ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2016. Випуск 57. Ч. 1. С. 163–169 Visnyk of the Lviv University. Series Chemistry. 2016. Issue 57. Pt. 1. P. 163–169

УДК 621.315.592

ДОСЛІДЖЕННЯ НАПІВПРОВІДНИКОВОГО ТВЕРДОГО РОЗЧИНУ Нf_{1-x}Y_xNiSn II. ЕЛЕКТРОКІНЕТИЧНІ ДОСЛІДЖЕННЯ

Ю. Стадник¹, В. А. Ромака², В. Крайовський², В. В. Ромака², А. Горинь¹, О. Лах³

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна;

²Національний університет "Львівська політехніка", вул. С. Бандери, 12, 79013, Львів, Україна

³ПАТ НВО "Термоприлад", вул. Наукова, 3, 79060, Львів, Україна E-mail: stadnyk yuriy@lnu.edu.ua

Досліджено температурні та концентраційні залежності електрокінетичних та енергетичних характеристик напівпровідникового твердого розчину $H_{1-x}Y_xNiSn$ у концентраційному x = 0 - 0,30 та температурному T = 80 - 380 К діапазонах. Визначено основні механізми електропровідності, які узгоджуються з результатами теоретичних досліджень електронної структури $H_{1-x}Y_xNiSn$. Показано, що напівпровідниковий твердий розчин $H_{1-x}Y_xNiSn$ є перспективним термометричним матеріалом.

Ключові слова: напівпровідник, електропровідність, термо-е.р.с.

У праці [1] з'ясовано, що введення атомів Y у кристалічну структуру сполуки HfNiSn заміщенням атомів Hf супроводжується її впорядкуванням, а атоми Y $(4d^15s^2)$, займаючи кристалографічну позицію Hf $(5d^26s^2)$, генерують структурні дефекти акцепторної природи. Зроблений на цій підставі розрахунок електронної структури Hf_{1-x}Y_xNiSn засвідчив, що легування напівпровідника електронного типу провідності *n*-HfNiSn акцепторною домішкою Y приведе до зменшення кількості вільних електронів, а рівень Фермі (ε_F) рухатиметься до валентної зони, яку згодом перетне: реалізується перехід провідності діелектрик–метал [2–4] та зміниться тип провідності з електронного на дірковий.

Дослідження температурних і концентраційних залежностей електрокінетичних та енергетичних характеристик напівпровідникового твердого розчину $Hf_{1,x}Y_xNiSn$ дасть змогу визначити ступінь адекватності запропонованих в [1] моделей кристалічної та електронної структур, а також можливість використати отримані матеріали в засобах вимірювання температури. Вивчали температурні та концентраційні залежності питомого опору ρ і коефіцієнта термо-е.р.с. $\alpha Hf_{1,x}Y_xNiSn, x = 0 - 0,30$, у діапазоні T = 80 - 380 К.

Температурні залежності питомого опору $\ln\rho(1/T)$ та коефіцієнта термо-е.р.с. $\alpha(1/T)$ для $Hf_{1,x}Y_xNiSn$, x = 0 - 0,30, є типовими для напівпровідників (рис. 1, 2) і змінюються відповідно до результатів розрахунків розподілу густини електронних станів [1].

[©] Стадник Ю., Ромака В. А., Крайовський В. та ін., 2016

Рис. 1. Температурні залежності питомого опору р для Hf_{1-x}Y_xNiSn за різних концентрацій

Можемо бачити, що у зразках $Hf_{1,x}Y_xNiSn, x = 0 - 0,10$ на залежностях lnp(1/T) присутні високотемпературні активаційні ділянки, що свідчить про розташування рівня Фермі ε_F у забороненій зоні, з якого власне і відбувається активація носіїв струму з зони неперервих енергій. Наприклад, від'ємні значення коефіцієнта термое.р.с. $Hf_{1,x}Y_xNiSn$ у випадку x = 0 є зрозумілими і пов'язані з невпорядкованістю кристалічної структури сполуки HfNiSn, суть якої полягає у частковому, до ~1 %, зайнятті атомами Ni $(3d^84s^2)$ кристалографічної позиції 4*a* атомів Hf $(5d^26s^2)$, що генерує в кристалі структурні дефекти донорної природи, а електрони є основними носіями електрики [5].

