ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2017. Випуск 58. Ч. 1. С. 93–101 Visnyk of the Lviv University. Series Chemistry. 2017. Issue 58. Pt. 1. P. 93-101

УДК 548.736.4

УТОЧНЕННЯ КРИСТАЛІЧНОЇ СТРУКТУРИ ФАЗ У СИСТЕМІ Sc-Ce-Ge

3. Шпирка, В. Гренюх, Н. Герман, В. Павлюк

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: z.shpyrka@gmail.com

Методами рентгенівського фазового та рентгеноструктурного аналізів уточнено кристалічну структуру фаз у системі Sc–Ce–Ge за температури 600 °C.

З'ясовано, що сполука $Sc_{4,5}Ce_{0,5}Ge_4 \in$ частиною стабілізованого до нижчих температур твердого розчину на основі бінарного германіду Sc_5Ge_4 (структурний тип Sm_5Ge_4). Сполука $Sc_{2,9}Ce_{8,1}Ge_{10}$ належить до структурного типу $Ho_{11}Ge_{10}$.

Полікристалічні зразки складу Sc₁₅Ce₃₈Ge₄₇, Sc₁₅Ce₃₅Ge₅₀ та Sc₃₅Ce₁₅Ge₅₀, відпалені за температури 800 °C і 600 °C, досліджено методом рентгенівської енергодисперсійної спектроскопії для визначення кількісного складу фаз.

Ключові слова: кристалічна структура, структурний тип, германід, рідкісноземельний метал, рентгенівський фазовий аналіз, рентгеноструктурний аналіз, рентгенівська енергодисперсійна спектроскопія.

Потрійну систему Sc–Ce–Ge досліджували автори [1, 2]. За температури дослідження у системі утворюються чотири тернарні сполуки: $Sc_{4,5}Ce_{0,5}Ge_4$, $Sc_3Ce_{1,22}Ge_4$, ScCeGe та $Sc_2Ce_5Ge_6$. Кристалічну структуру двох з них $Sc_{4,5}Ce_{0,5}Ge_4$ та $Sc_2Ce_5Ge_6$ не визначено. Сполуки є у рівновазі з бінарними германідами складу R_5Ge_4 , що належать до структурного типу Sm₅Ge₄. У потрійних системах R-R'-{Si,Ge} [2] на ізоконцентраті 0,445 ат. частки Ge утворюються тернарні сполуки, що є надструктурами до типу Sm₅Ge₄. Сполука Sc₃Ce_{1,22}Ge₄ [3] є дефектною похідною по атомах церію від типу Sc₃Ce₂Si₄[4]. У структурі фази Ce_{3,66}Y_{0,86}Ge₄ [3] простежуємо впорядковане заміщення атомів церію атомами ітрію в області твердого розчину на основі сполуки Ce₅Ge₄ (CT Sm₅Ge₄). Таке ж упорядкування є у системі Ce–Y–Si за складу Ce₃Y₂Si₄ [4].

Мета нашої праці – повторно дослідити деякі сплави системи Sc-Ce-Ge при 600 °C, уточнити фазові рівноваги та визначити кристалічну структуру невідомих тернарних германідів.

Зразки для дослідження виготовляли сплавлянням шихти, яка складалась із металів високої чистоти вмістом основного компонента > 99,7 мас. % в електродуговій печі на мідному водоохолоджуваному поді за допомогою вольфрамового електрода, що не витрачається, в атмосфері очищеного аргону (99,998 об. % Ar), додатково очищеного за допомогою Ті-гетера, під тиском 1,0×105 Па. Зразки переплавляли двічі для повної взаємодії компонентів, склад контролювали порівнянням маси шихти з масою сплаву. Втрати під час плавлення не перевищували 0,5 % від загальної маси шихти. Для гомогенізації сплави запаювали у кварцові ампули та відпалювали при 600 °C впродовж 720 год v муфельній електропечі VULCAN A-550 3 подальшим

