УДК 546.682:548.734:669.18

СИСТЕМИ GdTIn_{1-x} M_x (T = Ni, Cu; M = Al, Ga; 0<x<1)

М. Горяча, Л. Зінько, Г. Ничипорук, Р. Серкіз, В. Заремба

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: galka_n@franko.lviv.ua

Взаємодію компонентів у системах $GdNiIn_{1-x}Al_x$, $GdCuIn_{1-x}Al_x$, та $GdNiIn_{1-x}Ga_x$ вивчено методами рентгенівського фазового та, частково, локального рентгеноспектрального аналізів при 870 К у повному концентраційному інтервалі. Визначено межі розчинності *p*-елементів у вихідних сполуках, типи твердих розчинів, кристалічну структуру фаз та уточнено значення параметрів елементарної комірки для них:

 $\begin{array}{l} {\rm GdNiIn_{1-0}Al_{0-1} \ (CT \ ZrNiAl): a = 0,7453(1) - 0,7015(1), c = 0,3836(1) - 0,3912(1) \ {\rm HM} \\ {\rm GdCuIn_{1-0}Al_{0-1} \ (CT \ ZrNiAl): a = 0,7467(1) - 0,7070(1), c = 0,3983(1) - 0,4083(1) \ {\rm HM} \\ {\rm GdNiIn_{1-0,4}Ga_{0-0,6} \ (CT \ ZrNiAl): a = 0,7463(1) - 0,7282(1), c = 0,3836(1) - 0,3787(1) \ {\rm HM} \\ {\rm GdNiIn_{0,1-0}Ga_{0,9-1,0} \ \ (CT \ \ HoNiGa): a = 0,6937(1) - 0,6933(1), b = 0,4329(1) - 0,4322(1), c = 0,7418(1) - 0,7365(1) \ {\rm HM}. \end{array}$

Кристалічну структуру сполуки GdCuIn_{0,29}Al_{0,71} досліджено методом порошку (CT ZrNiAl, ПГ $P\overline{6}$ 2*m*, a = 0,71451(2) нм, c = 0,40783(2) нм, $R_{\text{Bragg}} = 0,059$, $R_{\text{F}} = 0,066$).

Ключові слова: Індій, твердий розчин, метод порошку, кристалічна структура.

Сполуки еквіатомного складу утворюються у переважній більшості систем РЗМ– *T–X* (T – Ni, Cu, X – p-елемент III групи). Кристалічні структури таких сполук з Алюмінієм та Індієм належать до гексагонального типу ZrNiAl [1, 2], тоді як аналогічні фази з галієм кристалізуються в ромбічній сингонії (структурні типи KHg₂ та HoNiGa) [3, 4]. Ці сполуки мають цікаві магнітні та транспортні властивості в широкому діапазоні температур [5]. Магнітні моменти сполук *RE*CuIn (*RE* = Nd, Gd, Tb, Dy, Ho, Er) впорядковуються антиферомагнітно [6]. Сполука GdNiAl характеризується складною магнітною структурою з трьома переходами (феромагнітним упорядкуванням при 60 K і двома антиферомагнітними при 31 і 14 K) [7, 8]. Антиферомагнітний тип впорядкування при 23 K простежується також у GdCuAl [8]. Цікаві магнітокалоричні властивості демонструють сполуки GdNiIn та GdNiGa [9].

Мета нашої праці – дослідити взаємодію компонентів у системах $GdTIn_{1-x}Al_x$ (T – Ni, Cu) та $GdNiIn_{1-x}Ga_x$ у повному концентраційному інтервалі при 870 K на предмет взаємного заміщення *p*-елементів та вплив такого заміщення на тип розчинності та кристалічну структуру фазових складових.

Синтез зразків проведено сплавлянням шихти металів високої чистоти (всі до 0,998 мас. частки основного компонента) в електродуговій печі в атмосфері очищеного аргону. В подальшому одержані зразки піддано гомогенізуючому відпалу у вакуумованих кварцових ампулах при 870 К протягом одного місяця. Сплави як литі, так і відпалені стійкі до дії атмосферного середовища протягом тривалого часу.

