ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2016. Випуск 57. Ч. 1. С. 155–162 Visnyk of the Lviv University. Series Chemistry. 2016. Issue 57. Pt. 1. P. 155–162

УДК 548.736.4

ДОСЛІДЖЕННЯ НАПІВПРОВІДНИКОВОГО ТВЕРДОГО РОЗЧИНУ Нf_{1-x}Y_xNiSn. I. ДОСЛІДЖЕННЯ КРИСТАЛІЧНОЇ ТА ЕЛЕКТРОННОЇ СТРУКТУР

Ю. Стадник¹, Л. Ромака¹, В. В. Ромака², В. Крайовський², О. Гук³

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна

²Національний університет "Львівська політехніка", вул. С. Бандери, 12, 79013 Львів, Україна

³ПАТ НВО "Термоприлад", вул. Наукова, 3, 79060 Львів, Україна, e-mail: stadnyk_yuriyl@franko.lviv.ua

Досліджено кристалографічні характеристики, електронну структуру, область існування та магнітну сприйнятливість напівпровідникового твердого розчину $H_{1-x}Y_xNiSn$ (структурний тип MgAgAs). Виявлено механізми генерування у кристалографічній позиції атомів Hf (4*a*) структурних дефектів акцепторної природи внаслідок зайняття її атомами Y. Проаналізовано можливі механізми електропровідності твердого розчину $H_{1-x}Y_xNiSn$ залежно від концентрації атомів Y.

Ключові слова: твердий розчин, кристалічна структура, електронна структура, напівпровідник.

У ході вивчення впливу сильного легування напівпровідників зі структурою типу MgAgAs (*n*-ZrNiSn, *n*-TiNiSn, *n*-HfNiSn, *p*-TiCoSb) на зміну структурних, енергетичних, кінетичних та магнітних характеристик досліджено твердий розчин $Hf_{1-x}Y_xNiSn$, отриманий легуванням *n*-HfNiSn атомами Y. Ці дослідження зумовлені тим, що оптимізація параметрів термоелектричних (термометричних) матеріалів залежить від низки чинників, зокрема, концентрації та просторової орієнтації носіїв заряду, механізмів розсіювання, теплопровідності тощо, а одним зі способів такої оптимізації є легування напівпровідникового матеріалу донорними і/або акцепторними домішками [1].

Зразки синтезовано методом електродугового сплавлення компонентів з подальшим гомогенізувальним відпалюванням при 1070 К упродовж 720 год. Для синтезованих зразків досліджували кристалографічні характеристики, область існування, магнітну сприйнятливість ($H \le 10$ кГс) та розраховували розподіл електронної густини (DOS) твердого розчину Hf_{1-x}Y_xNiSn. Хімічний та фазовий склади зразків контролювали за допомогою мікрозондового аналізатора (електронний мікроскоп Carl Zeiss DSM 962).

[©] Стадник Ю., Ромака Л., Ромака В. В. та ін., 2016

Для розрахунків структурних характеристик використовували масиви даних, отримані методом порошку (дифрактометр Guinier-Huber image plate system, CuKa₁випромінювання; $8^{\circ} \le 2\theta \le 100^{\circ}$). Кристалографічні параметри розраховували з використанням програми WinPLOTR [2]. Розрахунки електронної структури проводили методами Корінги–Кона–Ростокера (KKR) у наближенні когерентного потенціалу (CPA) і локальної густини (LDA) [3]. Для розрахунків використовували значення сталої гратки на *k*-сітці розміром $10 \times 10 \times 10$ і тип параметризації обмінно-кореляційного потенціалу Moruzzi–Janak–Williams [4]. Ширина енергетичного вікна, охоплюваного контуром, становить 16 еВ. Кількість значень енергії для розрахунку DOS становила 1000. Точність розрахунку положення рівня Фермі – ±8 меВ.

Рентгенівські фазовий і структурний аналізи засвідчили, що синтезовані зразки $Hf_{1,x}Y_xNiSn$ до складу x = 0,30 включно не містять слідів інших фаз. Рентгеноспектральний аналіз зразків $Hf_{1,x}Y_xNiSn$ до x = 0,30 довів їхню відповідність вихідним складам шихти (рис. 1, *a*), що є одним з експериментальних доказів прогнозованого заміщення атомів Hf на Y. Зразок $Hf_{1,x}Y_xNiSn$ за вмісту Y x = 0,35 як домішкову фазу містить сполуку YNiSn (структурний тип TiNiSi) (див. рис. 1, σ).