[©] Шпирка З., Гренюх В., Герман Н., Павлюк В., 2017

гартуванням у холодній воді без попереднього розбивання ампул. Рентгенівський фазовий аналіз виконували за дифрактограмами зразків, одержаних на дифрактометрі ДРОН-4,0 (FeK α -випромінювання, інтервал сканування – 30–90° 2 θ , крок сканування - 0,05° 20, час сканування у точці - 3-5 с). Рентгенівський структурний аналіз виконано за масивами рентгенівських дифракційних даних, одержаних на порошковому дифрактометрі STOE STADI Р з лінійним позиційно-прецизійним детектором PSD за схемою модифікованої геометрії Гіньє, метод на проходження (СиКα1-випромінювання, увігнутий Ge-монохроматор (111) типу Іоганна, 2q/wсканування, інтервал кутів 20 6,000≤20≤110,625 із кроком 0,015 °2q, крок детектора – 0,480 °20, час сканування в кроці – 50–760 с) [5]. Отримані експериментально дифрактограми порівнювали з теоретично розрахованими дифрактограмами чистих компонентів, відомих бінарних і тернарних сполук (програма PowderCell [6]), та уточнювали параметри елементарних комірок виявлених фаз (програма WinCSD [7]). Повнопрофільне уточнення кристалічної структури сполук виконували методом Рітвельда, використовуючи програму FullProf [8]. Кількісний та якісний склад окремих зразків досліджували методом енергодисперсійної рентгенівської спектроскопії (ЕДРС) у поєднанні з растровим електронним мікроскопоммікроаналізатором РЭММА-102-02 (прискорювальна напруга 20 кВ, К- та L-лінії спектра, режим пружно відбитих електронів, збільшення 400, глибина проникнення електронів – до 3 мкм). Для дослідження зразки заплавляли в алюмінієві кільця сплавом Вуда та полірували за допомогою абразивного матеріалу до блиску (глибина нерівності поверхні до 0,25 мм).

Для уточнення кристалічної структури сполуки $Sc_{4.5}Ce_{0.5}Ge_4$ з невідпаленого сплаву складу $Sc_{51}Ce_5Ge_{44}$ та сплавів, відпалених при 600 °C і 800 °C, отримано дифрактограми (рис. 1), проіндексовані у структурному типі Sm_5Ge_4 , та обчислено параметри елементарних комірок (табл. 1). Під час додавання незначних кількостей атомів церію простежуємо збільшення параметрів та об'єму елементарних комірок. Очевидно, що тернарна сполука $Sc_{4.5}Ce_{0.5}Ge_4 \in$ частиною стабілізованого до нижчих температур твердого розчину на основі бінарного германіду Sc_5Ge_4 (CT Sm_5Ge_4 , CП *оР*36, ПГ *Рпта*), який існує також і за температури 800 °C, про що свідчать результати фазового (див. рис. 1) та ЕДРС аналізів (див. рис. 3).

Таблиця 1

Склад сплаву	Параметри	<i>V</i> , нм ³		
	а	b	С	
Sc ₅ Ge ₄	0,7118	1,379	0,714	0,701
Sc ₅₁ Ce ₅ Ge ₄₄	0,756(2)	1,461(4)	0,776(1)	0,857
(невідпалений)				
Sc ₅₁ Ce ₅ Ge ₄₄ (600 °C)	0,7543(1)	1,456(4)	0,7756(1)	0,852
Sc ₅₁ Ce ₅ Ge ₄₄ (800 °C)	0,7553(3)	1,455(9)	0,776(3)	0,853

Параметри та об'єм елементарної комірки германіду Sc₅Ge₄ та сплавів складу Sc₅Ce₅Ge₄₄ (CT Sm₅Ge₄)

94

4а – відпалювання при 800 °С)

Для уточнення фавзових рівноваг у системі Sc–Ce–Ge ми синтезували зразки складу: $Sc_{35}Ce_{15}Ge_{50}$ і $Sc_{15}Ce_{35}Ge_{50}$. Зі сплаву складу $Sc_{35}Ce_{15}Ge_{50}$, відпаленого при 600 °C і 800 °C, отримано дифрактограми (рис. 2), виконано перший етап рентгеноструктурного дослідження та зазначено наближений склад фази ~Sc₃Ce₂Ge₄: просторова група *Pnma*, a = 0,7408(2), b = 1,4334(6), c = 0,7650(2) нм. Керуючись значеннями параметрів елементарної комірки, наголосимо, що фаза ~Sc₃Ce₂Ge₄ належить до структурного типу Sm₅Ge₄ або є його похідною. Отже, фази Sc₄,5Ce_{0.5}Ge₄ та ~Sc₃Ce₂Ge₄ є у рівновазі, про що також свідчать результати ЕДРС аналізу (див. рис. 4). У табл. 2 наведено параметри елементарних комірок для відомих сполук складу R_5Ge_4 (CT Sm₅Ge₄) [9].