[©] Горяча М., Зінько Л., Ничипорук Г. та ін., 2017

Масиви дифракційних даних отримано з використанням порошкових дифрактометрів ДРОН–2.0М (Fe K α -випромінювання) та STOE Stadi P (Cu K α_1 -випромінювання). Для окремих сплавів проведено мікроструктурний аналіз шліфів на скануючому електронному мікроскопі РЕММА–102–02. Фазовий аналіз та структурні розрахунки виконані з використанням програм Powder Cell [10], STOE WinXPOW [11] та FullProf [12].

Унаслідок фазового аналізу зразків досліджених систем визначено необмежену розчинність Алюмінію в сполуках GdNiIn і GdCuIn, обмежену розчинність галію у сполуці GdNiIn, а також незначну розчинність індію у сполуці GdNiGa (табл. 1).

Таблиця 1

y cucremax Gd I \ln_{1-x} Al _x (I – N1, Cu) ta GdN1 \ln_{1-x} Ga _x					
Протянціоти	Струк-	Параметри елементарної комірки			
твердого розчину	турний тип	а, нм	<i>b</i> , нм	С, НМ	<i>V</i> , нм ³
GdNiIn _{1,0-0} Al _{0-1,0}	ZrNiAl	0,7453(1) – 0,7015(1)	-	0,3836(1) – 0,3912(1)	0,1845(1) – 0,1667(1)
GdCuIn _{1,0-0} Al _{0-1,0}	ZrNiAl	0,7467(1) – 0,7070(1)	-	0,3983(1) – 0,4083(1)	0,1923(1) – 0,1759(1)
GdNiIn _{1-0,4} Ga _{0-0,6}	ZrNiAl	0,7463(1) – 0,7282(1)	-	0,3836(1) – 0,3787(1)	0,1850(1) – 0,1739(1)
GdNiIn _{0,1-0} Ga _{0,9-1,0}	HoNiGa	0,6937(1) - 0.6933(1)	0,4329(1) - 0.4322(1)	0,7418(1) - 0.7365(1)	0,2228(1) - 0.2207(1)

Протяжність та параметри елементарної комірки твердих розчинів у системах $GdTIn_{1-x}Al_x(T - Ni, Cu)$ та $GdNiIn_{1-x}Ga_x$

У системах GdNiIn_{1-x}Al_x та GdCuIn_{1-x}Al_x визначено існування неперервних твердих розчинів зі структурою типу ZrNiAl. Зразки системи з Нікелем у рівновазі з основною фазою містять незначні кількості фаз складу GdNi_{5-x}Al_x зі структурами типів CaCu₅ або YNiAl₄ [13]. На рис. 1 подано дифрактограму сплаву складу GdNiIn_{0,3}Al_{0,7}, а на рис. 2 та в табл. 2 наведено результати локального рентгеноспектрального аналізу двох зразків цієї системи.

Рис. 1. Експериментальна (точки), розрахована (суцільна лінія) та різницева (внизу) дифрактограми сплаву складу GdNiIn_{0,3}Al_{0,7} (дифрактометр ДРОН–2.0М, Fe Kα-випромінювання)

Рис. 2. Фотографії мікрострутур поверхонь шліфів сплавів: *a* – GdNiIn_{0,7}Al_{0,3}; *б* – GdNiIn_{0,3}Al_{0,7} (електронний мікроскоп PEMMA–102–02)

Таблиця 2

Хімічний аналіз фаз сплавів системи GdNiIn _{1-x} Al _x		
GdNiIn _{0,7} Al _{0,3}	Загальний склад – $Gd_{0,33}Ni_{0,33}In_{0,23}Al_{0,11}$	
	Cipa $\varphi a 3a \ -Gd_{0,34}Ni_{0,30}In_{0,26}Al_{0,10}$	
	Загальний склад – $Gd_{0,33}Ni_{0,33}In_{0,11}Al_{0,23}$	
GdNiIn _{0,3} Al _{0,7}	$Cipa \; \varphi a 3a - Gd_{0,34} Ni_{0,32} In_{0,10} Al_{0,24}$	
	Чорна фаза – $Gd_{0,19}Ni_{0,47}In_{0,01}Al_{0,33}$	

У системі GdCuIn_{1-x}Al_x у рівновазі з основною фазою наявні домішкові фази зі структурами типів MgCuAl₂, Mo₂FeB₂ і Mn₂AlB₂, що підтверджено даними локального рентгеноспектрального аналізу (рис. 3, 4; табл. 3) і добре узгоджується з результатами дослідження системи Gd–Cu–In [14].

