ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2017. Випуск 58. Ч. 1. С. 181–187 Visnyk of the Lviv University. Series Chemistry. 2017. Issue 58. Pt. 1. P. 181–187

УДК 548.736: 547.539.16

КРИСТАЛІЧНА СТРУКТУРА 3,5-ДИМЕТИЛПІРАЗОЛІЙ (*H*DMPZ⁺) ГЕКСАФЛЮОРОСИЛІКАТУ МОНОГІДРАТУ СКЛАДУ (*H*DMPZ)₂SiF₆·H₂O

М. Лук'янов

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: mishalukianov@gmail.com

Під час безпосереднього змішування ізопропанольного розчину 3,5-диметилпіразолу (dmpz) та 19 % водного розчину гексафлюоросилікатної кислоти одержано кристали сполуки складу (Hdmpz)₂SiF₆·H₂O та досліджено їх кристалічну структуру методом монокристала. Сполука кристалізується у моноклінній сингонії: просторова група $P2_1/c$, a = 7,036(2), b = 10,560(3), c = 20,764(5) Å, $\beta = 94,44(3)^\circ$, V = 1538,1(7) Å³, Z = 4, $D_x = 1,530(3)$ г/см³, R(F) = 0,090 для 3405 незалежних відбить з $F \ge 4\sigma(F_0)$. Структуру сполуки формують два кристалографічно незалежні катіони 3,5-диметилпіразолію [Hdmpz]⁺, які зв'язані з молекулою кристалізаційної води та неорганічним двозарядним аніоном системою водневих зв'язків та силами електростатичної взаємодії.

Ключові слова: диметилпіразол, гексафлюоросилікат-іон, кристалічна структура, водневі зв'язки.

Комплекси перехідних металів, до складу яких входять молекули піразолу, є сьогодні достатньо добре вивченими [1] і досі мають цікаве застосування [2]. Цьому сприяли невеликий розмір гетероциклу, присутність у його складі двох сусідніх атомів нітрогену, що відрізняються за природою та роблять його слабкою основою, і сприятливість гетероциклу до комплексоутворення. У той же час онієві форми похідних піразолу, зокрема 3,5-диметилпіразолу (dmpz) та їх комплекси, вивчено значно менше. Дослідження сполук dmpz з цинком, купрумом, нікелем, молібденом, ренієм часто не мають систематичного характеру, що, зокрема, пов'язано з важкістю отримання кінцевих комплексів та утворенням різноманітних інтермедіатів [3–8]. Розуміння координаційної поведінки метилпохідних піразолу у реакціях з різними за природою протиіонами в контрольованих умовах реакції спроможне доповнити вже відому базу сполук [9–10] й отримати уявлення про вплив сили координації аніона та природи ліганда на структуру та властивості комплексів, що утворюються.

Сполуку (*H*dmpz)₂SiF₆·H₂O одержано за безпосереднього змішування ізопропанольного розчину 3,5-диметилпіразолу та 19 % водного розчину гексафлюоросилікатної кислоти. Прозорі безбарвні кристали сполуки у формі блоків утворились впродовж шести діб. Температура плавлення продукту становить 125°C.

© Лук'янов М., 2017

Попереднє визначення параметрів гратки та дифракційний клас отриманих кристалів проведено за допомогою фотометоду. Дифракційний масив для сполуки одержано на монокристальному дифрактометрі Xcalibur, Sapphire2 при 100 К: МоКавипромінювання, графітовий монохроматор, *ω*-сканування, низькотемпературна приставка. Інтенсивності відбить виправлені на фактори Лоренца і поляризації. Опрацювання масиву даних рентгенівського експерименту виконано за допомогою пакета програм CrysAlisPro [11]. Структуру розшифровано за допомогою програми SHELXT й уточнено методом найменших квадратів за допомогою програми SHELXL з використанням графічного інтерфейсу OLEX² [12–14]. Розташування важких атомів у структурі сполуки визначено прямими методами, легкі атоми знайдено з різницевих синтезів Фур'є та уточнено в моделі "наїзника" поряд із негідрогеновими атомами з фіксованими відстанями і наступними параметрами теплових зміщень атомів: U_{iso}(H) = 1,2 U_{eq} (C/N) і 1,5 U_{eq} (C) для sp^2 - та sp^3 -гібридизованих атомів, відповідно. Поправку на поглинання введено аналітичним методом [15]. Виміряний кристал виявився псевдомерогедральним двійником з двома компонентами, що обернені відносно один одного на ~ 180° навколо осі а прямого простору, і багато відбить перекривалося. Редукцію проводили з урахуванням частки обох доменів двійників з файлу HKLF 5. Співвідношення компонентів двійників становить 0,9140(8):0,0860(8).

