ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2017. Випуск 58. Ч. 1. С. 86–92 Visnyk of the Lviv University. Series Chemistry. 2017. Issue 58. Pt. 1. P. 86–92

УДК 546.682:548.734:669.018

СИСТЕМА Yb_{1-x}Pr_xNi₄In

А. Хархаліс¹, І. Гмерницька¹, Г. Ничипорук¹, І. Муць¹, Р. Пьоттген², В. Заремба¹

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна;

²Вестфальський університет, Інститут неорганічної та аналітичної хімії, Коренштрасе, 30, D-48149 Мюнстер, Німеччина e-mail: galka_n@franko.lviv.ua

Методами рентгенівського фазового та, частково, локального рентгеноспектрального аналізів досліджено взаємодію компонентів у системі Yb_{1-x}Pr_xNi₄In у повному концентраційному інтервалі при 770 К. Визначено утворення неперервного твердого розчину зі структурою типу MgCu₄Sn (просторова група $F \overline{4} 3m$) та характер зміни параметрів елементарної комірки.

Проведено монокристальне дослідження кристалічної структури сполуки YbNi₄In (структурний тип MgCu₄Sn, просторова група $F \overline{4} 3m$, a = 0,69960(6) нм, wR2 = 0,0326, 136 відбить *hkl*).

Ключові слова: Індій, твердий розчин, метод порошку, метод монокристала, кристалічна структура.

Потрійні системи за участю РЗМ, перехідних *d*-металів та Індію, а також сполуки, які в них утворюються, вивчено достатньо повно. Автори [1] узагальнили результати цих досліджень, проаналізували структурні особливості та фізичні властивості тернарних індидів. Упродовж останніх років проводять дослідження чотирикомпонентних систем за участю індію: вивчають вплив заміни одного з компонентів *f*-, *d*- чи *p*-елементом на характер взаємодії, тип розчинності та структурні характеристики і фізичні властивості [2–7].

У системах РЗМ-перехідний *d*-метал-Іп поширені сполуки, що належать до родини фаз Лавеса, серед яких RET_4 In (T = Ni, Cu, Pt) [8–10] зі структурою типу MgCu₄Sn [11]. Чимало таких сполук, зокрема з ітербієм, має цікаві фізичні властивості. Для сполуки YbCu₄In характерне поліморфне перетворення при 40 K, унаслідок якого простежується перехід від стану змінної валентності до стабільного тривалентного стану Ітербію [12]. У сполуці YbNi₄In відбувається феромагнітне впорядкування за низьких температур [13].

Вивчення впливу заміни одного рідкісноземельного металу (Yb) іншим (Pr) у сполуці YbNi₄In є продовженням досліджень у цьому напрямі.

Зразки для досліджень синтезували методом електродугового плавлення шихти з компактних металів (усі з чистотою основного компонента до 0,998 мас. частки) у відповідних масових співвідношеннях в атмосфері очищеного аргону (як

[©] Хархаліс А., Гмерницька І., Ничипорук Г. та ін., 2017

гетер, використовували пористий титан) масою ~1 г і відпалювали у вакуумованих кварцових ампулах при 770 К протягом двох місяців. Оскільки ітербій характеризується низькими температурами плавлення і кипіння, його наважки розраховували із 3 % надлишком. Фазовий аналіз сплавів виконували за рентгенограмами, одержаними на порошкових дифрактометрах ДРОН–2.0М (Fe Kαвипромінювання) та PANalytical X'Pert Pro (Cu Kα-випромінювання), і даними локального рентгеноспектрального аналізу шліфів (електронний мікроскоп PEMMA–102–02). Розрахунок теоретичних дифрактограм та фазовий аналіз провели з використанням пакетів програм Powder Cell [14] та FULLPROF [15].

Сполуки YbNi₄In i PrNi₄In кристалізуються у структурному типі MgCu₄Sn (просторова група $F \bar{4} 3m$) і належать до родини фаз Лавеса, тому утворення неперервного твердого розчину складу Yb_{1-x}Pr_xNi₄In (0<x<1), існування якого визначено за температури дослідження, було прогнозованим.

На рис. 1 зображено фотографії поверхонь шліфів окремих зразків, а в табл. 1 подано їхній склад згідно з результатами локального рентгеноспектрального аналізу. На рис. 2 наведено дифрактограми ще двох зразків досліджуваної системи.

