ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2017. Випуск 58. Ч. 1. С. 63–68 Visnyk of the Lviv University. Series Chemistry. 2017. Issue 58. Pt. 1. P. 63–68

УДК 546.63'73'682

НОВІ ПРЕДСТАВНИКИ СТРУКТУРНИХ ТИПІВ Lu₃Co_{2-x}In₄ ТА Ho₁₀Ni₉In₂₀ У СИСТЕМІ Sc-Co-In

Н. Гулай, Ю. Тиванчук, Я. Каличак

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: yutyv@lnu.edu.ua

За результатами рентгенівського методу порошку визначено кристалічну структуру двох нових інтерметалідів: Sc₃Co_{1,69}In₄ та Sc₁₀Co₉In_{19,6}. Сполука Sc₃Co_{1,69}In₄ належить до структурного типу Lu₃Co_{2-x}In₄, просторова група $P\overline{6}$, a=7,6598(5), c=3,3617(3) Å. Координати атомів уточнені до $R_{\rm f}=4,74$ %, $R_{\rm Bragg}=7,02$ % і $B_{\rm overal}=1,9(2)$ Å². Сполука Sc₁₀Co₉In_{19,60} належить до типу Ho₁₀Ni₉In₂₀, просторова група P4/nmm, a=12,8220(7), c=9,0338(6) Å. Координати атомів уточнені до $R_{\rm f}=6,06$ %, $R_{\rm Bragg}=8,63$ % і $B_{\rm overal}=1,4(1)$ Å². Досліджені сполуки продовжують серії ізоструктурних сполук R_3 Co_{2-x}In₄ (R=Dy, Ho, Er, Tm, Lu), R_{10} Co₉In₂₀ (R=Er, Tm, Lu) і R_{10} Ni₉In₂₀ (R=Tb, Dy, Ho, Er, Tm, Lu, Sc).

Ключові слова: Скандій, Кобальт, Індій, тернарна сполука, кристалічна структура.

Дослідження потрійних систем рідкісноземельних металів (P3M або R) з перехідними металами, особливо Co, Ni, Cu та Індієм, проводять доволі інтенсивно з огляду на те, що ці системи є багаті на інтерметалічні сполуки з різноманітними кристалічними структурами та унікальними магнітними властивостями [1]. З усіх систем P3M–Co–In повністю дослідженими системами, для яких побудовано ізотермічні перерізи діаграм стану, є системи Ce–Co–In [2] та Er–Co–In [3]. У решті систем досліджено лише окремі склади з метою пошуку сполук ізоструктурних до відомих структурних типів.

Систему Sc-Co-In раніше практично не досліджували. До цього часу виявлено і визначено кристалічну структуру лише двох сполук: Sc₆Co_{2,18}In_{0,82} [4] та Sc₅Co₂In₄ [5]. Ми під час систематичного дослідження взаємодії компонентів у системі Sc-Co-In виявили існування ще декількох нових тернарних сполук. Мета нашої праці – визначити їх кристалічну структуру.

Для отримання сплавів системи Sc–Co–In використовували метали високого ступеня чистоти: скандій – 99,9; кобальт – 99,92; індій – 99,99 мас. %. Зразки масою до 1 г сплавляли в електродуговій печі з мідним охолоджуваним водою подом і вольфрамовим електродом в атмосфері очищеного аргону під тиском 0,5×10⁵ Па. Сплави відпалювали у вакуумованій кварцовій ампулі за температури 870 К упродовж 60 діб і гартували у холодній воді разом з ампулою.

[©] Гулай Н., Тиванчук Ю., Каличак Я., 2017

Фазовий аналіз та уточнення кристалічної структури сполук виконано за допомогою програми FullProf [6] на основі порошкових рентгенограм (дифрактометр STOE STADI P, CuK_{$\alpha 1$}-випромінювання, зігнутий Ge-монохроматор типу Іоганна, геометрія на пропускання, інтервал $6 \le 2\theta \le 110^\circ$, крок 0,015°, час сканування в кроці 320 с).

За результатами рентгенофазового аналізу у зразку $Sc_{30}Co_{25}In_{45}$ виявлено співіснування трьох фаз, двох нових представників відомих раніше структурних типів – $Sc_3Co_{1,69}In_4$ і $Sc_{10}Co_9In_{19,6}$, а також бінарної – $ScIn_3$. Дифрактограму зразка $Sc_{30}Co_{25}In_{45}$ зображено на рис. 1. Уточнення кристалічної структури тернарних сполук проведено на основі аналізу трифазного зразка.