Рис. 2 Спостережувані дифрактограми сплавів складу Sc₃₅Ce₁₅Ge₅₀ (*1* – відпалювання при 600 °C; 2 – відпалювання при 800 °C)

Для визначення якісного і кількісного складу сплавів досліджено мікроструктури зразків Sc₃₅Ce₁₅Ge₅₀ (відпалювання при 600 °C і 800 °C) та Sc₁₅Ce₃₅Ge₅₀ (відпалювання при 600 °C). Фотографії мікроструктури поверхонь шліфів трьох сплавів показано на рис. 3.

Рис. 3. Фотографії мікроструктури поверхонь шліфів сплавів і елементний склад зразків: $a - Sc_{35}Ce_{15}Ge_{50}$, відпаленого при 600 °C (світла фаза (основна) $Sc_{25,0}Ce_{17,52}Ge_{57,48}$, темна фаза $Sc_{43,27}Ce_{9,24}Ge_{47,49}$); $\delta - Sc_{35}Ce_{15}Ge_{50}$, відпаленого при 800 °C (сіра фаза $Sc_{42,86}Ce_{10,12}Ge_{47,02}$, світло-сіра фаза $Sc_{25,59}Ce_{18,15}Ge_{56,25}$); $s - Sc_{15}Ce_{35}Ge_{50}$, відпаленого при 600 °C (світла фаза $Sc_{25,91}Ce_{29,86}Ge_{44,23}$, сіра фаза $Sc_{5,81}Ce_{37,44}Ge_{56,75}$); для мікроструктури зразків також характерні ями та тріщини, що виникли у разі полірування внаслідок підвищеної крихкості сплавів

Для визначення кристалічної структури тернарної сполуки Sc₂Ce₅Ge₆ [1] з полікристалічного зразка складу Sc₁₅Ce₃₈Ge₄₇ отримано дифрактограму. Порівняння її з теоретично розрахованою засвідчило про схожість зі структурним типом Ho₁₁Ge₁₀, тому для уточнення кристалічної структури сполуки взято координати атомів цього структурного типу. Теоретичний, експериментальний та різницевий профілі дифрактограми зразка складу Sc₁₅Ce₃₈Ge₄₇ показано на рис. 4. У складі зразка є незначна кількість неідентифікованої фази. Уточнення структури сполуки провели за допомогою програми FullProf. Уточнений склад фази Sc_{2.9}Ce_{8,1}Ge₁₀ відповідає зразку складу Sc_{13.81}Ce_{38,57}Ge_{47,6}. У табл. 2 наведено експериментальні умови одержання масиву дифракційних даних та результати уточнення кристалічної структури тернарної сполуки Sc_{2.9}Ce_{8,1}Ge₁₀. Координати, ізотропні параметри теплового коливання атомів і коефіцієнти заповнення позицій (КЗП) у структурі сполуки Sc_{2.9}Ce_{8,1}Ge₁₀ на площину XY та координаційні многогранники атомів зображено на рис. 6.

Результати локального рентгеноспектрального аналізу сплаву складу $Sc_{15}Ce_{38}Ge_{47}$ підтвердили дані рентгеноструктурного аналізу. Сплав практично однофазний, містить основну фазу $Sc_{2,9}Ce_{8,1}Ge_{10}$ (світла) та незначну кількість неідентифікованої фази (сіра). Фотографію мікрошліфа сплаву складу $Sc_{15}Ce_{38}Ge_{47}$ показано на рис. 5.

Рис. 4. Теоретичний, експериментальний та різницевий профілі дифрактограми зразка складу Sc₁₅Ce₃₈Ge₄₇, відпаленого при 600 °C

97

98

WD=25.2mm 20.00kV x600 100µm Рис. 5. Фотографія мікроструктури поверхні шліфа сплаву складу Sc₁₅Ce₃₈Ge₄₇ (світла фаза (основна) – Sc_{17,28}Ce_{40,38}Ge_{42,34}; сіра фаза – Sc_{11,33}Ce_{38,65}Ge_{50,02})

Таблиця 2

Експериментальні умови одержання масиву дифракційних даних та результати уточнення структури індивідуальної фази сплаву складу Sc₁₅Ce₃₈Ge₄₇