Кристалографічні дані сполуки та умови дифракційного експерименту подано в табл. 1, координати та ізотропні параметри зміщення атомів – у табл. 2, основні довжини зв'язків та валентні і торзійні кути – у табл. 3.

експерименту для сполуки (<i>H</i> dmpz ⁺) ₂ SiF ₆ ·H ₂ O				
Параметр	Значення			
Емпірична формула	C10H22N4OSiF6			
Hомер CCDC [*]	1521500			
М, г/моль	354,39			
Розмір кристала	$0,30 \times 0,27 \times 0,23$			
Т, К	100			
Колір, форма	Безбарвні блоки			
Дифрактометр	Xcalibur, Sapphire2			
Просторова група	$P2_1/c$			
Параметри елементарної комірки:				
<i>a</i> , Å	7,036(2)			
b, Å	10,560 (3)			
<i>c</i> , Å	20,764 (5)			
β, °	94,44(3)			
V, Å ³	1538,1(7)			
Ζ	4			
D_c	1,530(2)			
D_m	1,52			
μ , mm ⁻¹	0,22			
F(000)	736			
	-8 <h<11< td=""></h<11<>			
hkl	-17 <k<17< td=""></k<17<>			
	-34 <l<34< td=""></l<34<>			
Усього відбить	7722			

Таблиця 1 Кристалографічні параметри та умови рентгенівського експерименту для сполуки (*H*dmpz⁺),SiFc:H₂O

М. Лук'янов ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2017. Випуск 58. Ч. 1

	Закінчення табл.1
Відбить з $F \ge 4 \sigma (F_0)^{**}$	3405
Кількість уточнюваних параметрів	210
$2\theta_{\text{макс}}, \circ$	36,7
Вагова схема	$w = 1/[\sigma^2(F_o^2) + (0,0976P)^2]^{***}$
$R(F) (F_0^2 > 2\sigma(F_0^2)); R_w(F)$	0,090; 0,207
GooF	0,92

*Номер ССОС мітить додаткові кристалографічні та інші дані, в тім числі координати та параметри теплових зміщень атомів, для структури, поданої у статті. Копію цих даних можна отримати заповнивши аплікаційну форму на сторінці https://summary.ccdc.cam.ac.uk/structuresummary-manual-request-form сайту Кембриджського банку структурних даних, ССDС, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: int.code +(1223)336-033; e-mail for inquiry: fileserv@ccdc.cam.ac.uk). ^{**}Уведено поправку на фактори Лоренца і поляризації. ^{***} $P = (F_0^2 + 2F_c^2)/3.$