Відповідно, від'ємні значення коефіцієнта термо-е.р.с. для випадку x = 0,01засвідчують (див. рис. 2), що концентрація генерованих дефектів акцепторної природи в разі заміщення атомів Hf $(5d^26s^2)$ на атоми Y $(4d^15s^2)$ є меншою, ніж концентрація дефектів донорної природи, зумовлена невпорядкованістю структури сполуки HfNiSn, а отже, рівень Фермі ε_F буде розташований на домішковій донорній зоні і ближче до зони провідності.

165

Рис. 2. Температурні залежності коефіцієнта термо-е.р.с. α для Hf_{1-x}Y_xNiSn за різних концентрацій

Для випадків $Hf_{1-x}Y_xNiSn$, x = 0,02 - 0,10, додатні значення коефіцієнта термое.р.с. засвідчують, що концентрація дефектів акцепторної природи перевищила концентрацію дефектів донорної природи, а рівень Фермі є_F тепер фіксовано на генерованій у кристалі домішковій акцепторній зоні внаслідок заміщення атомів Hf на Y [1]. Високотемпературна активаційна ділянка на залежностях $ln\rho(1/T)$ відображає термічний закид дірок з акцепторної зони у валентну, що супроводжується збільшенням кількості вільних дірок.

Натомість металічний хід залежності $\ln p(1/T)$ та додатні значення коефіцієнта термо-е.р.с. для $Hf_{1-x}Y_xNiSn$, x = 0,30, засвідчують, що рівень Фермі перетнув стелю валентної зони, як і прогнозували за розрахунками електронної структури $Hf_{1-x}Y_xNiSn$ [1]: відбувся перехід провідності діелектрик-метал [2-4]. У цьому разі необхідно розуміти, що зразок $Hf_{1-x}Y_xNiSn$, x = 0,30, і надалі є напівпровідником, а механізму активаційної провідності в дослідженому діапазоні температур нема з огляду на входження рівня Фермі у валентну зону. На перший погляд, дещо суперечливою є поведінка залежності $\rho(x)$ на ділянці x = 0 - 0,10 (рис. 3, *a*). Наприклад, уведення у сполуку HfNiSn найменшої в експерименті концентрації атомів Y супроводжується стрімким зменшенням значень питомого електроопору, зокрема при 160 К – від значень $\rho(x = 0) = 487,2$ мкОм·м до $\rho(x = 0,01) = 121,1$ мкОм·м.

Рис. 3. Зміна значень питомого електроопору (*a*) та коефіцієнта термо-е.р.с. (*б*) Нf_{1-x}Y_xNiSn за різних температур, К: 1 – 80; 2 –160; 3 – 300; 4 – 380

Річ у тім, що концентрація акцепторів, які генеруються у кристалі в разі введення найменшої концентрації Y (x = 0,01), є занадто великою, і ми перестрибуємо проміжок концентрацій, за яких рівень Фермі є_F рухався б від краю зони провідності до середини забороненої зони, що супроводжувалося б збільшенням значень електроопору через зменшення густини станів на рівні Фермі в напівпровіднику електронного типу провідності під час його легування акцепторами. Наприклад, за найменшої концентрації акцепторної домішки Y (x = 0,01) значення коефіцієнта термо-е.р.с. стають додатними, а коефіцієнт термо-е.р.с., зокрема при 160 К змінюється від $\alpha(x = 0) = -252,5$ мкВК⁻¹ до $\alpha(x = 0,01) = 3,4$ мкВК⁻¹, що свідчить про зростання концентрації дірок з наближенням рівня Фермі до валентної зони. Тобто концентрація Y, x = 0,01, є достатньою, щоб змінити тип провідності, і тепер основними носіями електрики стають дірки.