Рис. 1. Експериментальна (+), розрахована (-) та різницева дифрактограми сплаву Sc₃₀Co₂₅In_{45.} Верхні позначки відповідають відбиттям сполуки Sc₃Co_{1,69}In₄; середні – Sc₁₀Co₉In_{19.6}; нижні – ScIn₃

Сполука Sc₃Co_{1,69}In₄ (31,2 мас. % у зразку) належить до структурного типу Lu₃Co_{2-x}In₄ (x=0,13) [7], просторова група $P\overline{6}$, із уточненими значеннями періодів елементарної комірки: *a*=7,6598(5) і *c*=3,3617(3) Å. Уточнені до $R_{\rm f}$ =4,74 %, $R_{\rm Bragg}$ = 7,02 % і $B_{\rm overal}$ = 1,9(2) Å² координати атомів наведено у табл. 1. Як і для прототипу, для сполуки зі Скандієм наявна дефектність під час заповнення положення 1*d* атомами Co2, однак тут вона є вищою (x=0,31 відносно x=0,13 у сполуці з Лютецієм).

Таблиця 1

Атом	Заповнення	П. С. Т.	x/a	y/b	z/c
Sc	1	3k	0,288(3)	0,040(2)	1/2
Co1	1	1a	0	0	0
Co2	0,69(2)	1d	1/3	2/3	1/2
In1	1	1e	2/3	1/3	0
In2	1	3f	0,079(3)	0,669(2)	0

На рис. 2. зображено проекцію елементарної комірки сполуки $Sc_3Co_{1,69}In_4$ на площину XY та координаційні многогранники атомів. Координаційним многогранником для Sc (KЧ=15) є пентагональна призма з п'ятьма додатковими атомами (двома навпроти верхньої та нижньої граней та трьома навпроти бічних граней). Атоми Co1 та Co2 розташовані всередині тригональних призм з додатковими атомами навпроти всіх бічних граней (КЧ=9). Атоми In1 також перебувають у тригональних призмах з центрованими бічними гранями, однак до координаційної сфери цього атома можна включити два атоми In1 навпроти основ на віддалі періоду комірки c=3,3617(3) (КЧ=11). Координаційне оточення атома In2 формує викривлений тетрагексаедр (КЧ=14).

Рис. 2. Проекція елементарної комірки на площину ХУ та координаційні многогранники атомів сполуки Sc₃Co_{1.69}In₄

Сполука Sc₁₀Co₉In_{19,6} (64,7 мас. % у зразку) кристалізується у структурному типі Ho₁₀Ni₉In₂₀ [8], просторова група *P4/nmm*, зі значеннями періодів елементарної комірки: a=12,8220(7), c=9,0338(6) Å. Уточнені до $R_{\rm f}=6,06$ %, $R_{\rm Bragg}=8,63$ % і $B_{\rm overal}=1,4(1)$ Å² координати атомів наведено у табл. 2. Як і в попередньому випадку, для сполуки Sc₁₀Co₉In_{19,6} наявна дефектність, щоправда, не для перехідного металу, а для атомів In4 (табл. 2). Подібне явище простежується і для ізоструктурної сполуки Sc₁₀Ni₉In_{19,44}, уточненої методом монокристала [4]. Остання сполука має ще одну особливість, а саме розщеплення положення атомів In4 з його сумарним заповненням 0,86. Варто також зазначити, що для типу Ho₁₀Ni₉In₂₀ відомі структури з відхиленням від стехіометрії, яке пов'язане з додатковими дефектними положеннями, зайнятими атомами перехідних металів, наприклад, Tb₁₀Ni_{9,34}In₂₀ і Dy₁₀Ni_{9,32}In₂₀ [9].

