ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2016. Випуск 57. Ч. 1. С. 89–96 Visnyk of the Lviv University. Series Chemistry. 2016. Issue 57. Pt. 1. P. 89–96

УДК 548.736.5

НОВІ СПОЛУКИ ЗІ СТРУКТУРОЮ ТИПУ Y₃NiAl₃Ge₂

Н. Семусьо, Ю. Луцишин, С. Пукас, Я. Токайчук, Р. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: nakonechna n@lnu.edu.ua

У системах *R*–Ni–Al–Ge проведено пошук тетрарних інтерметалідів. Методом електродугового сплавляння синтезовано та за допомогою рентгенівського дифракційного методу порошку визначено кристалічну структуру восьми нових сполук *R*₃NiAl₃Ge₂ (*R* = Sm, Gd, Tb, Dy, Ho, Tm, Yb та Lu). З'ясовано, що сполуки є ізоструктурними та їхня кристалічна структура належить до типу Y₃NiAl₃Ge₂ (символ Пірсона *hP*9, просторова група *P*-62*m*). Гексагональний структурний тип Y₃NiAl₃Ge₂ (*Z* = 1) є тетрарним варіантом заміщення бінарного типу Fe₂P (*Z* = 3) та тернарних типів β_1 -K₂UF₆, Lu₃CoGa₅, Zr₃Cu₄Si₂ та ZrNiAl.

Ключові слова: тетрарний алюмогерманід, рентгенівський дифракційний метод порошку, кристалічна структура, ряд ізоструктурних сполук.

У літературі [1, 2] є відомості про існування 23 тетрарних сполук зі структурою типу Y₃NiAl₃Ge₂ [3]: R_3 FeAl₃Ge₂ (R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Er₃TAl₃Ge₂ (T = Co, Ni), Yb₃Auln₃Ge₂, R_3 SiMn₃Ga₂ (R = Y, Gd, Tb, Dy, Ho, Er, Tm, Lu) та U₃NiAl₃Ru₂. У структурах цих сполук усі атоми розміщені впорядковано. Як бачимо з табл. 1, у випадку сполук R_3 FeAl₃Ge₂, Er₃TAl₃Ge₂ та Yb₃Auln₃Ge₂ простежується аналогічний до прототипу розподіл атомів за правильними системами точок просторової групи *P*-62*m*: положення 3*f* зайнято атомами *f*-елементів, положення 1*a* – атомами *d*-елементів (група IV). У випадку сполук R_3 SiMn₃Ga₂ та U₃NiAl₃Ru₂ реалізується дещо відмінний розподіл атомів.

Таблиця 1

Розподіл атомів за правильними системами точок просторової групи Р-62т в ізоструктурних	
CHORNERY	

ChonyKux								
ПСТ	Y ₃ NiAl ₃ Ge ₂	R_3 FeAl ₃ Ge ₂	Er ₃ TAl ₃ Ge ₂	Yb ₃ AuIn ₃ Ge ₂	R ₃ SiMn ₃ Ga ₂	U ₃ NiAl ₃ Ru ₂		
	[3]	[2]	[4-6]	[7]	[8,9]	[10]		
- 3g	Al	Al	Al	In	Mn	Al		
3f	Y	Sm–Lu	Er	Yb	Y, Gd–Tm,	U		
					Lu			
2d	Ge	Ge	Ge	Ge	Ga	Ru		
1 <i>a</i>	Ni	Fe	Fe, Co, Ni	Au	Si	Ni		

© Семусьо Н., Луцишин Ю., Пукас С. та ін., 2016

Для досліджень синтезовано десять зразків складу R_3 NiAl₃Ge₂ (R = Y, Sm–Lu) сплавлянням чистих металів (вміст основного компонента, мас. %: $Y \ge 99,76$, Sm \ge 99,83, Gd \ge 99,86, Tb \ge 99,83, Dy \ge 99,83, Ho \ge 99,83, Er \ge 99,83, Tm \ge 99,82, Yb \ge 99,82, Lu \ge 99,83, Ni \ge 99,99, Al \ge 99,998 та Ge 99,999) в атмосфері аргону на водоохолоджуваному мідному поді електродугової печі з вольфрамовим електродом. Для очищення аргону як гетер використано пористий титан. Сплави гомогенізовано у вакуумованих кварцових ампулах при 600 °C упродовж 1800 год, після чого загартовано в холодній воді. Зразки перевірено на втрату маси, яка в середньому не перевищувала 1 %. Для зразків знято масиви рентгенівських порошкових дифракційних даних на дифрактометрах ДРОН-2.0М (проміння Fe $K\alpha$) та STOE Stadi P (проміння Си $K\alpha_1$). Параметри кристалічної структури уточнено методом Рітвельда з використанням програми DBWS-9807 [11]. Сплави є однофазні та містять сполуки R_3 NiAl₃Ge₂. Підтверджено існування двох відомих сполук (R = Y, Er) та встановлено утворення восьми нових інтерметалідів (R = Sm, Gd, Tb, Dy, Ho, Tm, Yb, Lu). Їхня кристалічна структура належить до типу Y_3 NiAl₃Ge₂.