Рис. 1. Фотографії мікроструктур зразків: $a - Hf_{0,70}Y_{0,30}NiSn (Hf_{22,97}Y_{9,74}Ni_{34,03}Sn_{33,26});$ $\delta - Hf_{0,65}Y_{0,35}NiSn$ (cipe dece Hf V NiSp (Uf V Ni Sp)); точча dece VNiSp)

(сіра фаза $Hf_{1-x}Y_xNiSn$ ($Hf_{19,27}Y_{11,36}Ni_{36,52}Sn_{32,75}$); темна фаза YNiSn).

Як і очікували, заміщення атомів меншого розміру Hf ($r_{\rm Hf} = 0,158$ нм) більшими атомами Y ($r_{\rm Y} = 0,180$ нм) приводить до збільшення значень періоду елементарної комірки Hf_{1-x}Y_xNiSn (рис. 2). Той факт, що значення a(x) в інтервалі концентрацій Hf_{1-x}Y_xNiSn x = 0-0,30 практично збігаються з одержаними за розрахунками електронної структури, свідчить про реалізацію твердого розчину заміщення. Відхилення значень

періоду елементарної комірки a(x) від лінійної залежності при x > 0,30 фіксує межу існування твердого розчину $Hf_{1,x}Y_xNiSn$.

Дослідження також підтвердили результат [5] стосовно невпорядкованості кристалічної структури *n*-HfNiSn, суть якої полягає у частковому, до ~1 %, зайнятті атомами Ni $(3d^84s^2)$ кристалографічної позиції 4*a* атомів Hf $(5d^26s^2)$, що породжує у кристалі структурні дефекти донорної природи, а електрони є основними носіями електрики.

Уточнення кристалічної структури $Hf_{1-x}Y_xNiSn$ методом порошку з одночасним уточненням ізотропних параметрів атомного заміщення та зайнятості кристалографічної позиції Hf (4*a*) засвідчило, що найменше значення коефіцієнта невідповідності моделі кристалічної структури та масиву брегівських відбиттів ($R_{Br} = 2,8\%$) отримано для моделі, у якій зайнятість позиції атомів Hf(Y) для $x \ge 0,01$, становить 100 %. Отже, уведені у структуру атоми Y упорядковують кристалічну структуру Hf_{1-x}Y_xNiSn, що створює передумови для отримання матеріалу з однозначними та прогнозованими термоелектричними характеристиками.

Рис. 2. Розрахована та експериментально отримана зміна значень періоду елементарної комірки a(x) Hf_{1-x}Y_xNiSn.

Процес упорядкування кристалічної структури напівпровідника під час легування атомами Y, окрім структурних особливостей, робить суттєвий внесок у перерозподіл електронної густини. Якщо у вихідній сполуці HfNiSn існують структурні дефекти донорної природи як наслідок витіснення до ~1% атомів Hf атомами меншого розміру Ni [5], то процес легування напівпровідника атомами Y й упорядкування його кристалічної структури супроводжується, з одного боку, зменшенням кількості структурних дефектів донорної природи, оскільки атоми Ni покидають позицію атомів Hf ("заліковування" структурних дефектів донорної природи у позиції 4*a*). З іншого боку, оскільки атом Y (4*d*¹5*s*²) має на один *d*-електрон менше, ніж атом Hf, то таке легування генеруватиме у кристалі структурні дефекти акцепторної природи.

	Ю. Стадник, Л. Ромака, В. В. Ромака та ін.
ISSN 2078-5615. Вісник Львівського унівек	ситету. Серія хімічна. 2016. Випуск 57. Ч. 1

Для прогнозування поведінки рівня Фермі ε_F , ширини забороненої зони ε_g та кінетичних характеристик Hf_{1-x}Y_xNiSn проведено розрахунок густини електронних станів (DOS) (рис. 3). З огляду на результати структурних досліджень, згідно з якими уведення у сполуку HfNiSn атомів Y упорядковує її кристалічну структуру, розрахунок DOS проведено для випадку впорядкованого варіанта структури.