Рис. 1. Фотографії мікрострутур поверхонь шліфів сплавів: $a - Yb_{0,6}Pr_{0,4}Ni_4In; \delta - Yb_{0,3}Pr_{0,7}Ni_4In$ (електронний мікроскоп РЕММА–102–02)

Таблиця	1
---------	---

Хімічний аналіз фаз сплавів Yb_{0.6}Pr_{0.4}Ni₄In та Yb_{0.3}Pr_{0.7}Ni₄In

Yb _{0,6} Pr _{0,4} Ni ₄ In	Загальний склад – Yb _{0,08} Pr _{0,07} Ni _{0,69} In _{0,16}		
	Темна фаза — $Yb_{0,02}Pr_{0,08}Ni_{0,72}In_{0,18}$		
	$Cipa\;\varphi a 3a-Yb_{0,10}Pr_{0,05}Ni_{0,69}In_{0,16}$		
	Загальний склад – $Yb_{0,05}Pr_{0,11}Ni_{0,67}In_{0,17}$		
Yba Pra Ni In	Темна фаза — $Yb_{0,03}Pr_{0,13}Ni_{0,69}In_{0,15}$		
100,3110,714111	Cipa $\varphi a 3a - Yb_{0,06} Pr_{0,09} Ni_{0,69} In_{0,16}$		
	Світла фаза – $Yb_{0,02}Pr_{0,15}Ni_{0,38}In_{0,45}$		

Рис. 2. Експериментальна (точки), розрахована (суцільна лінія) та різницева (внизу) дифрактограми зразків: $a - Yb_{0,6}Pr_{0,4}Ni_4In; \delta - Yb_{0,1}Pr_{0,9}Ni_4In$ (дифрактометр PANalytical X'Pert Pro, Cu Ка-випромінювання)

Більшість зразків дослідженої системи мультифазові, проте вміст основної фази (Yb,Pr)Ni₄In у них є домінуючим. У рівновазі з нею перебувають фази (Yb,Pr)Ni₉In₂ (YNi₉In₂) [16], (Yb,Pr)Ni₅In (CeNi₅Sn) [17] i Pr₄Ni₇In₈ (Ce₄Ni₇In₈) [18]. Le добре узгоджується з результатами взаємодії компонентів у системі Pr-Ni-In [19], де сполуки PrNi₄In, PrNi₉In₂ (YNi₉In₂) та PrNi₅In (CeNi₅Sn) є в рівновазі.

У межах твердого розчину $Yb_{1-x}Pr_xNi_4In$ (0<x<1, структурний тип MgCu_4Sn) зі збільшенням вмісту Празеодиму параметри елементарної комірки (табл. 2) зростають.

Параметри елементарної комірки твердого розчину Yb _{1-x} Pr _x Ni ₄ In			
Склад сплару	Параметри комірки		
Склад сплаву	а, нм	V , HM^3	
YbNi ₄ In*	0,69750	0,33934	
Yb _{0,9} Pr _{0,1} Ni ₄ In	0,69817(2)	0,34032(2)	
Yb _{0,8} Pr _{0,2} Ni ₄ In	0,69935(6)	0,34205(5)	
Yb _{0,7} Pr _{0,3} Ni ₄ In	0,70007(8)	0,34310(7)	
Yb _{0,6} Pr _{0,4} Ni ₄ In	0,70027(5)	0,34339(5)	
Yb _{0,5} Pr _{0,5} Ni ₄ In	0,70174(11)	0,34556(10)	
Yb _{0,4} Pr _{0,6} Ni ₄ In	0,70697(16)	0,35335(14)	
Yb _{0,3} Pr _{0,7} Ni ₄ In	0,70834(16)	0,35541(14)	
Yb _{0,2} Pr _{0,8} Ni ₄ In	0,71085(14)	0,35919(13)	
Yb _{0,1} Pr _{0,9} Ni ₄ In	0,71359(4)	0,36337(4)	
PrNi ₄ In*	0,71370	0,36354	

Таблиия 2

* Літературні дані [8].