Рис. 3. Експериментальна (точки), розрахована (суцільна лінія) та різницева (внизу) дифрактограми сплавів складів: *a* – GdCuIn_{0.7}Al_{0.3}; *δ* – GdCuIn_{0.3}Al_{0.7} (дифрактометр STOE Stadi P, CuKα₁-випромінювання)

79

Рис. 4. Фотографії мікрострутур поверхонь шліфів сплавів: $a - \text{GdCuIn}_{0,6}\text{Al}_{0,4}; \delta - \text{GdCuIn}_{0,4}\text{Al}_{0,6}$ (електронний мікроскоп РЕММА–102–02)

Таблиця З

T 7' ' U		1			C 1C T 11
V INVITUTITATA	OTTO T10 /	dhan.	OTTODID.	OHOTOMI	(÷d(`ulm Al
ЛІМІЧНИИ	анальз	unas.	сплавів	CHCICMH	UUUUIIIAL.
		T			

GdCuIn _{0,6} Al _{0,4}	Загальний склад – $Gd_{0,33}Cu_{0,33}In_{0,20}Al_{0,14}$		
	Cipa $\varphi a 3a \ -Gd_{0,35}Cu_{0,34}In_{0,19}Al_{0,12}$		
GdCuIn _{0,4} Al _{0,6}	Загальний склад – $Gd_{0,33}Cu_{0,33}In_{0,14}Al_{0,20}$		
	Сіра фаза – $Gd_{0,35}Cu_{0,31}In_{0,13}Al_{0,21}$		
	Світла фаза – Gd _{0,43} Cu _{0,39} In _{0,16} Al _{0,02}		

Заміщення атомів індію атомами алюмінію у положенні 3g (структурний тип ZrNiAl, просторова група $P\overline{6}\,2m$) підтверджено результатами структурного уточнення масиву дифракційних даних, одержаних зі сплаву складу GdCuIn_{0,3}Al_{0,7} (див. рис. 3, δ). Уточнені параметри комірки фази GdCuIn_{0,29}Al_{0,71} становлять: a = 0,71451(2) нм, c = 0,40783(2) нм, $R_{\text{Bragg}} = 0,059$, $R_{\text{F}} = 0,066$. Координати та параметри теплового зміщення атомів подано в табл. 4, а проекцію кристалічної структури сполуки GdCuIn_{0,29}Al_{0,71} зображено на рис. 5.

Таблиця 4

Координати та параметри теплового зміщення атомів

Атом	ПСТ	x	у	Z	В _{ізо.} ∙10 ² , нм ²
Gd	3f	0,5867(3)	0	0	0,0097(16)
Cu1	2d	1/3	2/3	1/2	0,019(6)
Cu2	1 <i>a</i>	0	0	0	0,013(5)
*М	3 <i>g</i>	0,2454(13)	0	1/2	0,022(6)

*M = 0,71(1) Al + 0,29(1) In.

Рис. 5. Проекція кристалічної структури сполуки GdCuIn_{0,29}Al_{0,71}на площину ab і KM атомів

На відміну від алюмінію, галій обмежено розчиняється у сполуці GdNiIn (до 15 ат. %) з утворенням твердого розчину заміщення складу GdNiIn_{1-0.4}Ga_{0-0.6} зі структурою типу ZrNiAl. З іншого боку, індій також частково розчиняється у сполуці GdNiGa (до 4 ат. %), формуючи твердий розчин заміщення складу GdNiGa_{1,0-0.9}In_{0-0,1} (структурний тип HoNiGa, просторова група *Pnma*).

На рис. 6 зображено дифрактограми двох сплавів системи GdNiIn_{1-x}Ga_x, а на рис. 7 та у табл. 5 подано результати локального рентгеноспектрального аналізу окремих зразків цієї системи.

