ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2015. Випуск 56. Ч. 1. С. 93–101 Visnyk of the Lviv University. Series Chemistry. 2015. Issue 56. Pt. 1. P. 93–101

УДК 546:548.736.4

НОВІ ТЕРНАРНІ СИЛІЦИДИ ГАДОЛІНІЮ ТА ОСМІЮ/ПЛАТИНИ

В. Михалічко, П. Демченко, Р. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна, e-mail: vitaliia.fedyna@gmail.com

За допомогою рентгенівської монокристальної та порошкової дифрактометрії і структурного аналізу визначено кристалічну структуру тернарних сполук Gd₂Os₃Si₅ та Gd₂Pt₃Si₅ (структурний тип U₂Co₃Si₅, символ Пірсона *ol*40, просторова група *Ibam*, параметри елементарної комірки: a = 9,6724(9), b = 12,0458(8), c = 5,6838(5) Å для Gd₂Os_{2,86(2}Si_{5,14(2)}; a = 9,9224(2), b = 11,3997(2), c = 5,99300(9) Å для Gd₂Pt₃Si₅). Координаційним многогранником атомів Gd є гексагональна призма з п'ятьма додатковими атомами, атомів Os чи Pt – тетрагональна піраміда і кубооктаедр, тоді як атомів Si – кубооктаедри та тригональна призма з туьома додатковими атомами. Кристалічну структуру сполук Gd₂Os₃Si₅ та Gd₂Pt₃Si₅ можна уявити як укладку шарів з многогранників атомів Gd, які сполучені гранями. Іншою особливістю структурного типу U₂Co₃Si₅ є формування вздовж кристалографічного напряму [001] нескінченних колон з многогранників атомів *d*-елемента у вигляді тетрагональних пірамід, утворених атомами Si. Аналіз значень функції локалізації електрона (ELF) для Gd₂Os₃Si₅ засвідчив зміщення електронної густини до більш електронегативних атомів (Os та Si).

Ключові слова: гадоліній, осмій, платина, силіцій, рентгенівська монокристальна та порошкова дифрактометрія, кристалічна й електронна структура.

У системах R–T–Si (R – рідкісноземельний метал, T – d-елемент) за складу $R_2T_3Si_5$ утворюються сполуки зі структурою, що належить до одного з чотирьох структурних типів: U₂Co₃Si₅ (символ Пірсона *ol*40, просторова група *Ibam*) [1], U₂Mn₃Si₅ (*tP*40, *P4/mnc*) [2], Nd₂Os₃Si₅ (*tP*48, *P4/mnc*) [3] та Lu₂Co₃Si₅ (*mS*40, *C2/c*) [4]. Структурний тип U₂Co₃Si₅ реалізується в системах R–Ru–Si (R = Tb, Er), R–Co–Si (R = Sc, Y, Ce, Gd-Er), R–Rh–Si (R = Y, La, Ce, Nd, Sm, Gd-Er), R–Ir–Si (R = Y, Ce, Tb, Lu), R–Ni–Si (R = Y, Ce, Nd, Sm, Gd-Tm), R–Pd–Si (R = Ce, Sm), R–Pt–Si (R = Ce, Sm) [5]. Ця праця присвячена синтезу та визначенню кристалічної структури нових тернарних сполук Gd₂Os₃Si₅ i Gd₂Pt₃Si₅.

Зразки складу $Gd_{20}T_{30}Si_{50}$ (ат. %) синтезували з компонентів високої чистоти методом електродугової плавки на мідному водоохолоджуваному поді в атмосфері очищеного аргону, використовуючи титан як гетер. Втрати під час приготування зразків не перевищували 1 % від загальної маси сплаву 1 г. Зразок $Gd_{20}Pt_{30}Si_{50}$ відпалили при 800 °С протягом 1 000 год.

Зі сплаву Gd₂₀Os₃₀Si₅₀ виділили монокристал, з якого надалі отримали масив дифракційних даних на монокристальному дифрактометрі Oxford Diffraction Super Nova (Мо K_{α} -випромінювання). Кристалічну структуру сполуки Gd₂Os₃Si₅ визначили прямими методами за допомогою пакета програм WinCSD [6]. Умови одержання масиву дифракційних даних та результати уточнення кристалічної структури сполуки Gd₂Os₃Si₅ (уточнений склад Gd₂Os_{2,86(2)}Si_{5,14(2)}) наведено в табл. 1, координати та ізотропні параметри зміщення атомів – у табл. 2.

