах: Автореф. дис. ... канд. хім. наук. Львів, 2002. 20 с.
- Merlo F., Pani M., Fornasini M. L. RMX compounds formed by alkaline earths, europium and ytterbium II: Ternary phases with M = Zn, Cd and X = Si, Ge, Sn, Pb // J. Less-Common Met. 1991. Vol. 171. P. 329–336.
- Guloy A. M., Corbett J. D. Exploration of the Interstitial Derivatives of La₅Pb₃ (Mn₃Si₃-Type) // J. Solid State Chem. 1994. Vol. 109. P. 352–358.
- 5. *Rossi D., Ferro R.* On $RZn_{1,5}X_{0,5}$ intermetallic compounds (R = rare earth, X = germanium, tin) // J. Alloys Compd. 1996. Vol. 236. P. 212–215.
- Pöttgen R. Syntheses and crystal structures of EuZnIn, EuPtIn and EuZnSn: three different site occupancies of the transition metal and indium (tin) atoms on the copper position of the CeCu₂ type // Z. Kristallogr. 1996. Vol. 211. P. 884–890.
- 7. *Pavlyuk V., Oshchapovsky I., Marciniak B.* Crystal structure of the TbZnSn₂ and TbZnSn ternary compounds // J. Alloys Compd. 2009. Vol. 477. P. 145–148.
- 8. *Verbovytskyy Yu., Latka K., Przewoznik J.* et al. On the new ternary *R*ZnSn₂ compounds with HfCuSi₂ structure type // Intermetallics. 2012. Vol. 20. P. 176–182.
- Hermes W., Rodewald U. Ch., Chevalier B. et al. The plumbide CeZnPb Structure, magnetism, and chemical bonding // Solid State Sci. International Symposium on Structure-Property Relationships in Solid-State Materials, May 2010. Vol. 12. P. 929–937.

- 10. *Manfrinetti P., Pani M. RZ*nSn (*R* = rare earth): a novel series of intermetallic compounds with the YPtAs structure type // J. Alloys Compd. 2005. Vol. 393. P. 180–184.
- 11. Ощаповський І., Павлюк В., Стецьків А. Дослідження області гомогенності сполуки TbZn_xSn_{2-x} // Вісн. Львів. ун-ту. Сер. хім. 2012. Вип. 53. С. 140–145.
- 12. Oshchapovsky I., Pavlyuk V., Fässler T. F., Hlukhyy V. Tb₁₃ZnSn₁₃: A novel intergrowth structure type // Chem. Met. Alloys. 2010. Vol. 3. P. 177–183.
- Oshchapovsky I., Pavlyuk V., Chumak I. Tb₃Sn₇: polymorphism and crystal structure of high-temperature modification // Acta Cryst. B. 2013. Vol. 69. P. 527–533.
- Oshchapovsky I., Pavlyuk V., Marciniak B., Różycka-Sokolowska E. The investigation of Zinc-rich region of Tb-Zn-Sn ternary system // XVIth Int. Sem. Phys. Chem. Solids (ISPCS'10). Abstr. 6–9 June, 2010, Lviv, Ukraine. P. 142.
- 15. *Ощаповський І. В., Павлюк В. В., Зелінська О. Я.* Синтез і кристалічна структура сполуки LaZn_{1,436}Sn₂ // XVIII Укр. конф. неорган. хімії: зб. тез доп., 27 червня-1 липня 2011 р., Харків, 2011. С. 188.
- Oshchapovsky I., Pavlyuk V., Dmytriv G. et al. La₅Zn₂Sn // Acta Cryst. E. 2011. Vol. 67. P. i65.
- 17. Oshchapovsky I., Pavlyuk V., Dmytriv G., Griffin A. Crystal structure of the LaZn₄ compound // Acta Cryst. C. 2012. Vol. 68. P. i37–i40.
- Oshchapovsky I., Zelinska O., Rozdzynska-Kielbik B., Pavlyuk V. Redetermination of LaZn₅ based on single crystal X-ray diffraction data // Acta Cryst. E. 2012. Vol. 68. P. i1.
- 19. Oshchapovsky I., Pavlyuk V., Dmytriv G., White F. LaZn_{12.37(1)}, a zinc-deficient variant of the NaZn₁₃ structure type // Acta Cryst. E. 2011. Vol. 67. P. i43.
- 20. Oshchapovsky I., Pavlyuk V., Dmytriv G., Harbrecht B. Pentalanthanum zinc diplumbide, $La_5Zn_{1-x}Pb_{2+x}$ ($x \approx 0.6$) // Acta Cryst. E. 2014. Vol. 70. P. i2–i3.
- 21. *Canepa F., Costa G. A., Olcese G. L.* Thermodynamic and magnetic properties of LaPb₃ and CePb₃// Solid State Commun. 1983. Vol. 45. P. 725–728.
- 22. *Dürr I.* Binäre Lanthan-Stannide mit Sn:La-Verhältnissen nahe 1:1 Synthesen, Kristallstrukturen, Chemische Bindung//Z. Anorg. Allg. Chem. 2012. Vol. 638. P. 163–176.

{La, Tb}–Zn–{Sn, Pb} SYSTEMS

I. Oshchapovsky, V. Pavlyuk

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine, e-mail: romaniuk@ua.fm

Ternary systems {La, Tb}–Zn–{Sn, Pb} were investigated in the whole concentration range for the first time using X-ray diffraction and energy-dispersive X-ray spectroscopy, isothermal sections at 600 °C were constructed. 17 new ternary compounds TbZnSn₂, ~TbZn₃Sn, TbZn_xSn_{2-x}, Tb₁₃ZnSn₁₃, Tb_{0,83}Zn_{0,14}Sn_{2,86}, TbZn₂₀Sn₂ (metastable at 600 °C), LaZnSn₂, LaZn_{1+x}Sn₂ (x = 0.44-0.74), La₅Zn₂Sn, LaZn_{0,26}Sn_{0,49}, Tb₁₀ZnPb₉,

~TbZnPb₂, ~Tb_{1,6}ZnPb_{1,2}, LaZnPb, LaZn_{2-x}Pb_x (x = 0.22), La₅Zn_{2-x}Pb_{1+x} (x = 0.20-0.32), La₅Zn_{1-x}Pb_{2+x} (x = 0.60) and new binary compound TbPb_{2-x} ($x \approx 0.5$) were found for the first time. The structures of 10 ternary and 4 binary compounds determined using single crystal diffraction data. Among them 5 new structure types were found: Tb₁₃ZnSn₁₃, Tb_{0.83}Zn_{0.14}Sn_{2.86}, LaZn₄, β Tb₃Sn₇ and Tb₁₀ZnPb₉. Series of ternary compounds with similar structure fragments are formed in systems both with La and Tb near lines with 22 and 33.3 at. % of rare earths. The formation of ternary compounds in the rare earth-rich region (62.5 at. % R) of the systems with La is observed. In the systems with Tb ternary compounds with complicated disordered structures near compositions TbSn or TbPb are formed.

Key words: rare earth metals, zinc, tin, lead, ternary systems, ternary compounds, crystal structure, phase equilibria.

Стаття надійшла до редколегії 31.10.2014 Прийнята до друку 30.12.2014