Рис. 6. Експериментальна (точки), розрахована (суцільна лінія) та різницева (внизу) дифрактограми сплавів складів: *a* – GdNiIn_{0.4}Ga_{0.6}; *б* – GdNiIn_{0.2}Ga_{0.8} (дифрактометр ДРОН–2.0М, Fe *К*α-випромінювання)

Рис. 7. Фотографії мікроструктур поверхонь шліфів сплавів: $a - \text{GdNiIn}_{0.6}\text{Ga}_{0.4}; \delta - \text{GdNiIn}_{0.2}\text{Ga}_{0.8}$ (електронний мікроскоп РЕММА-102-02)

Таблиця 5

Хімічний аналіз фаз сплавів системи GdNiIn _{1-x} Ga _x				
GdNiIn _{0,6} Ga _{0,4}	Загальний склад – $Gd_{0,33}Ni_{0,33}In_{0,20}Ga_{0,14}$			
	$Cipa \; \varphi a 3a - Gd_{0,34} Ni_{0,31} In_{0,24} Ga_{0,11}$			
	Темна фаза – $Gd_{0,31}Ni_{0,47}In_{0,03}Ga_{0,19}$			
GdNiIn _{0,2} Ga _{0,8}	Загальний склад – Gd _{0,33} Ni _{0,33} In _{0,07} Ga _{0,27}			
	Світла фаза $- Gd_{0,34}Ni_{0,31}In_{0,17}Ga_{0,18}$			
	$Cipa \ \varphi a 3a - Gd_{0,34} Ni_{0,32} In_{0,04} Ga_{0,30}$			

Як і очікували, з огляду на подібність електронної будови атомів індію і алюмінію та ізоструктурність вихідних сполук, у системах GdCuIn_{1-x}Al_x і GdNiIn_{1-x}Al_x утворюються необмежені тверді розчини, зміна параметрів елементарних комірок яких добре корелює з розмірами атомів In ($r_{In} = 0,163$ нм) і Al ($r_{Al} = 0,143$ нм) [15]. Зі збільшенням концентрації алюмінію відбувається зменшення періоду a та об'єму комірки V, а період c незначно зростає (рис. 8). Таку зміну параметрів можна пояснити особливістю структури типу ZrNiAl, де заміщення індію на алюміній відбувається в положенні 3g просторової групи $P\bar{6} 2m$. Отримані результати добре узгоджуються з результатами дослідження системи CeNiIn_{1-x}Ga_x [16].

На протяжність та структуру твердих розчинів у системі GdNiIn_{1-x}Ga_x, головно, впливає тип структури вихідних сполук. Параметри елементарної комірки твердих розчинів цієї системи зменшуються зі збільшенням вмісту галію (рис. 9) і добре узгоджуються зі значенням розмірів атомів In та Ga ($r_{\rm In} = 0,163$ нм, $r_{\rm Ga} = 0,122$ нм) [15].

Рис. 9. Зміна параметрів елементарної комірки твердих розчинів системи $GdNiIn_{1-x}Ga_x$ ($\circ - CT$ ZrNiAl; $\Box - CT$ HoNiGa)

Автори вдячні старшому науковому співробітнику П. Ю. Демченку (Міжфакультетська науково-навчальна лабораторія рентгеноструктурного аналізу ЛНУ ім. І. Франка) за допомогу в отриманні масивів дифракційних даних окремих зразків.

^{1.} *Oesterreicher H*. Structural and magnetic studies on rare-earth compounds *R*NiAl and *R*CuAl // J. Less. Comm. Met. 1973. Vol. 30. P. 225–236.

Kalychak Ya. M., Zaremba V. I., Pöttgen R. et al. Rare Earth–Transition Metal–Indides // In: K. A. Gschneidner, Jr., J.-C. Bünzli, V. K. Pecharsky (Eds.). Handbook on the Physics and Chemistry of Rare Earths. Elsevier, Amsterdam, 2005. Vol. 34. P. 1–133.

^{3.} Гринь Ю. Н., Гладышевский Р. Е. Галлиды: Справ. Изд. // М.: Металлургия, 1989.