У табл. 2 наведено параметри елементарних комірок ізоструктурних сполук R_3 NiAl₃Ge₂. Визначені нами параметри комірок для сполук Y_3 NiAl₃Ge₂ та Er₃NiAl₃Ge₂ добре узгоджуються з літературними відомостями. Параметри елементарних комірок для ізоструктурних сполук закономірно зменшуються зі збільшенням порядкового номера рідкісноземельного металу в разі переходу від Sm до Lu (виняток – сполука з Yb) (рис. 1). Параметри елементарної комірки сполуки з Yb не вкладаються в загальну закономірність, що можна пояснити валентним станом Yb(II). Експериментальні умови одержання масиву дифракційних даних і результати уточнення кристалічної структури тетрарної сполуки Gd₃NiAl₃Ge₂ наведено в табл. 3, експериментальну, розраховану та різницеву дифрактограми відповідного зразка зображено на рис. 2.

Таблиця 2

Сполука	<i>a</i> , Å	<i>c</i> , Å	$V, Å^3$
Y ₃ NiAl ₃ Ge ₂	6,9363(4)	4,1650(4)	173,54(2)
$Y_3NiAl_3Ge_2[3]$	6,9481	4,1565	173,78
Sm ₃ NiAl ₃ Ge ₂	7,0299(3)	4,2366(2)	181,32(1)
Gd ₃ NiAl ₃ Ge ₂	6,9807(1)	4,20257(8)	177,354(6)
Tb ₃ NiAl ₃ Ge ₂	6,9435(3)	4,1790(2)	174,49(1)
Dy ₃ NiAl ₃ Ge ₂	6,9162(3)	4,1599(3)	172,32(2)
Ho ₃ NiAl ₃ Ge ₂	6,8924(4)	4,1445(3)	170,51(2)
Er ₃ NiAl ₃ Ge ₂	6,8670(3)	4,1311(3)	168,71(2)
Er ₃ NiAl ₃ Ge ₂ [6]	6,86671	4,13033	168,66
Tm ₃ NiAl ₃ Ge ₂	6,8381(6)	4,1130(4)	166,56(3)
Yb ₃ NiAl ₃ Ge ₂	6,8459(6)	4,1416(6)	168,10(3)
Lu ₃ NiAl ₃ Ge ₂	6,7911(7)	4,1019(6)	163,83(3)

Параметри елементарних комірок сполук *R*₃NiAl₃Ge₂ (структурний тип Y₃NiAl₃Ge₂, *hP*9, *P*-62*m*)

Рис. 1. Залежність параметрів елементарних комірок сполук R₃NiAl₃Ge₂ від рідкісноземельного металу.

Рис. 2. Експериментальна, розрахована та різницева дифрактограми зразка Gd₃NiAl₃Ge₂ (проміння Cu Kα₁).

Таблиця 3

уточнения кристалічної структури с	
Структурний тип	Y ₃ NiAl ₃ Ge ₂
Символ Пірсона	hP9
Просторова група	<i>P</i> -62 <i>m</i>
Параметри елементарної комірки а, Å	6,9807(1)
	4,20257(8)
Об'єм комірки V , $Å^3$	177,354(6)
Кількість формульних одиниць Z	1
Густина D_X , г [.] см ⁻³	7,083
Дифрактометр	STOE Stadi P
Проміння	$Cu K\alpha_1$
Метод сканування	$\theta/2\theta$
Інтервал 2 <i>θ</i> , °	6-110,61
Крок сканування, °	0,015
Час сканування в точці, с	250
Нульове значення 2 <i>θ</i> , °	0,002(1)
Параметри ширини піків U, V, W	0,052(4), -0,021(4), 0,0188(8)
Параметр змішування η	0,624(8)
Параметр асиметрії піків С _М	-0,115(7)
Параметр текстури G [напрям]	0,899(1) [001]
Кількість відбить	67
Кількість уточнених параметрів	16
Фактори достовірності $R_{\rm B}, R_{\rm p}, R_{\rm wp}$	0,0662, 0,0135, 0,0169
Фактор добротності S	0,49