Уточнений склад фази	$Sc_{2,9}Ce_{8,1}Ge_{10}$
Вміст фази у сплаві, мас. %	82
Структурний тип	Ho ₁₁ Ge ₁₀
Символ Пірсона	tI84
Просторова група	I4/mmm
Параметри елементарної комірки, нм	a = 1,1055(1) c = 1,6683(2)
Густина г/см ³	6,594
Об'єм <i>V</i> , нм ³	2,0388(3)
Кількість формульних одиниць Z	4
Дифрактометр	Stoe Stadi P
Проміння, довжина хвилі λ, нм	Cu <i>K</i> α, 1,54060
Метод сканування	θ -2 θ
Інтервал 20, град.	5-100
Крок сканування, град.	0,015
Час сканування у точці, с	380
Тип уточнення	Full profile
Параметри ширини піків U, V, W	0,10672, -0,03198, 0,02784
Параметр змішування η	0,00001
Фактори достовірності	$R_{\rm p} = 0.0822$ $R_{\rm wp} = 0.110$ $R_{\rm exp} = 0.0933$
Кількість уточнених параметрів	34

Таблиця З

99

Координати, ізотропні	параметри зміщення	атомів і коефіцієнти	заповнення позицій	(КЗП)
	у структурі спо	олуки Sc _{2,9} Ce _{8,1} Ge ₁₀		

Атоми	ПСТ	КЗП	x/a	y/b	z/c	В _{ізо} ,10 ² нм ²
Sc1	16 <i>n</i>	0,72	0	0,3243(1)	0,10262(1)	0,62(1)
Ce1	16 <i>n</i>	0,28	0	0,3243(1)	0,10262(1)	0,62(1)
Ce2	16 <i>n</i>	1,00	0	0,2519(1)	0,31035(1)	0,22(1)
Ce3	8h	1,00	0,3215	0,3215(1)	0	0,29(1)
Ce4	4 <i>e</i>	1,00	0	0	0,1606	0,37(1)
Ge1	16 <i>m</i>	1,00	0,2097	0,2097(1)	0,1814	0,49(1)
Ge2	8j	1,00	0,1370	0,5	0	0,44(1)
Ge3	8h	1,00	0,1197	0,1197(1)	0	0,37(2)
Ge4	4 <i>e</i>	1,00	0	0	0,3876	0,35(1)
Ge5	4d	1,00	0	0,5	0,25	0,87(2)

Рис. 6. Проекція структури сполуки $Sc_{2,9}Ce_{8,1}Ge_{10}$ (СТ $Ho_{11}Ge_{10}$) на площину ХҮ та координаційні многогранники атомів

Структура типу Ho₁₁Ge₁₀ є найбільш складна серед структурних типів, до яких належать силіциди та германіди РЗМ. Вона характеризується більшим набором різноманітних координаційних многогранників атомів Ge з координаційними числами (КЧ) 9 і 8. Атомам Ge з КЧ 9 характерні координаційні многогранники у вигляді деформованих тригональних призм, з КЧ 8 – тетрагональної антипризми і бісфеноїда, що не простежується в інших силіцидах і германідах. Атоми РЗМ характеризуються координаційними числами 17–15 та складними координаційними многогранниками.

Порівняльний аналіз потрійних систем R-R'-Ge [2] із системами R-R'-Si [10], де R та R' – рідкісноземельні метали, засвідчив, що під час утворення тернарних сполук у цих системах вирішальну роль відіграє розмірний чинник. Тернарні сполуки зі структурою типу Sm₅Ge₄ у системах з германієм є надструктурами або стабілізованими до нижчих температур твердими розчинами на основі бінарних германідів складу R5Ge4 (R'5Ge4), у системах R-R'-Si це індивідуальні тернарні сполуки. У потрійних системах R-R'-Si тернарні сполуки, що належать до структурного типу Ho11Ge10, не утворюються. Втім, у системі Sc-Yb-Ge при 600 ° C виявлено сполуку Sc_{11-x}Yb_xGe₁₀ (х≈5) [11], яка є у рівновазі з бінарним германідом Sc11Ge10 (СТ Ho11Ge10). Досліджена сполука Sc29Ce81Ge10 є індивідуальною фазою, що не є у рівновазі з бінарною сполукою. Варто зазначити, що у структурі сполуки Sc_{11-x}Yb_xGe₁₀ (х≈5) одне з положень правильної системи точок повністю зайняте атомами Sc, а решта три – статистичною сумішшю атомів Sc і Yb, у сполуці Sc_{2.9}Ce_{8.1}Ge₁₀ лише одне положення (16*n*) зайняте статистичною сумішшю атомів Sc і Се, всі інші – атомами Се. Часткове впорядкування атомів рідкісноземельних металів вперше простежується для такого структурного типу.