- Ярмолюк Я. П., Гринь Ю. М., Гладишевський Є. І. Кристалічна структура сполук RGaNi (R = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) // Доп. АН УРСР. Cep. A. 1979. N 9. C. 771–775.
- 5. *Gupta S., Suresh K. G.* Review on magnetic and related properties of *RTX* compounds // J. Alloys Compd. 2015. Vol. 618. P. 1–158.
- Szytuła A., Tyvanchuk Yu., Jaworska-Gołąb T. et al. Magnetic properties of the RCuIn (R = Ce, Nd, Gd, Tb, Dy, Ho, Er) and R₂CuIn₃ (R = Ce, Gd, Tb, Dy) compounds // Chem. Met. Alloys 2008. Vol. 1. P. 97–101.
- 7. *Merlo F., Cirafici S., Canepa F.* Structural anomaly in GdNiAl: a crystallographic, electric and magnetic investigation // J. Alloys Compd. 1998. Vol. 266. P. 22–25.
- 8. *Jarosz J., Talik E., Mydlarz T.* et al. Crystallographic, electronic structure and magnetic properties of the Gd*T*Al; *T* = Co, Ni and Cu ternary compounds // J. Magn. Magn. Mater. 2000. Vol. 208 P. 169–180.
- Canepa F., Napoletano M., Palenzona A. et al. Magnetocaloric properties of GdNiGa and GdNiIn intermetallic compounds // J. Phys. D: Appl. Phys. 1999. Vol. 32. P. 2721–2725.
- 10. Kraus W., Nolze G. Powder Cell for Windows. Berlin, 1999.
- 11. STOE WinXPOW. Version 1.2. STOE & CIE GmbH. Darmstadt, 2001.
- 12. *Rodríguez-Carvajal J.* Recent Developments of the Program FULLPROF // Commission on Powder Diffraction (IUCr). Newsletter. 2001. Vol. 26. P. 12–19.
- 13. Рыхаль Р. М., Заречнюк О. С., Марыч О. И. Изотермическое сечение тройной системы Gd–Ni–Al при 800 °C в области 0–33 ат. % гадолиния // ДАН УССР. Сер. А. 1978. № 9. С. 854–855.
- 14. Бакар А. М., Калычак Я. М. Изотермическое сечение диаграммы состояния системы Gd–Cu–In // Цветная металлургия. 1990. № 1. С. 99–102.
- 15. Emsley J. The Elements: 2nd ed. Oxford: Clarendon Press, 1991. 251 p.
- 16. *Panakhyd O., Nychyporuk G., Serkiz R.* et al. Investigation of the components interaction in the CeNiIn_{1-x}Ga_x (x = 0-1) system // Coll. Abs. XX Int. Sem. Phys. Chem. Solids Lviv, Ukraine, 12–15 September 2015. P. 119.

THE GdTIn_{1-x} M_x (T = Ni, Cu; M = Al, Ga; 0<x<1) SYSTEMS

M. Horiacha, L. Zinko, G. Nychyporuk, R. Serkiz, V. Zaremba

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: galka_n@franko.lviv.ua

Interaction of the components in $GdNiIn_{1-x}Al_x$, $GdCuIn_{1-x}Al_x$, and $GdNiIn_{1-x}Ga_x$ systems at 870 K was investigated by means of X-ray phase and partially local analysis in full concentration range. The influence of In substitution by other *p*-element on the nature of interaction and solubility type was determined. Solubility ranges for solid solutions were found and changes of unit cell parameters were calculated:

GdNiIn₁₋₀Al₀₋₁ (ST ZrNiAl): a = 0.7453(1) - 0.7015(1), c = 0.3836(1) - 0.3912(1) nm GdCuIn₁₋₀Al₀₋₁ (ST ZrNiAl): a = 0.7467(1) - 0.7070(1), c = 0.3983(1) - 0.4083(1) nm GdNiIn_{1-0.4}Ga_{0-0.6} (ST ZrNiAl): a = 0.7463(1) - 0.7282(1), c = 0.3836(1) - 0.3787(1) nm GdNiIn₀₋₀Ga₀₋₀₋₀ (ST HoNiGa): a = 0.6937(1) - 0.6933(1), b = 0.4329(1) - 0.4322(1), c = 0.7418(1) - 0.7365(1) nm. Crystal structure of GdCuIn_{0.29}Al_{0.71} compound was investigated by powder diffraction method (ZrNiAl-type structure, space group $P\overline{6}$ 2*m*, a = 0.71451(2) nm, c = 0.40783(2) nm, $R_{\text{Bragg}} = 0.059$, $R_{\text{F}} = 0.066$).

The character of change of the cell parameters in the studied and related systems was briefly discussed.

Key words: indium, solid solution, powder data, crystal structure.

Стаття надійшла до редколегії 31.10.2016 Прийнята до друку 04.01.2017