Автори [20] повідомили про уточнення кристалічної структури сполуки YbNi₄In на підставі даних нейтронної дифракції при 5 К як частини досліджень магнітної структури

цієї сполуки. Проте не подали інформації про методи синтезу та уточнення параметру комірки. Також у літературі немає даних про уточнення кристалічної структури сполуки PrNi₄In. Тому проведено синтез монокристалів сполук YbNi₄In i PrNi₄In з метою уточнення їхньої кристалічної структури. Наважки компактних металів складів Yb_{0,167}Ni_{0,666}In_{0,167} та Pr_{0,167}Ni_{0,666}In_{0,167} помістили в танталові контейнери і заварили у них в атмосфері очищеного аргону. Синтез проводили у високочастотній печі (Hüttinger Elektronik, Freiburg, type TIG 1.5/300) із застосуванням спеціального температурного режиму. Спочатку зразки нагріли до 1 400 K, витримали за цієї температури 5 хв, тоді повільно охолодили до 870 K протягом 4 год та витримали за цієї температури 4 год, далі піч вимкнули. Отримані зразки, з характерним металічним блиском, стійкі до дії атмосферного середовища. Ознак взаємодії сплавів з матеріалом тигля не виявили. Для подальших досліджень протестували декілька монокристалів (метод Лауе, прецизійна камера, Мо *K*-випроміновання) з обох сплавів. Якість монокристалів із празеодимом виявилась недостатьою для дифрактометричних досліджень. Монокристали зі сплаву YbNi₄In були кращої якості і придатні для подальших досліджень; для них підтвердили кубічну сингонію.

Масив експериментальних інтенсивностей одержано на монокристальному дифрактометрі САD-4 (Мо *К* α -випромінювання, графітовий монохроматор) в лабораторії Інституту неорганічної та аналітичної хімії Вестфальського університету (м. Мюнстер, Німеччина). Розшифрування та уточнення кристалічної структури виконано з використанням програми SHELXL-97 [21] в рамках моделі структурного типу MgCu₄Sn: ПГ $F \bar{4} 3m$, a = 0,69960(6) нм, R1 = 0,0165, wR2 = 0,0326 для 136 незалежних відбить *hkl*. Результати розрахунків та уточнення кристалічної структури сполуки YbNi₄In подано в табл. 3, а уточнені координати та параметри теплового зміщення атомів – у табл. 4. Одержані значенння параметрів атомів у структурі YbNi₄In добре корелюють з результатами структурного уточнення авторів [20].

1	аблиця	3
	,	

Результати дослідження монокристала складу YbNi ₄ In		
Емпірична формула	YbNi ₄ In	
Просторова група, Z	$F\overline{4}$ 3m, 4	
Символ Пірсона	cF24	
Параметр комірки, а, нм	0,69960(6);	
Об'єм комірки, <i>V</i> , нм ³	0,34241(5)	
Випромінювання, λ, нм	Μο Κα; 0,071073	
Розрахована густина, D _x , г/см ³	10,917	
Коефіцієнт поглинання, µ, мм ⁻¹	56,423	
F(000)	1004	
Межі <i>θ</i> , °	5–39	
Межі hkl	-12≤ <i>h</i> ≤12, -12≤ <i>k</i> ≤12, -12≤ <i>l</i> ≤12	
Загальна кількість відбить	2084	
Кількість незалежних відбить / параметрів	136/7	
Кількість відбить із $I > 2\sigma(I)$	135	
Φ актор добротності F^2	1,110	
Фактори достовірності ($I > 2\sigma(I)$)	<i>R</i> 1= 0,0158, <i>wR</i> 2= 0,0324	
Фактори достовірності (всі дані)	<i>R</i> 1= 0,0165, <i>wR</i> 2= 0,0326	
Коефіцієнт загасання	0,034(2)	
Найбільші пік і яма на кінцевому різницевому синтезі	1,20 / -0,93	
Фур'є,		
$\Delta \rho_{\text{MAKC.}}$ (e Å ⁻³) / $\Delta \rho_{\text{MiH.}}$ (e Å ⁻³)		

Таблиця 4

		Координати атомів			
Атом	ПСТ	x	у	z	$U_{\rm ekb} \cdot 10^4$, HM ²
Yb	4 <i>c</i>	1/4	1/4	1/4	0,64(2)
Ni	16e	0,62569(10)	0,62569(10)	0,62569(10)	0,72(2)
In	4a	0	0	0	0,74(2)