Автори висловлюють подяку інженеру Р. Серкізу за допомогу в дослідженні мікрошліфів сплавів у лабораторії низькотемпературних досліджень Львівського національного університету імені Івана Франка.

- 1. *Кохан З. М., Бодак О. И.* Исследование системы Се–Sс–Ge // Изв. АН СССР. Неорган. матер. 1983. Т. 19. № 7. С. 1094–1097.
- Shpyrka Z. M., Bodak O. I., Mokra I. R. Peculiarities of the components in the systems of the rare earth metals and germanium // J. Alloys Comp. 1997. Vol. 247. P. 217–222.
- 3. Шпырка З. М., Брусков В. А., Мокрая И. Р. и др. Кристаллические структуры соединений *R*_{1,22}Sc₃Ge₄ (*R* = La, Ce, Pr, Nd, Sm) и Ce_{3,66}Y_{0,86}Ge₄ // Изв. АН СССР. Неорган. материалы. 1990. Т. 26. № 5. С. 969–972.
- Бодак О. И., Муратова Л. А., Мокра И. Р. и др. Тройные системы Y-{Ni, Co, Mo, Ce}-Si и Y-Ge-Si // В кн.: Структура фаз, фазовые превращения и диаграммы состояния систем. М.: Наука, 1974. С. 182–186.
- 5. STOE WinXPOW, version 3.03. Darmstadt: Stoe & Cie GmbH, 2010.
- 6. Kraus W., Nolze G. PowderCell for Windows. Berlin, 1999.
- Akselrud L. G., Zavalij P. Yu., Gryn Yu. N. et al. Use of the CSD program package for structure determination from powder data // Mater. Sci. Forum. 1993. Vol. 133– 136. P. 335–340.
- 8. *Rodríguez-Carvajal J.* Recent Developments of the Program FULLPROF, in Commission on Powder Diffraction (IUCr) // Newsletter. 2001. Vol. 26. P. 12–19.
- Гренюх В., Шпирка З., Павлюк В. Представники структурного типу Sm₅Ge₄ // Збірн. наук. праць XIV наук. конф. "Львівські хімічні читання–2015". Львів, 2015. С. 269.
- Банах О. С., Котур Б. Я. Взаємодія компонентів в потрійних системах Sc-R-Si (*R* = La, Ce, Pr, Nd, Sm, Y, Dy, Er, Lu) // Український хімічний журнал. 1998. Т. 64. № 6. С. 94–95.

Kotur B. Ya., Cerny R., Mokra I. R., Yvon K. Sc_{11-x}Yb_xGe₁₀ (x≈5): a substitution variant with Ho₁₁Ge₁₀ type structure showing partial order on the rare earth sites // J. Alloys Comp. 1996. Vol. 245. N 1. P. L21–L23.

REFINEMENT OF THE CRYSTAL STRUCTURE OF PHASES IN Sc-Ce-Ge SYSTEM

Z. Shpyrka, V. Hrenyukh, N. Herman, V. Pavlyuk

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: z.shpyrka@gmail.com

The crystal structure of intermetallic phases in the Sc–Ce–Ge system at a temperature of 600 $^{\circ}$ C has been specified by means of *X*-ray phase and structural analyses, and energy-dispersive *X*-ray spectroscopy.

The crystal structures of the compounds were refined on X-ray powder diffraction data. It was found that the compound $Sc_{4,5}Ce_{0,5}Ge_4$ is a part stabilized to the lower temperature of the solid solution from a binary compound Sc_5Ge_4 (structure type Sm_5Ge_4 , space group *Pnma*, Pearson symbol oP36, a = 0.7553(3), b = 1.455(9), c = 0.776(3) nm). The ternary compound $Sc_{2,9}Ce_{8,1}Ge_{10}$ belong to the structure type $Ho_{11}Ge_{10}$ (space group *P6₃/mmc*, Pearson symbol *h*P22, a = 1.1055(1), c = 1.6683(2) nm). The series of the polycrystalline samples $Sc_{15}Ce_{38}Ge_{47}$, $Sc_{15}Ce_{35}Ge_{50}$ and $Sc_{35}Ce_{15}Ge_{50}$, annealed at a temperature of 800 ° C and 600 ° C were investigated by the energy dispersive X-ray spectroscopy for the determination of the quantitative compositions of the phases.

Key words: crystal structure, structure type, germanide, rare-earth metal, *X*-ray phase and structure analysis, energy dispersive *X*-ray spectroscopy.

Стаття надійшла до редколегії 01.11.2016 Прийнята до друку 04.01.2017