Як зазначено вище, уведення атомів Y у структуру сполуки HfNiSn супроводжується генеруванням акцепторів, тому легування напівпровідника *n*-HfNiSn електронного типу провідності найменшими концентраціями акцепторної домішки очікувано супроводжуватиметься збільшенням ступеня компенсації напівпровідника.

Рис. 3. Розрахунок густини електронних станів DOS $Hf_{1-x}Y_xNiSn$.

Як показано на рис. 3, у разі введення в *n*-HfNiSn найменш досяжних в експерименті концентрацій акцепторної домішки Y рівень Фермі ε_F починає дрейфувати від зони провідності (ε_C), на відстані ~81,3 меВ від якої він розташовувався [5], до середини забороненої зони ε_g (заштрихована ділянка на рис. 3), а далі до валентної зони (ε_V), яку перетне за певних концентрацій Y. У випадку перетину рівнем Фермі ε_F середини забороненої зони ($x \approx 0,02$) і подальшого руху в напрямі валентної зони зміниться тип провідності напівпровідника, а основними носіями струму стануть дірки. Подальше легування напівпровідника тепер діркового типу провідності акцепторами повинно супроводжуватися зменшенням ступеня компенсації. За концентрації Hf_{1-x}Y_xNiSn $x \approx 0,05$ рівень Фермі ε_F перетне валентну зону і тепер зі збільшенням концентрації атомів Y дрейфуватиме по зоні неперервних енергій. У цьому разі зміниться механізм електропровідності. За концентрацій Hf_{1-x}Y_xNiSn $x \approx 0,05$ сосновним механізмом електропровідності є активація дірок з домішкового акцепторного рівня у валентну зону, при $x \ge 0,05$ активація дірок припиниться, оскільки рівень Фермі зайде у валентну зону: відбудеться перехід провідності діелектрик–метал [1].

Ю. Стадник, Л. Р	омака, В. В. Ромака та iн.	
ISSN 2078-5615		

Окрім дрейфу рівня Фермі, зумовленого зміною ступеня компенсації напівпровідника, також зафіксовано і зменшення значень ширини забороненої зони ε_g від значень ε_g (x = 0) = 514,3 меВ до ε_g (x = 0,10) = 431,8 меВ. Прогнозована поведінка рівня Фермі ε_F супроводжується цікавими процесами зміни значень густини станів на рівні Фермі (див. рис. 3). Легування напівпровідника електронного типу провідності *n*-HfNiSn акцепторними домішками Y очікувано приводить до зменшенням густини станів на рівні Фермі, а мінімум залежності $g(\varepsilon_F)$ відповідає перетину рівнем Фермі середини забороненої зони напівпровідника. За концентрацій домішки Y, коли рівень Фермі перетне середину забороненої зони і наближатиметься до валентної зони, густина станів на рівні Фермі почне прогнозовано зростати.

159

Наведені результати розрахунків зміни розподілу електронної густини і, зокрема, густини станів на рівні Фермі узгоджуються з результатами експериментальних вимірювань магнітної сприйнятливості χ Hf_{1-x}Y_xNiSn (рис. 4, *a*). Дослідження засвідчили, що зразки Hf_{1-x}Y_xNiSn, x > 0,01, є парамагнетиками Паулі, у яких магнітна сприйнятливість визначена винятково електронним газом і є пропорційною до густини станів на рівні Фермі.

Рис. 4. Зміна значень магнітної сприйнятливості χ (крива 1) (*a*) та коефіцієнта термо-е.р.с. α (розрахунок) (δ) Hf_{1-x}Y_xNiSn за температур: 1 – 80 K; 2 – 160 K; 3 – 250 K; 4 – 380 K.

Як показано на рис. 4, *a*, залежність $\chi(x)$ на ділянці концентрацій x = 0,01-0,05 змінюється з найбільшою швидкістю, що пов'язано, як засвідчують розрахунки, зі зміною густини станів на рівні Фермі DOS ε_F . У цьому контексті зазначимо, що базовий напівпровідник *n*-HfNiSn є не парамагнетиком Паулі, а слабким діамагнетиком, про що свідчать від'ємні значення магнітної сприйнятливості: $\chi(x = 0) = -0,082 \cdot 10^{-6} \text{ см}^3/\text{г}$. Тому збільшення густини станів на рівні Фермі не є причиною незначного зростання залежності $\chi(x)$ на ділянці концентрацій x = 0-0,01. Зміна нахилу залежності $\chi(x)$ при $x \ge 0,05$ пов'язана із входженням рівня Фермі у валентну зону.