[©] Михалічко В., Демченко П., Гладишевський Р., 2015

Таблиця 1

Експериментальні умови одержання масиву дифракційних даних та результати уточнення
кристалічної структури сполуки Gd ₂ Os ₃ Si ₅

Формула сполуки (структурний ти	п)	Gd ₂ Os _{2,86(2)} Si _{5,14(2)} (U ₂ Co ₃ Si ₅)
Молекулярна маса, $M_{\rm r}$		1003,14
Символ Пірсона, просторова група		oI40, Ibam
Параметри елементарної комірки:	<i>a</i> , Å	9,6724(9)
	<i>b</i> , Å	12,0458(8)
	<i>c</i> , Å	5,6838(5)
Об'єм елементарної комірки V, Å ³		662,2(2)
F(000)		1670
Розрахована густина D_X , г·см ⁻³		10,0603
μ (Mo K α), mm ⁻¹		79,1
20 _{тах} , град.		80
Кількість рефлексів:	виміряних	4437
A A	незалежних	495
	$3 F > 4\sigma(F)$	468
Інтервал значень h, k, l		$-16 \le h \le 16, -12 \le k \le 13,$
		$-7 \le l \le 7$
		22
Кількість уточнених параметрів		33
Вагова схема (w)		$1/\ln(F_{exp})^{-1}$
Фактори достовірності:	R_F	0,0761
	Rw	0,0773
	S	1,01
Залишкова електронна густина:	$\Delta \rho_{\text{max}}$, e A ⁻⁵	2,05
	$\Delta \rho_{\text{max}}$, e Å ⁻³	-1,89
		Таблиця 2

Координати та еквівалентні параметри зміщення атомів у структурі сполуки Gd₂Os_{2.86(2)}Si_{5,14(2)} (U₂Co₃Si₅, *oI*40, *Ibam*)

Атом	ПСТ	x	у	z	$B_{\rm eq},{ m \AA}^2$
Gd	8 <i>j</i>	0,2660(1)	0,36533(9)	0	0,41(3)
М	8 <i>j</i>	0,0948(1)	0,14612(7)	0	0,56(2)
Os2	4b	1/2	0	1/4	0,48(3)
Si1	8 <i>j</i>	0,33750(5)	0,09470(6)	0	0,41(9)
Si2	8g	0	0,2905(5)	1/4	0,50(9)
Si3	4a	0	0	1/4	0,80(14)
M 0 021(7) ($h_{2} + 0.0(0(7) G;$				

M = 0,931(7) Os + 0,069(7) Si.

Масив рентгенівських дифракційних даних для зразка $Gd_{20}Pt_{30}Si_{50}$ отримали на порошковому дифрактометрі STOE STADI Р (Си K_{a1} -випромінювання). Кристалічну структуру уточнено методом Рітвельда за допомогою пакета програм WinCSD [6] у припущенні структурного типу U₂Co₃Si₅. У табл. 3 наведено умови одержання масиву дифракційних даних і результати уточнення структури сполуки Gd₂Pt₃Si₅. Координати та ізотропні параметри зміщення атомів наведено в табл. 4. Графічний результат уточнення структури показано на рис. 1.

94

Рис. 1. Експериментальна (крапки), розрахована (лінія) та різницева (лінія внизу рисунка) дифрактограми зразка складу Gd₂₀Pt₃₀Si₅₀ (Сu Кα₁-випромінювання). Вертикальні риски вказують на положення відбить *hkl* фази Gd₂Pt₃Si₅.

Таблиця З

Експериментальні умови одержання масиву дифракційних даних та результати угочнення кристалічної структури сполуки Gd₂Pt₂Si₅

)
Формула сполуки (структурний тип)		$Gd_2Pt_3Si_5$ (U ₂ Co ₃ Si ₅)
Молекулярна маса, <i>M</i> _r		1040,24
Символ Пірсона, просторова група		oI40, Ibam
Параметри елементарної комірки:	a, Å b, Å c, Å	9,9224(2) 11,3997(2) 5,99300(9)
Об'єм елементарної комірки V, Å ³		677,88(3)
Розрахована густина <i>D</i> _X , г·см ⁻³		10,1915
Інтервал 20, град / крок, град. / час витримки в точці,	c	6-105 / 0,015 / 720
Параметри профілю:	U V W	0,037(5) 0,055(5) 0,002(1)
Фактори достовірності:	$egin{array}{c} R_I \ R_{ m p} \ R_{ m wp} \ R_{ m exp} \end{array}$	0,0444 0,1301 0,1097 0,0297
Кількість уточнених параметрів		22