Проекція елементарної комірки сполуки $Sc_{10}Co_9In_{19,6}$ на площину XY та координаційні многогранники атомів зображені на рис. 3. Координаційними многогранниками для атомів Sc1–Sc3 є пентагональні призми з шістьма додатковими атомами (KЧ=16). Атом Sc4 розташований усередині пентагональної призми з

додатковими атомами, розміщеними навпроти усіх граней (КЧ=17). Восьмигранник з атомів Іп, який оточує атом Co1 (КЧ=8), можна розглядати як дві деформовані тригональні призми, розташовані взаємно перпендикулярно, які мають спільну бічну грань. Координаційними многогранниками для атомів Co2 та Co3 є тетрагональні антипризми з двома додатковими атомами навпроти верхньої та нижньої граней (КЧ=10). В атомів In1 та In2 координаційними многогранниками є деформовані кубооктеадри (КЧ=12), а для атомів In3 та In5 – деформовані кубооктаедри з одним додатковим атомом (КЧ=13). Координаційне оточення атома In4 формує деформований ікосаедр (КЧ=12).

Рис. 3. Проекція елементарної комірки на площину XY та координаційні многогранники атомів сполуки $Sc_{10}Co_9In_{19,6}$

Координати атомів у структурі сполуки Sc ₁₀ Co ₉ In _{19,6}								
Атом	Заповнення	П. С. Т.	x/a	y/b	z/c			
Sc1	1	2c	1/4	1/4	0,665(6)			
Sc2	1	2c	1/4	1/4	0,153(7)			
Sc3	1	8i	1/4	0,517(2)	0,239(5)			
Sc4	1	8j	0,455(1)	0,455(1)	0,734(4)			
Co1	1	2a	1/4	3/4	0			
Co2	1	8i	1/4	0,028(2)	0,607(4)			
Co3	1	8j	0,601(2)	0,601(2)	0,897(3)			
In1	1	8g	0,092(1)	0,908(1)	0			
In2	1	8h	0,618(1)	0,382(1)	1/2			
In3	1	8i	1/4	0,085(1)	0,910(2)			
In4	0,90(4)	8i	1/4	0,867(1)	0,766(2)			
In5	1	8j	0,379(1)	0,379(1)	0,408 (3)			

Таблиця 2

В обох структурах міжатомні віддалі перебувають у межах, що незначно відхиляються від суми радіусів атомів [11]. Деяке скорочення міжатомних віддалей у структурі $Sc_3Co_{1,69}In_4$ існує для атомних пар Sc-Co1 (6,7%), Sc-In2 (7,6%), Co2-In2 (10,4%) та In1-In2 (10,5%). У структурі $Sc_{10}Co_9In_{19,6}$ можна відзначити наступні скорочення: Sc3-In5 (11,5%), Co2-In4 (12,5%), Co1-In4 (10,0%), Co3-In3 (10,0%), Co3-In1 (7,9%), In2-In4 (9,5%), In1-In4 (8,6%), In4-In4 (8,0%), In3-In3 (7,8%).

Бінарна сполука ScIn₃ (4,1 мас. %) має структуру типу AuCu₃, просторова група $Pm\overline{3}m$, a=4.4782(5) Å.

Досліджені сполуки продовжують серії ізоструктурних сполук з Кобальтом $R_3Co_{2-x}In_4$ (*R*=Dy, Ho, Er, Tm, Lu) [7], $R_{10}Co_9In_{20}$ (*R*=Er, Tm, Lu) [10] та Нікелем $R_{10}Ni_9In_{20}$ (*R*=Tb, Dy, Ho, Er, Tm, Lu, Sc) [4, 8, 9]. У системі Се–Со–Іп [2] сполук, ізоструктурних до досліджених, не виявлено, зате вони існують у Er–Co–In [3]. Зі згаданого можна зробити висновок про спорідненість Sc–Co–In до систем з важкими РЗМ ітрієвої підгрупи.

Дифрактограму сплаву Sc₃₀Co₂₅In₄₅ знято в "Міжфакультетській науковонавчальній лабораторії рентгеноструктурного аналізу" ЛНУ імені Івана Франка.