Експериментальні умови одержання масиву дифракційних даних і результати уточнення кристалічної структури сполуки Gd₃NiAl₃Ge₂

Структурний тип Y₃NiAl₃Ge₂ має впорядковане розташування всіх атомів і кожен сорт атома займає лише одну правильну систему точок просторової групи *P*-62*m*. У табл. 4 наведено координати й ізотропні параметри зміщення атомів у структурі сполуки Gd₃NiAl₃Ge₂. Міжатомні віддалі наведено у табл. 5; вони добре узгоджуються із сумою радіусів відповідних атомів [12]. Для атомів меншого розміру (Ni та Ge) характерне тригонально-призматичне оточення з додатковими атомами навпроти всіх бокових граней призм: <u>Ni</u>Al₆Gd₃ та <u>Ge</u>Al₃Gd₆. Координаційним многогранником атома Al є кубооктаедр <u>Al</u>Ni₂Al₂Ge₂Gd₆, а атома Gd – пентагональна призма з п'ятьма додатковими атомами навпроти бокових граней призми <u>Gd</u>NiGe₄Al₆Gd₄.

Таблиця 4

Атом	ПСТ	x	у	Z	$B_{i_{30}}, Å^2$			
Gd	3 <i>f</i>	0,5959(2)	0	0	1,02(4)			
Ni	1 <i>a</i>	0	0	0	1,45(16)			
Al	3g	0,2225(9)	0	1/2	1,88(18)			
Ge	2 <i>d</i>	1/3	2/3	1/2	0,94(11)			

Координати та параметри зміщення атомів у структурі сполуки Gd₃NiAl₃Ge₂

Н. Семусьо, Ю. Луцишин, С. Пукас та ін.

ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2016. Випуск 57. Ч. 1

Таблиця 5

93

Атоми		δ , Å	Атоми		δ , Å
Gd	-1 Ni	2,821(1)	Al	-2 Ni	2,613(4)
	-4 Ge	2,987(1)		-2 Al	2,690(8)
	-4 Al	3,226(4)		-2 Ge	2,795(4)
	-2 Al	3,348(5)		-4 Gd	3,226(4)
	-4 Gd	3,678(1)		-2 Gd	3,348(5)
Ni	-6 Al	2,613(4)	Ge	-3 Al	2,795(4)
	-3 Gd	2,821(1)		-6 Gd	2,987(1)

Міжатомні віддалі в структурі сполуки Gd₃NiAl₃Ge₂

Гексагональний структурний тип Y₃NiAl₃Ge₂ (Z = 1) є тетрарним варіантом заміщення бінарного типу Fe₂P (Z = 3) [13] і тернарних типів β_1 -K₂UF₆ [14], Lu₃CoGa₅ [15], Zr₃Cu₄Si₂ [16] та ZrNiAl [17] (табл. 6). Структури цих типів зображено за допомогою програми ATOMS [18] на рис. 3. Структура Y₃NiAl₃Ge₂ є єдиною можливою тетрарною похідною структури типу Fe₂P, тоді як тернаних похідних може бути шість завдяки різній комбінації заповнення правильних систем точок одним елементом: 3g + 3f, 3g + 2d, 3g + 1a, 3f + 2d, 3f + 1a, 2d + 1a. Чотири з цих комбінацій реалізуються у тернарних типах β_1 -K₂UF₆, Lu₃CoGa₅, Zr₃Cu₄Si₂ та ZrNiAl. Сьогодні структури, в яких би реалізувалася четверта та п'ята комбінації, ще невідомі (рис. 4). Максимальна кількість представників простежується для тернарного типу ZrNiAl – 553 сполуки [1], трохи менша кількість представників – 115 – є в типу β_1 -K₂UF₆, тоді як ізоструктурними до Zr₃Cu₄Si₂ та Lu₃CoGa₅ є лише три та дві сполуки, відповідно.