На рис. 2 зображено проекцію елементарної комірки та координаційні многогранники атомів структури сполуки $Gd_2Pt_3Si_5$. Координаційним многогранником атомів Gd є гексагональна призма з п'ятьма додатковими атомами, атомів Pt – тетрагональна піраміда і кубооктаедр, тоді як атомів Si – кубооктаедри та тригональна призма з трьома додатковими атомами. Аналогічні координаційні многогранники атомів простежуються для структури сполуки $Gd_2Os_3Si_5$.

Таблиця 4

Координати та ізотропні параметри зміщення атомів у структурі сполуки Gd₂Pt₃Si₅ (U₂Co₃Si₅, *oI*40, *Ibam*)

Атом	ПСТ	x	y	z	$B_{\rm iso},{\rm \AA}^2$
Gd	8 <i>j</i>	0,2671(2)	0,3717(3)	0	1,07(5)
Pt1	8 <i>j</i>	0,1122(2)	0,1374(2)	0	1,19(4)
Pt2	4b	1/2	0	1/4	1,46(6)
Si1	8 <i>j</i>	0,356(1)	0,116(1)	0	1,3(3)
Si2	8g	0	0,2710(9)	1/4	1,0(2)
Si3	4a	0	0	1/4	1,0(3)

Суттєвого скорочення міжатомних віддалей у структурах цих сполук не виявлено (найкоротші відстані у досліджуваних структурах: δ Pt1-Si2 = 2,409(7) та δ Os1-Si2 = 2,408(5) Å). У ході порівняння фаз з Pt та Os зазначимо, що у структурі сполуки Gd₂Os₃Si₅ одне з положень атомів *d*-елемента зайняте атомами статистичної суміші *M* (0,931(7) Os + 0,069(7) Si). Проте це не виняток, адже є відомості про існування сполук, що кристалізуються в цьому типі та є нестехіометричними: Sm₂Ni_{3,47}Si_{4,53} [7], Sm₂Pt_{3,5}Ge_{4,5} [8] і Ce₂Pt_{3,38}Si_{4,62} [9]. Можлива причина нестехіометричності складу сполуки з Os – відсутність гомогенізуючого відпалу.

Рис. 2. Проекція елементарної комірки на площину *xy* та координаційні многогранники атомів у структурі сполуки Gd₂Pt₃Si₅.

Кристалічну структуру сполук Gd₂Os₃Si₅ та Gd₂Pt₃Si₅ можна зобразити як укладку шарів з многогранників атомів Gd у вигляді гексагональної призми (склад Pt₅Si₇) з п'ятьма додатковими атомами (Pt₂Si₃), які сполучені гранями. Шари існують при z = 0 та 1/2 (рис. 3).

Іншою особливістю структурного типу U₂Co₃Si₅ є формування вздовж кристалографічного напряму [001] нескінченних колон з многогранників атомів

96

d-елемента у вигляді тетрагональних пірамід, утворених атомами Si (рис. 4). Ці колони формуються так, що орієнтація пірамід чергується (одна напрямлена вершиною вгору, інша – донизу), з'єднані вони ребрами основи, а в пустотах навпроти основ пірамід є атоми *R*. Між колонами прямими ланцюжками розташовані атоми *d*-елемента з віддаллю між ними 2,8419(2) Å для Gd₂Os₃Si₅ та 2,9965(1) Å для Gd₂Pt₃Si₅. Зменшення цієї віддалі для сполуки Gd₂Os₃Si₅ пояснюємо розмірним фактором ($r_{Os} = 1,35$ Å, $r_{Pt} = 1,38$ Å [10]).

Рис. 3. Укладка шарів з многогранників атомів Gd.

Структурний тип U₂Co₃Si₅ є спорідненим до типу U₂Mn₃Si₅, який також часто трапляється в системах R-T-Si (R – рідкісноземельний метал, T – d-елемент): R-Mn-Si (R = Y, Gd-Lu), R-Re-Si (R = Y, La-Nd, Sm, Gd-Tm), R-Fe-Si (R = Sc, Y, Sm, Gd-Lu), R-Ru-Si (R = Sm, Er, Lu)) [5]. У їхніх структурах можна виділити колони, паралельні до напряму [001]; подібні до них також знайдені в структурі типу CaBe₂Ge₂ [11–13].