На підставі розрахунку електронної структури термоелектричних матеріалів $Hf_{1.x}Y_xNiSn$, отримано механізм прогнозування кінетичних характеристик напівпровідника, зокрема, коефіцієнта термо-е.р.с., питомого електроопору тощо. Для розрахунку коефіцієнта термо-е.р.с. α як робочу формулу використано співвідношення [6]

$$\alpha = \frac{2\pi^2}{3} \frac{k^2 T}{e} \left(\frac{d}{d\varepsilon} \ln g(\varepsilon_F) \right) ,$$

де $g(\varepsilon_F)$ – густина станів на рівні Фермі. На рис. 4, δ , як приклад, показано зміну значень коефіцієнта термо-е.р.с. $\alpha(\omega)$ Hf_{1-x}Y_xNiSn за різних температур. Змінюючи концентрацію атомів Y, можна цілеспрямовано отримати в термоелектричному матеріалі високі як додатні, так і від'ємні значення коефіцієнта термо-е.р.с. та провідності, що слугує однією з умов отримання високих значень термоелектричної добротності.

Результати розрахунку густини електронних станів Hf_{1-x}Y_xNiSn, виконані на підставі структурних досліджень, підтверджують прогнозовану акцепторну природу структурних дефектів, генерованих у твердому розчині Hf_{1-x}Y_xNiSn у разі заміщення атомів Нf на Y. Подібні результати отримано під час легування напівпровідника HfNiSn заміщенням атомів Hf атомами Lu, що супроводжується як упорядкуванням структури вихідної сполуки, так і генеруванням структурних дефектів акцепторної природи, які змінюють ступінь компенсації напівпровідникового матеріалу Hf_{1-x}Lu_xNiSn [7, 8]. Дослідження напівпровідникових твердих розчинів HfNi1-xCoxSn та HfNi1-xRhxSn засвідчили, що легування напівпровідника електронного типу провідності n-HfNiSn акцепторними домішками Со чи Rh приводить до зміни типу основних носіїв струму від електронів до дірок [9, 10]. Заміщення атомів Sn у сполуці HfNiSn атомами Sb, які мають на один 5p-електрон більше, ніж атом Sn, приводить до генерування структурних дефектів донорної природи [11]. Дослідження твердого розчину HfNiSn_{1-x}Sb_x також засвідчує, що заміна *p*-елемента Sn у структурі HfNiSn значно більше впливає на її стабільність, аніж заміна атомів Нf чи Ni, оскільки система іонно-ковалентних зв'язків утворюється завдяки тетраедричній гібридизації атомних орбіталей Sn і будь-яка суттєва зміна кількості валентних електронів на р-орбіталях приводить до утворення більш енергетично вигідних хімічних зв'язків і, як наслідок, до руйнування структури типу MgAgAs.

Отже, за результатами розрахунку густини електронних станів твердого розчину $Hf_{1-x}Y_xNiSn$, виконаних на підставі структурних досліджень, з'ясовано, що заміщення атомів Hf на Y генерує у $Hf_{1-x}Y_xNiSn$ структурні дефекти акцепторної природи.

Результати електротранспортних досліджень напівпровідникового твердого розчину Hf_{1-x}Y_xNiSn дадуть змогу виявити відповідність результатів розрахунків реальним процесам у матеріалі.