Таблиця б

-						
L e	пнапні т	га тетпари	а похілні	бінарного	CTDVKTVDHOLO	TUTV Fe ₂ P
10	pinapini i	i u i ci pupii	и полідії	omuphoro	cipykiyphoro	imiy i Qli

ПСТ	Fe ₂ P	β_1 -K ₂ UF ₆	Lu ₃ CoGa ₅	$Zr_3Cu_4Si_2$	ZrNiAl	Y ₃ NiAl ₃ Ge ₂
3g	Fe1	F2	Ga1	Cu1	Al	Al
3f	Fe2	F1	Lu	Zr	Zr	Y
2d	P1	K	Ga2	Si	Ni1	Ge
1 <i>a</i>	P2	U	Со	Cu2	Ni2	Ni

 Fe_2P β_1 - K_2UF_6

Рис. 3. Укладка тригональних призм у структурах близькоспоріднених типів.

Як бачимо з рис. 3, у всіх структурах можна виділити центровані тригональні призми, дві третини з яких з'єднані боковими ребрами та основами призм і утворюють каркас з "гексагональними трубками", у центрах яких містяться ізольовані колони тригональних призм, що мають спільні основи. У структурі Fe₂P усі тригональні призми побудовані з атомів Fe та центровані атомами P. У випадку структур Lu₃CoGa₅, Zr₃Cu₄Si, ZrNiAl та Y₃NiAl₃Ge₂ у вершинах тригональних призм каркасу розміщені атоми великого розміру Lu, Zr або Y ($r_{Lu} = 1,734$ Å, $r_{Zr} = 1,602$ Å, $r_Y = 1,801$ Å), тоді як атоми дещо меншого розміру Ga, Cu або Al ($r_{Ga} = 1,411$ Å, $r_{Cu} =$ 1,278 Å, $r_{AI} = 1,432$ Å) утворюють тригональні призми колон. Зазначимо, що радіус атома, який перебуває в центрі призми Co, Ga, Si, Ni, або Ge ($r_{Co} = 1,252$ Å, $r_{Si} = 1,319$ Å, $r_{Ni} = 1,246$ Å, $r_{Ge} = 1,369$ Å), є меншим від радіуса атома, що є у вершинах призми, за винятком призми складу Cu₆ у структурі Zr₃Cu₄Si, у центрі якої міститься атом того самого елемента – Cu. У структурі β_1 -K₂UF₆, імовірно, переважає іонна взаємодія, усі тригональні призми побудовані з аніонів F⁻ та центровані катіонами K⁺ або U⁴⁺.

Структурний тип Fe₂P може мати ще шість бінарних варіантів з іншим розподілом атомів за правильними системами точок. Сьогодні відомий лише один з них – Lu₈Te [19]. Атоми Lu займають три положення (3g, 3f, 2d), а атоми Te – одне положення (1a).

- 1. *Villars P., Cenzual K.* (Eds.) Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds. Materials Park: ASM International (OH), Release 2014/15.
- 2. Семусьо Н., Луцишин Ю., Пукас С. та ін. Нові представники структурного типу Y₃NiAl₃Ge₂ // Вісн. Львів. ун-ту. Сер. хім. 2014. Вип. 55. С. 135–141.
- 3. *Zhao J. T., Parthé E.* Y₃NiAl₃Ge₂, a quaternary substitution variant of the hexagonal Fe₂P type // Acta Crystallogr. C. 1990. Vol. 46. P. 2273–2276.
- 4. *Демченко Г., Демченко П.* Нові алюмогерманіди ербію та заліза // Вісн. Львів. ун-ту. Сер. хім. 2010. Вип. 51. С. 45–51.
- 5. Демченко Г., Кончик І., Демченко П. та ін. Система Ег–Со–Аl–Ge в області 10– 40 ат. % Ег // Вісн. Львів. ун-ту. Сер. хім. 2009. Вип. 50. С. 50–58.
- 6. Демченко Г., Демченко П., Гладишевський Р. Рентгенівське дослідження сплавів системи Er–Ni–Al–Ge // Вісн. Львів. ун-ту. Сер. хім. 2008. Вип. 49. С. 103–109.
- Chondroudi M., Peter S. C., Malliakas C. D. et al. Yb₃AuGe₂In₃: An ordered variant of the YbAuIn structure exhibiting mixed-valent Yb behavior // Inorg. Chem. 2011. Vol. 50. P. 1184–1193.
- Morozkin A. V., Carvalho L., Nirmala R. et al. Magnetic properties of ZrNiAl-type R₃Mn₃SiGa₂ compounds (R = Y, Gd, Tb, Dy and Ho) // J. Alloys Compd. 2010. Vol. 502. P. 261–269.
- Morozkin A. V. New R₃Mn₃Ga₂Si compounds (R = Tb–Tm, Lu) // J. Alloys Compd. 2004. Vol. 363. P. L1–L2.
- 10. Alsmadi A. M., El Khatib S., De Chatel P. F. et al. Magnetic field effects in UNi_{1/3}Ru_{2/3}Al // J. Appl. Phys. 2005. Vol. 97. 10A919.
- 11. Young R. A., Sakthivel A., Moss T. S., Paiva-Santos C. O. DBWS-9411 an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers // J. Appl. Crystallogr. 1995. Vol. 28. P. 366–367.