Також ми розрахували електронну структуру в рамках теорії функціонала густини (DFT) в наближенні повнопотенціального методу лінеаризованих приєднаних плоских хвиль (FP-LAPW) з узагальненою градієнтною апроксимацією (GGA) електронної густини обмінно-кореляційного функціонала PBEsol [14], з використанням програмного коду Exciting Boron [15]. Інтегрування зони Бріллюена в асиметричній частині виконали сіткою 6×6×6 (64 *k*-точки), обмеження енергії для плоских хвиль становило 166,7 еВ, критерій збіжності для загальної енергії – 0,003 еВ. Візуалізацію значень функції локалізації електрона (ELF) провели за допомогою програми VESTA [16].

Рис. 4. Колони з тетрагональних пірамід навколо атомів Pt (положення Pt1).

Рис. 5. Розподіл електронної густини у сполуці Gd₂Os₃Si₅. Показано елементарну комірку вздовж напряму [001] та ізоповерхню ELF рівня 0,54 (0,08 a_0^{-3} , a_0 – радіус Бора), разом з виділеним каркасом {Os₃Si₅}_n.

У разі обмеження міжатомними віддалями 2,53 Å (сума атомних радіусів силіцію та осмію), структуру сполуки $Gd_2Os_3Si_5$ можна описати як каркас $\{Os_3Si_5\}_n$, у каналах якого містяться ізольовані атоми Gd. Аналіз значень функції локалізації (ELF) засвідчив зміщення електронної густини електрона до більш електронегативних атомів каркасу (Os та Si) (рис. 5). Детальніше це показано на рис. 6, де також, з огляду на розподіл ELF, можна зауважити часткову іонізацію атомів Gd. Результати розрахунку розподілу густини електронних станів (DOS) свідчать про металічний характер провідності. Переважний внесок у загальну DOS в околі рівня Фермі роблять внутрішні локалізовані 4f-стани атомів Gd.

Рис. 6. Розподіл електронної густини в структурі сполуки Gd₂Os₃Si₅. Показано два перерізи функції локалізації електрона (ELF) площиною (100) (сітка атомів у положеннях Os2, Si2 та Si3) та площиною при у ~ 0,775 (гофрована сітка атомів у положеннях Gd, Os1 та Si1).

Розрахунки електронної структури виконано на кластері паралельних і розподілених обчислень міжфакультетської лабораторії комп'ютерних інформаційних технологій Львівського національного університету імені Івана Франка.

- Akselrud L. G., Yarmolyuk Ya. P., Gladyshevskii E. I. Crystal structure of the compound U₂Co₃Si₅ // Sov. Phys. Crystallogr. 1977. Vol. 22. P. 492–493.
- Yarmolyuk Ya. P., Akselrud L. G., Gladyshevskii E. I. Crystal structure of the compound U₂Mn₃Si₅ // Sov. Phys. Crystallogr. 1977. Vol. 22. P. 358–359.
- 3. *Rizzoli C., Salamakha P. S., Sologub O. L.* et al. X-Ray single-crystal investigation of rare earth osmium silicides // J. Alloys Compd. 2004. Vol. 363. P. 217–222.
- Chabot B., Parthé E. Dy₂Co₃Si₅, Lu₂Co₃Si₅, Y₂Co₃Si₅ and Sc₂Co₃Si₅ with a monoclinic structural deformation variant of the orthorhombic U₂Co₃Si₅ structure type // J. Less-Common Met. 1985. Vol. 106. P. 53–59.
- 5. *Villars P., Cenzual K.* Pearson's crystal data: crystal structure database for inorganic compounds, Release 2013/14, ASM International, Materials Park, Ohio, USA.
- Akselrud L. G., Zavalii P. Yu., Grin Yu. N. et al. Use of the CSD program package for structure determination from powder data // Mater. Sci. Forum. 1993. Vol. 133–136. P. 335–340.
- 7. *Zhuravleva M. A., Kanatzidis M. G.* Molten gallium as a non-reactive solvent: synthesis of the silicides $RE_2Ni_{3+x}Si_{5-x}$ (RE = Sm, Gd and Tb) // Z. Naturforsch. B. 2003. Vol. 58. P. 649–657.
- Kurenbaeva J. M., Seropegin Y. D., Gribanov A. V. et al. Crystal structure of compounds with 20 at.% Sm in the Sm-(Pd,Pt)-(Si,Ge) systems at 870 K // J. Alloys Compd. 1999. Vol. 285. P. 137–142.