Координати та параметри теплового зміщення атомів у структурі сполуки YbNi₄In

Атом	$U_{11} = U_{22} = U_{33}$	$U_{12} = U_{13} = U_{23}$
Yb	0,64(2)	0
Ni	0,72(2)	-0,093(11)
In	0,74(2)	0

Аналіз результатів дослідження системи Yb_{1-x}Pr_xNi₄In у повному концентраційному інтервалі підтвердив припущення про існування неперервного твердого розчину зі структурою типу MgCu₄Sn. Характер зміни параметрів елементарної комірки (рис. 3) добре корелює з такими значеннями для сполук YbNi₄In (a = 0,6975 нм) і PrNi₄In (a = 0,7137 нм) [8], а також із значеннями іонних радіусів Yb³⁺ (0,086 нм) і Pr³⁺ (0,106 нм) [22]. Подібна зміна параметрів простежується в системах Yb_{1-x}Re_xCu₄In (RE = Y, La, Ce, Lu) [23, 24], де під час заміщення атомів ітербію атомами церію або лантану, параметри елементарної комірки в межах твердих розчинів зростають відповідно до значень іонних радіусів рідкісноземельних металів [22].

Рис. 3. Зміна параметрів елементарної комірки твердого розчину складу Yb_{1-x}Pr_xNi₄In

- Kalychak Ya. M., Zaremba V. I., Pöttgen R. et al. Rare Earth-Transition Metal-Indides // In: K. A. Gschneidner, Jr., J.-C. Bünzli, V. K. Pecharsky (Eds.). Handbook on the Physics and Chemistry of Rare Earths. Elsevier, Amsterdam. 2005. Vol. 34. P. 1–133.
- 2. Чумало Н., Демчук В., Ничипорук Г., Заремба В. Дослідження взаємодії компонентів у системах $R_2T_2In_{1-x}M_x$ ($R = La, Ce; T = Ni, Cu; M = Al, Sn; 0 \le x \le 1$) // Вісн. Львів. ун-ту. Сер. хім. 2010. Вип. 51. С. 24–30.
- 3. Домінюк Н., Ничипорук Г., Муць І. та ін. Розчинність *p*-елементів III і IV груп у сполуці Gd₂Cu₂In // Вісн. Львів. ун-ту. Сер. хім. 2013. Вип. 54. Ч.1. С. 57–63.
- Хархаліс А., Горяча М., Ничипорук Г. та ін. Дослідження взаємодії компонентів у системх RECu₂In_{1-x}Al_x (RE = Y, La, Gd) // Вісн. Львів. ун-ту. Сер. хім. 2014. Вип. 55. С. 54–62.
- Gnida D., Dominyuk N., Zaremba V., Kaczorowski D. Influence of nonmagnetic disorder on specific heat and electrical resistivity in Kondo lattice system CePd_{1-x}Ge_xIn // J. Alloys Compd. 2015. Vol. 622. P. 681–686.
- Wisniewski P., Zaremba V. I., Ślebarski A., Kaczorowski D. Electronic properties of CeRh_{1-x}Ge_xIn; evolution from an intermediate-valence to a localized 4*f*-state // Intermetallics. 2015. Vol. 56. P. 101–106.
- 7. *Kharkhalis A., Bednarchuk O., Nychyporuk G.* et al. Investigation of the components interaction in the $RE_{1-x}RE'_xCu_2In$ (RE = Y, La, Ce, Gd) systems // Chem. Met. Alloys. 2015. N 8. P. 91–97.
- Заремба В. И., Бараняк В. М., Калычак Я. М. Кристаллическая структура соединений P3MNi₄In // Вісн. Львів. ун-ту. Сер. хім. 1984. Вип. 25. С. 18–19.
- 9. Сыса Л. В., Калычак Я. М., Бараняк В. М., Заремба В. И. Новые тернарные соединения индия с редкоземельными и 3*d*-металлами со структурами типа MgCu₄Sn и ZrNiAl // Вісн. Львів. ун-ту. Сер. хім. 1988. Вип. 29. С. 31–34.
- 10. *Malik S. K.*, *Vijayaraghavan P. R.*, *Androja D. T.* et al. Structural and magnetic studies on *R*InPt₄ (R = La-Tm) compounds // J. Magn. Magn. Mater. 1990. Vol. 92. P. 80–86.
- 11. Гладышевский Е. И., Крипякевич П. И., Теслюк М. Ю. Кристаллическая структура тернарной фазы MgCu₄Sn // Докл. АН СССР. 1952. Т. 85. С. 81–84.
- 12. Lawrence J. M., Kwei G. H., Sarrao J. L. et al. Structure and disorder in YbInCu₄ // Phys. Rev. B. 1996. Vol. 54. N 9. P. 6011–6014.
- 13. Sarrao J. L., Modler R., Movshovich R. et al. Ferromagnetism and crystal fields in YbInNi₄ // Phys. Rev. B. 1998. Vol. 57, N 13. P. 7785–7790.
- 14. Kraus W., Nolze G. Powder Cell for Windows. Berlin, 1999.
- 15. *Rodríguez-Carvajal J.* Recent Developments of the Program FULLPROF // Commission on Powder Diffraction (IUCr). Newsletter. 2001. Vol. 26. P. 12–19.
- Каличак Я. М., Аксельруд Л. Г., Заремба В. І., Бараняк В. М. Кристалічна структура сполук RNi₉In₂ (R = Y, La, Ce, Pr, Sm, Eu, Gd, Tb, Ho, Er) // Доп. АН УРСР. Сер. Б. 1984. N 3. C. 39–41.
- 17. *Бараняк В. М., Калычак Я. М.*, *Сыса Л. В.* Кристаллическая структура *R*Ni₅In (*R* = La, Ce, Pr, Nd, Sm, Eu) // Кристаллография. 1992. Т. 37. Вып. 4. С. 1022–1023.
- Бараняк В. М. Калычак Я. М., Брусков В. А. и др. Кристалическая структура соединений РЗМ₄Ni₇In₈ (РЗМ = La, Ce, Pr, Nd, Sm) // Кристаллография. 1988. Т. 33. Вып. 3. С. 601–604.