- 1. *Ромака В. А., Ромака В. В., Стадник Ю. В.* Інтерметалічні напівпровідники: властивості та застосування. Львів: Вид.-во Львівської політехніки, 2011.
- 2. *Roisnel T., Rodriguez-Carvajal J.* WinPLOTR: a Windows tool for powder diffraction patterns analysis // Mater. Sci. Forum, Proc. EPDIC7. 2001. Vol. 378–381. P. 118–123.
- Schruter M., Ebert H., Akai H. et al. First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys // Phys. Rev. B. 1995. Vol. 52. P. 188–209.
- 4. *Moruzzi V. L., Janak J. F., Williams A. R.* Calculated electronic properties of metals. NY: Pergamon Press, 1978.
- 5. *Romaka V. V., Rogl P., Romaka L.* et al. Peculiarites of Structural disorder in Zr- and Hf-Containing Heusler and Half-heusler Stannides // Intermetallics. 2013. Vol. 35. P. 45–52.
- Cutler M, Mott N. F. Observation of Anderson localization in an electron gas // Phys. Rev. 1969. Vol. 181. P. 1336–1340.
- 7. *Ромака В. А., Рогль П., Стадник Ю. В., Ромака Л. П.*, та ін. Структурні, енергетичні та кінетичні характеристики термоелектричного матеріалу Hf_{1-x}Lu_xNiSn // Термоелектрика. 2014. № 2. С. 42–52.
- Romaka V. A., Rogl P., Romaka V. V. et al. Features of the band structure and conduction mechanisms of n-HfNiSn semiconductor heavily Lu-doped // Semicond. Vol. 49. 2015. P. 290–297.
- Ромака В. В., Стадник Ю., Ромака Л. та ін. Дослідження напівпровідникового твердого розчину HfNi_{1-x}Rh_xSn. І. Кристалічна і електронна структури // Вісн. Львів. ун-ту. Сер. хім. 2013. Вип. 54. Ч. 1. С. 122–128.
- Ромака В.В., Стадник Ю., Ромака Л. та ін. Дослідження напівпровідникового твердого розчину HfNi_{1-x}Co_xSn. І. Кристалічна та електронна структури // Вісн. Львів. ун-ту. Сер. хім. 2015. Вип. 56. Ч. 1. С. 115–121.
- Ромака В. В., Стадник Ю., Ромака Л. та ін. Дослідження напівпровідникового твердого розчину HfNiSn_{1-x}Sb_x. І. Кристалічна та електронна структури // Вісн. Львів. ун-ту. Сер. хім. 2014. Вип. 55. Ч. 1. С. 142–148.

INVESTIGATION OF THE SEMICONDUCTIVE SOLID SOLUTION $Hf_{1-x}Y_xNiSn$. I. CRYSTAL AND ELECTRONIC STRUCTURE STUDY

Yu. Stadnyk¹, L. Romaka¹, V. V. Romaka², V. Krayovskyy², O. Huk³

¹Ivan Franko Lviv National University, Kyryla & Mephodiya Str., 6, 79005 Lviv, Ukraine

²Lviv Polytechnic National University, S. Bandera Str., 12, 79013 Lviv, Ukraine

³PAT NVO "Thermoprylad", Naukova Str., 3, 79060 Lviv, Ukraine, e-mail: stadnyk_yuriy@franko.lviv.ua

Crystal and electronic structures of the $Hf_{1,x}Y_xNiSn$ semiconductive solid solution were investigated in the concentration region x = 0 - 0.30. The *n*-HfNiSn ternary intermetallic semiconductor (MgAgAs structure type, space group *F*4-3*m*) is doped by the Y impurity and the crystallographic characteristics of the obtained $Hf_{1,x}Y_xNiSn$ solid solution were determined by X-ray diffraction. The alloys were prepared by arc melting the stoichiometric amounts of the constituent elements, annealed at 1073 K for 720 hours and cold water quenched. The diffraction data were collected at room temperature using Guinier-Huber image plate system powder diffractometer (CuK α_1 radiation). The static magnetic susceptibility χ was measured by Faraday balance technique at 300 K in the magnetic fields up to 0.1 T. The limit of solubility of Y atoms in the HfNiSn stannide was established using X-ray and microprobe analyses ($x \approx 0.3$). The mechanism of simultaneous generation of structural defects with the acceptor nature was established. The results of modeled crystal and electronic structures are in a good agreement with the results of the magnetic properties of $Hf_{1,x}Y_xNiSn$ solid solution. The analysis of the possible mechanisms of conduction of the $Hf_{1,x}Y_xNiSn$ semiconductive solid solution was carried out.

Key words: solid solution, crystal structure, electronic structure, semiconductor.

Стаття надійшла до редколегії 02.11.2015 Прийнята до друку 12.01.2016