У цьому контексті цікаво простежити за характером зміни енергетичних характеристик $Hf_{1-x}Y_xNiSn$, отриманих з експериментальних досліджень (рис. 4), з яких також можна зробити висновок, що введення домішкових атомів Y у структуру сполуки HfNiSn супроводжується генеруванням структурних дефектів акцепторної природи. З активаційних ділянок залежностей $ln\rho(1/T)$ (див. рис. 1) обчислено значення енергій активації з рівня Фермі ε_F на рівень протікання зони провідності $\varepsilon_1^{\rho}(x)$, а з активаційних ділянок залежностей $\alpha(1/T)$ (див. рис. 2) – значення енергій активації (див. рис. 4), що дають значення амплітуди модуляції зон неперервних енергій [2–4].

Рис. 4. Зміна значень енергій активації $\varepsilon_1^{\rho}(a)$ та $\varepsilon_1^{\alpha}(\delta)$ Hf_{1-x}Y_xNiSn

З рис. 4, *а* бачимо, що легування напівпровідника приводить до зменшення значень енергії активації $\varepsilon_1^{\rho}(x)$. Важливо пояснити, що значення енергії $\varepsilon_1^{\rho}(x)$ для нелегованого напівпровідника *n*-HfNiSn відображає енергетичну щілину між положенням рівня Фермі ε_F та краєм зони провідності. Водночас значення енергії активації $\varepsilon_1^{\rho}(x)$ для найменшої концентрації атомів Y і всіх подальших відображають енергетичну щілину між положенням рівня Фермі та краєм валентної зони. Із практично лінійного характеру поведінки $\varepsilon_1^{\rho}(x)$ на ділянці концентрацій x = 0,01 - 0,10 випливає, що рівень Фермі ε_F рухається до краю валентної зони з однаковою швидкістю, яка становить $\Delta \varepsilon_F / \Delta x = 0,9$ меВ/%Y. Такий результат є цілком логічним і оскільки ми збільшуємо концентрацію домішки Y за лінійним законом, то за таким же законом генеруються у Hf_{1-x}Y_xNiSn структурні дефекти акцепторної природи.

Цікавою є зміна значень енергії активації $\varepsilon_1^{\alpha}(x)$, яка пропорційна до амплітуди модуляції зон неперервних енергій Hf_{1-x}Y_xNiSn. З рис. 4, б випливає, що у випадку нелегованого напівпровідника *n*-HfNiSn амплітуда модуляції становить $\varepsilon_1^{\alpha}(x=0)=50,9$ меВ, а введення у напівпровідник електронного типу провідності найменшої в експерименті концентрації домішки Y практично не змінює ступеня компенсації напівпровідника, про що свідчить значення амплітуди модуляції $\varepsilon_1^{\alpha}(x=0,01)=50,6$ меВ. Такий результат був би суперечливим у випадку, якби не відбулося зміни типу основних носіїв струму. Однак, як з'ясовано вище, концентрації Y x = 0,01 є достатньо, щоб перекомпенсувати напівпровідник, а тому близькість значень $\varepsilon_1^{\alpha}(x=0)=50,9$ меВ та $\varepsilon_1^{\alpha}(x=0,01)=50,6$ меВ випадкова.

Додавання у напівпровідник тепер діркового типу провідності $Hf_{1-x}Y_xNiSn, x = 0,01$, акцепторної домішки Y природно зменшує ступінь компенсації, тобто різниця в кількості іонізованих акцепторів і донорів збільшиться. Цей ефект відображений у зменшенні значень амплітуди модуляції до $\varepsilon_1^{\alpha}(x = 0,02) = 25,4$ меВ. Зрозуміло, що подальше легування напівпровідника діркового типу провідності акцепторною домішкою буде лише зменшувати ступінь компенсації і значення амплітуди модуляції зон неперервних енергій (див. рис. 4, δ).