- 19. Калычак Я. М. Бараняк В. М., Заремба В. И. и др. Изотермические сечения диаграмм состояния систем {Pr, Sm, Gd}–Ni–In при 870К // Тез. докл. V Всесоюзн. совещ. "Диаграмы состояния металлических систем". Звенигород; Москва, 1989. С. 150.
- Severing A., Givord F., Boucherle J.-X. et al. Crystal fields in YbInNi₄ determined with magneticform factor and inelastic neutron scattering // Phys. Rev. B. 2011. Vol. 83. N 15. P. 1155112(6).
- 21. Sheldrick G. M. SHELX-97: Program for Crystal Structure Refinement, University of Göttingen. Germany, 1997.
- 22. Emsley J. The Elements: 2nd ed. Oxford: Clarendon Press, 1991. 251 p.
- 23. *Mushnikov N.V., Goto T., Ishikawa F.* et al. Volume effect on the valence transition in $Yb_{1-x}R_xInCu_4$ (R = Y, La, Ce, Lu) compounds // J. Alloys Compd. 2002. Vol. 345. P. 20–26.
- 24. *Zhang W., Sato N., Yoshimura K.* et al. Effect of pressure and substitution for Yb on the first-order valence transition in YbInCu₄ // Phys. Rev. B. 2002. Vol. 66. N 2. P. 024112(8).

THE Yb_{1-x}Pr_xNi₄In SYSTEM

A. Kharkhalis¹, I. Hmernytska¹, G. Nychyporuk¹, I. Muts¹, R. Pöttgen², V. Zaremba¹

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine;

² Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße, 30, D-48149 Münster, Germany e-mail: galka_n@franko.lviv.ua

The interaction of the components in the $Yb_{1-x}Pr_xNi_4In$ system at 770 K was investigated using the X-ray diffraction and by energy dispersive X-ray analysis in full concentration range. The formation of continuous solid solutions $Yb_{1-x}Pr_xNi_4In$ ($0 \le x \le 1$) with the MgCu₄Sn structure type was observed.

The crystal structure of the YbNi₄In (MgCu₄Sn-type structure, space group $F\overline{4}$ 3*m*, a = 0.69960(6) nm, wR2 = 0.0326, 136 reflections *hkl*) compound was studied using the single crystal method.

The character of change of the cell parameters in the studied and related systems was briefly discussed.

Key words: Indium, solid solution, powder data, single crystal, crystal structure.

Стаття надійшла до редколегії 31.10.2016 Прийнята до друку 04.01.2017