- 9. *Gribanov A., Grytsiv A., Royanian E.* et al. On the system cerium platinum silicon // J. Solid State Chem. 2008. Vol. 181. P. 2964–2975.
- 10. Эмсли Дж. Элементы. М.: Мир, 1993. 256 с.
- 11. Mykhalichko V., Kozak R., Demchenko P., Gladyshevskii R. Crystal structures of ternary gadolinium silicides // Coll. Abs. Europ. Conf. Phys. Magn. 2014. P. 236.
- 12. *Braun H. F.* Superconductivity in ternary rare-earth-transition metal silicides: a critical review // J. Less-Common Met. 1984. Vol. 100. P. 105–124.
- 13. Fedyna V., Kozak R., Gladyshevskii R. Crystal structures of the ternary silicide Gd₂Re₃Si₅ // Acta Crystallogr. E. 2014. Vol. 70. P. 469–470.
- Perdew J. P., Ruzsinszky A., Csonka G. I. et al. Restoring the density-gradient expansion for exchange in solids and surfaces // Phys. Rev. Lett. 2008. Vol. 100. P. 136406-1–4.
- Gulans A., Kontur S., Meisenbichler C. et al. Exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory // J. Phys.: Condens. Matter. 2014. Vol. 26. P. 363202-1–24.
- Momma K., Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis // J. Appl. Crystallogr. 2008. Vol. 41. P. 653–658.

NEW TERNARY SILICIDES OF GADOLINIUM AND OSMIUM/PLATINUM

V. Mykhalichko, P. Demchenko, R. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: vitaliia.fedyna@gmail.com

The crystal structures of the ternary compounds $Gd_2Os_3Si_5$ and $Gd_2Pt_3Si_5$ (structure type $U_2Co_3Si_5$, Pearson symbol *oI*40, space group *Ibam*, unit-cell parameters: a = 9.6724(9), b = 12.0458(8), c = 5.6838(5)Å for $Gd_2Os_{2.86(2)}Si_{5.14(2)}$; a = 9.9224(2), b = 11.3997(2), c = 5.99300(9) Å for $Gd_2Pt_3Si_5$) were determined using X-ray single crystal and powder diffraction. The coordination polyhedra of the Gd atoms are hexagonal prisms with five additional atoms, those of the Os or Pt atoms are tetragonal pyramids and cubooctahedra, whereas the Si atoms center cubooctahedra and trigonal prisms with three additional atoms. The crystal structure of the compounds $Gd_2Os_3Si_5$ and $Gd_2Pt_3Si_5$ can be represented as a stacking of layers of Gd-centered polyhedra, which share faces.

Another peculiarity of the structure type $U_2Co_3Si_5$ is the existence of infinite columns of polyhedra centered by *d*-element atoms (tetragonal pyramids formed by Si atoms) running along the crystallographic direction [001]. These "double zigzag" columns are formed so that the pyramids are alternatively turned up and down. The pyramids are connected by basal edges and *R* atoms are located in voids above the bases. Additional *d*-element atoms are situated between the columns, forming chains with distances Os–Os 2.8419(2) Å and Pt–Pt 2.9965(1) Å. The shorter distance observed for the compound Gd₂Os₃Si₅ can be explained by the size factor ($r_{Os} = 1.35$ Å, $r_{Pt} = 1.38$ Å).

The structure type $U_2Co_3Si_5$ is closely related to the tetragonal $U_2Mn_3Si_5$ type, which is also commonly observed in *R*–*T*–Si systems (*R*–Mn–Si, *R* = Y, Gd-Lu; *R*–Re–Si, *R* = Y, La-Nd, Sm, Gd-Tm; *R*–Fe–Si, *R* = Sc, Y, Sm, Gd-Lu; *R*–Ru–Si, *R* = Sm, Er, Lu). Structural columns formed by Sicentered tetragonal antiprisms and parallel to the crystallographic direction [001] can be identified in this structure type. Similar columns are present in the structure type CaBe₂Ge₂.

The values of the electron localization function (ELF) for $Gd_2Os_3Si_5$ indicate displacement of electron density to the more electronegative atoms (Os and Si).

Key words: gadolinium, osmium, platinum, silicon, X-ray diffraction, crystal structure, electron structure.

Стаття надійшла до редколегії 01.11.2014 Прийнята до друку 30.12.2014