- 12 *Teatum E., Gschneidner K., Waber J.* Report No. LA-2345, US Department of Commerce, Washington, D.C., 1960.
- 13. *Rundqvist S., Jellinek F.* The structures of Ni₆Si₂B, Fe₂P and some related phases // Acta Chem. Scand. 1959. Vol. 13. P. 425–432.
- 14. Zachariasen W. H. Crystal chemical studies of the 5*f*-series of elements. I. New structure types // Acta Crystallogr. 1948. Vol. 1. P. 265–268.
- Гладышевский Р. Е. Кристаллическая структура соединения Lu₃Ga₅Co // Тез. докл. IV Всесоюз. конф. кристаллохим. интерметал. соединений. Львов, 1983. С. 48–49.
- 16. *Sprenger H.* Die ternären Systeme (Titan, Zirkonium, Hafnium)-Kupfer-Silizium // J. Less-Common Met. 1974. Bd. 34. S. 39–71.
- 17. Крип'якевич П. І., Марків В. Я., Мельник Е. В. Кристалічні структури сполук ZrNiAl, ZrCuGa і їх аналогів // Допов. АН УРСР. Сер. А. 1967. № 8. С. 750–753.
- 18. *Dowty E.* ATOMS A Computer Program for Displaying Atomic Structures. Kingsport (TN), 1999.
- Chen L., Corbett J. D. Lu₈Te and Lu₇Te. Novel substitutional derivatives of lutetium metal // J. Am. Chem. Soc. 2003. Vol. 125. P. 7794–7795.

NEW COMPOUNDS WITH THE STRUCTURE TYPE Y₃NiAl₃Ge₂

N. Semuso, Yu. Lutsyshyn, S. Pukas, Ya. Tokaychuk, R. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: nakonechna_n@lnu.edu.ua

A search for quaternary alumogermanides was carried out in the system R-Ni-Al-Ge. Ten alloys of nominal composition R_3 NiAl₃Ge₂ (R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were synthesized from high-purity metals by arc-melting and annealed at 600°C for 1800 h. Phase and structural analyses were performed based on X-ray powder diffraction data. The structural parameters were refined by the Rietveld method.

All of the alloys appeared to be single-phase. The existence of two known (with Y and Er) and eight new (with Sm, Gd, Tb, Dy, Ho, Tm, Yb, and Lu) quaternary $R_3NiAl_3Ge_2$ compounds was established. The compounds are isotypic and their crystal structures belong to the type $Y_3NiAl_3Ge_2$ (Pearson symbol *hP*9, space group *P*-62*m*). As expected, the cell parameters decrease with decreasing radius of the rare-earth metal, from Sm to Lu, with the exception of the Yb-containing compound due to the valence of Yb (Yb^{II}).

The hexagonal structure type $Y_3NiAl_3Ge_2$ (Z = 1) is a quaternary variant of the binary type Fe_2P (Z = 3) and the ternary types β_1 -K₂UF₆, Lu₃CoGa₅, Zr₃Cu₄Si₂, and ZrNiAl. It belongs to a family of structures with trigonal prismatic coordination of the small atoms (Ni and Ge). The Ni- and Gecentered trigonal prisms form infinite columns via common triangular faces. The columns of Gecentered prisms (<u>Ge</u>Y₆) share prism edges and form a three-dimensional framework with sixmembered rings in the (001) plane, whereas the columns of Ni-centered prisms (<u>Ni</u>Al₆) are isolated and located in the channels of the framework.

Key words: quaternary alumogermanide, X-ray powder diffraction, crystal structure, isotypic compounds.

Стаття надійшла до редколегії 02.11.2015 Прийнята до друку 12.01.2016