Отже, унаслідок комплексного дослідження кристалічної та електронної структур, електрокінетичних і магнітних характеристик інтерметалічного напівпровідника *n*-HfNiSn, сильно легованого атомами Y, з'ясовано механізми генерування в кристалі структурних дефектів акцепторної природи, які змінюють ступінь компенсації термоелектричного матеріалу і визначають механізми електропровідності.

1. *Ромака В. В., Стадник Ю., Ромака В.А. та ін.* Дослідження напівпровідникового твердого розчину Hf_{1-x}Y_xNiSn. I. Дослідження кристалічної та електронної структур // Вісн. Львів. ун-ту. Сер. хім. 2016. Вип. 57. С. ____.

2. *Ромака В. А., Ромака В. В., Стадник Ю. В.* Інтерметалічні напівпровідники: властивості та застосування. Львів: Вид-во Львів. політехніки, 2011. 488 с.

3. Шкловский Б. И., Эфрос А. Л. Переход от металлической проводимости к активационной в компенсированных полупроводниках // Журн. эксперим. и теор. физики. 1971. Т. 61, вып. 2. С. 816–825.

4. Шкловский Б. И., Эфрос А. Л. Полностью компенсированный кристаллический полупроводник как модель аморфного полупроводника // Журн. эксперим. и теор. физики. 1972. Т. 62, вып. 3. С. 1156–1165.

5. *Romaka V. V., Rogl P., Romaka L. et al.* Peculiarites of Structural disorder in Zrand Hf- Containing Heusler and Half-heusler Stannides // Intermetallics. 2013. Vol. 35. P. 45–52.

INVESTIGATION OF SEMICONDUCTIVE SOLID SOLUTION $Hf_{1-x}Y_xNiSn$. II. ELECTROKINETIC STUDY

Yu. Stadnyk¹, V. A. Romaka², V. Krajovskii², V. V. Romaka², A. Horyn¹, O. Lakh³

¹Ivan Franko Lviv National University, Kyryla & Mephodiya Str., 6, 79005 Lviv, Ukraine

²National university "Lvivska Politechnika", S. Bandera Str., 12, 79013, Lviv, Ukraine

³PAT NVO "Thermoprylad", Naukova Str., 3, 79060, Lviv, Ukraine e-mail: stadnyk yuriy@lnu.edu.ua

The experimental results of $Hf_{1-x}Y_xNiSn$ solid solution investigation given in this paper confirmed the theoretical calculations of its electronic structure and crystal structure described in [1]. The temperature and concentration dependences of electrokinetic and electron state characteristics of this solid solution in the concentration x = 0 - 0.30 and temperature T = 80 - 380 K ranges were measured. The basic mechanisms of conduction were established. Doping of Y atoms in the structure of HfNiSn compound by substitution of Hf atoms was accompanied by generation of acceptor structural defects, the concentration of which increases with enlarging content of Y atoms. Adding the

168

Ю. Стадник, В. А. Ромака, В. Крайовський та ін. ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2016. Випуск 57. Ч. 1

least concentration of Y atoms (x = 0.01) led to change in the conduction from *n*-type characterized HfNiSn compound to *p*-type. Thus, there was a change in the type of major charge carriers from electrons to holes. Metallic like dependence $\ln p(1/T)$ and positive thermopower for $Hf_{1-x}Y_xNiSn$, x = 0.30, evidence, that Fermi level crossed edge of valence band, as predicted by electronic structure calculation, and insulator-metal transition was observed. Experimental results and established mechanisms of conduction were consistent with theoretical studies of the electronic structure for $Hf_{1-x}Y_xNiSn$. According to obtained results semiconductive $Hf_{1-x}Y_xNiSn$ solid solution is a perspective thermometric material.

Key words: semiconductor, electrical conductivity, thermopower.

Стаття надійшла до редколегії 02.11.2015 Прийнята до друку 12.01.2016