- 1. *Kalychak Ya. M., Zaremba V. I., Pöttgen R.* et al. Rare Earth–Transition Metal– Indides, in: K. A. Gschneider Jr., V. K. Pecharsky, J.-C. Bünzli (Eds.). Handbook on the Physics and Chemistry of Rare Earths. Vol. 34. Amsterdam: Elsevier, 2005. P. 1–133.
- 2. *Каличак Я. М.* Система Се-Со-Іп // Вісник. Львів. у-ту. Сер. хім. 1999. Вип. 38. С. 70-73.
- 3. *Dzevenko M., Hamyk A., Tyvanchuk Y., Kalychak Y.* Phase equilibria in the Er–Co–In system and crystal structure of Er₈CoIn₃ compound // Cent. Eur. J. Chem. 2013. Vol. 11. No. 4. P. 604–609.
- 4. *Zaremba R. I., Kalychak Ya. M., Rodewald U. Ch.* et al. New Indides Sc₆Co_{2,18}In_{0,82}, Sc₁₀Ni₉In_{19,44} and ScCu₄In Synthesis, Structure, and Crystal Chemistry // Z. Natuforshung. 2006. Bd. 61b. P. 942–948.
- Tyvanchuk Yu., Gulay N., Bigun I. et al. The crystal structure of Sc₅Co₂In₄ // Z. Natuforshung. 2015. Bd. 70b. P. 283–287.
- 6. *Rodriguez–Carvajal J.* Recent developments of the program FULLPROF // Commission on Powder Diffraction (IUCr). Newsletter. 2001. Vol. 26. P. 12–19.
- 7. Заремба В. І., Каличак Я. М., Завалій П. Ю., Соболєв О. М. Кристалічна структура сполуки Lu₃Co_{2-x}In₄ (x=0,13) та споріднених сполук // Доп. АН УРСР. Сер. Б. 1989. № 2. С. 37–39.
- Заремба В. І., Бельський В. К., Каличак Я. М. та ін. Кристалічна структура сполук РЗМ₁₀Ni₉In₂₀ (РЗМ = Но, Ег, Тт, Lu) // Доп. АН УРСР. Сер. Б. 1987. № 3. С. 42 – 45.
- Zaremba V. I., Muts I. R., Rodewald U. Ch. et al. Syntheses and Structures of RE₁₀Ni_{9+x}In₂₀ (RE = Tb, Dy) and YbNiIn₂ // Z. Anorg. Allg. Chem. 2004. Vol. 630. P. 1903–1907.

- 10. Dubenskii V. P., Kalychak Ya. M., Zaremba V. I., Goreshnik E. A. The crystal structure of $R_{10}Co_9In_{20}$ (R = Er, Tm, Lu) compounds // J. Alloys Compd. 1998. Vol. 280. P. 199–203.
- 11. *Emsley J.* The Elements, 2nd ed. Oxford: Clarendon Press, 1991. 264 p.

68

NEW COMPOUNDS WITH STRUCTURE TYPES Lu₃Co_{2-x}In₄ AND Ho₁₀Ni₉In₂₀ IN Sc-Co-In SYSTEM

N. Gulay, Yu. Tyvanchuk, Ya. Kalychak

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: yutyv@lnu.edu.ua

During systematic studies of the Sc–Co–In ternary system existence of the new Sc₃Co_{1.69}In₄ and Sc₁₀Co₉In_{19.6} compounds have been revealed. The alloys have been prepared by arc-melting of the high purity (Sc–99.9 wt. %; Co–99.9 wt. %; In–99.99 wt. %) metals under an argon atmosphere and annealed at 870 K in evacuated sealed quartz tubes during 60 days. Crystal structures have been studied using X-ray powder diffraction data of three phase sample (diffractometer STOE STADI P, CuK_{a1} – radiation, range $6 \le 2\theta \le 110^{\circ}$ and FullProf program). Crystal structure of Sc₃Co_{1.69}In₄ belongs to Lu₃Co_{1.87}In₄ type (space group $P\overline{6}$, *a*=7.6598(5) and *c*=3.3617(3) Å) and refined to $R_{\rm f}$ =4.74 % and $R_{\rm Bragg}$ =7.02 % with $B_{\rm overal}$ =1.9(2) Å². Crystal structure of Sc₁₀Co₉In_{19.6} belongs to Ho₁₀Ni₉In₂₀ type (space group $P\overline{4}$ /*nmm*, *a*=12.8220(7), *c*=9.0338(6) Å) and refined to $R_{\rm f}$ =6.06 % and $R_{\rm Bragg}$ =8.63 % with $B_{\rm overal}$ =1.4(1) Å². Both compounds have defective crystal structure and prolong R₃Co_{2-x}In₄ (*R*=Dy, Ho, Er, Tm, Lu), R_{10} Co₉In₂₀ (*R*=Er, Tm, Lu) and R_{10} Ni₉In₂₀ (*R*=Tb, Dy, Ho, Er, Tm, Lu, Sc) series.

Key words: scandium, cobalt, indium, ternary compound, crystal structure.

Стаття надійшла до редколегії 01.11.2016 Прийнята до друку 04.01.2017