_ /	abanna	,
	1111/11/14	
	<i>ciosicius</i>	-
	,	

Координати атомів та їхні параметри теплових зміщень у структурі сполуки					
Атом	x/y	y/b	z/c	$U_{\rm ekb}/U_{\rm i30},{ m \AA}^*$	
Si1	0,7729(2)	0,73478(7)	0,39364(3)	0,0196(2)	
F1	1,0010(3)	0,7219(2)	0,37629(10)	0,0500(6)	
F2	0,7465(3)	0,86025(16)	0,34647(8)	0,0308(4)	
F3	0,5467(3)	0,7471(2)	0,41229(13)	0,0596(7)	
F4	0,7993(4)	0,60613(16)	0,44246(8)	0,0427(5)	
F5	0,8448(3)	0,82614(17)	0,45806(8)	0,0404(5)	
F6	0,7040(4)	0,63757(17)	0,33130(8)	0,0481(6)	
01	0,7312(4)	0,3937(2)	0,54607(10)	0,0266(5)	
N21	0,1871(4)	0,2549(2)	0,42312(11)	0,0232(5)	
N22	0,2080(4)	0,3736(2)	0,40039(10)	0,0224(5)	
N11	0,7064(3)	0,3325(2)	0,41724(11)	0,0227(5)	
N12	0,7069(3)	0,3901(2)	0,35929(10)	0,0223(5)	
C16	0,6770(5)	0,3403(3)	0,24305(14)	0,0352(8)	
C23	0,1993(4)	0,3702(3)	0,33592(13)	0,0213(6)	
C24	0,1717(4)	0,2450(3)	0,31716(13)	0,0234(6)	
C25	0,1642(4)	0,1742(3)	0,37333(13)	0,0222(6)	
C26	0,2149(5)	0,4872(3)	0,29658(14)	0,0304(7)	
C27	0,1401(5)	0,0358(3)	0,38443(15)	0,0308(7)	
C13	0,6798(4)	0,3039(3)	0,31189(13)	0,0230(6)	
C14	0,6612(4)	0,1869(3)	0,34182(14)	0,0261(6)	
C15	0,6789(4)	0,2073(3)	0,40785(14)	0,0229(6)	
C17	0,6735(5)	0,1176(3)	0,46288(16)	0,0358(8)	
H16A	0,6852	0,4326	0,2396	0,053*	
H16B	0,5583	0,3107	0,2201	0,053*	
H16C	0,7859	0,3015	0,2238	0,053*	
H1A	0,6406	0,3554	0,5606	0,053*	
H1B	0,8064	0,3570	0,5616	0,053*	
H21	0,1883	0,2339	0,4642	0,028*	
H22	0,2247	0,4422	0,4242	0,027*	
H24	0,1603	0,2136	0,2742	0,028*	
H26A	0,3346	0,5308	0,3099	0,046*	
H26B	0,1072	0,5433	0,3033	0,046*	
H26C	0,2132	0,4646	0,2508	0,046*	

М. Лук'янов ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2017. Випуск 58. Ч. 1

					Закінчення табл.2
	H27A	0,0875	0,0224	0,4263	0,046*
	H27B	0,2641	-0,0064	0,3843	0,046*
	H27C	0,0527	0,0004	0,3500	0,046*
	H11	0,7215	0,3704	0,4550	0,027*
	H12	0,7227	0,4718	0,3534	0,027*
	H14	0,6402	0,1077	0,3208	0,031*
	H17A	0,7890	0,1279	0,4919	0,054*
	H17B	0,6669	0,0306	0,4464	0,054*
	H17C	0,5612	0,1352	0,4865	0,054*
Па	Параметри теплових зміщень для негідрогенових атомів $U_{eg} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^ a_j^* (\vec{a}_i \vec{a}_j)$, для атомів				

 $H - U_{iso}$.

 $(Hdmpz)_2SiF_6$ ·H₂O кристалізується у моноклінній сингонії $P2_1/c$. Кристалічна структуру сполуки побудовано з водневозв'язаних стрічок органічного катіона $Hdmpz^+$, неорганічних двозарядних аніонів SiF₆²⁻ та молекул кристалізаційної води (Рис. 1). Вона має значні відмінності порівняно з хлоридною (HdmpzCl) та трифлюорметансульфонатною (Hdmpz)(dmpz)(CF₃SO₃) солями, описаних у згаданій праці Т. O. Denisova та ін. [9], де іони Cl⁻ зв'язані у центросиметричні димерні фрагменти катіонами Hdmpz⁺ чи з аніоном CF₃SO₃⁻, який об'єднує молекулярну та протоновану форму гетероциклу dmpz.

Рис. 1. Кристалографічно незалежна частина структури сполуки (Hdmpz)₂SiF₆·H₂O

У досліджуваній сполуці варто розглядати оточення саме протиіона, якщо прийняти октаедри гексафлюоросилікату за структурну одиницю. Аніони SiF₆²⁻ зв'язані сильними водневими зв'язками з обома атомами нітрогену органічного аніона за типом N—H…F та дещо слабшими контактами C—H…F (табл. 4) з атомами гідрогену метильних груп гетероциклу Hdmpz⁺ та атомом гідрогену диметилпіразольного ядра. Таку природу SiF₆²⁻ аніона помічено і раніше, навіть для ациклічних сполук [16]. Додатковий структуростабілізуючий фактор мають молекули кристалізаційної води, що є медіаторами між сусідніми катіонами Hdmpz⁺ за посередництвом водневих зв'язків [17–18].

184

Вибрані водневі зв'язки у структурі сполуки зображено на рис. 2, а їх геометрію детально подано у табл. 4.

Рис. 2. Укладання атомів у кристалічній гратці сполуки (*H*dmpz)₂SiF₆·H₂O та основні водневі зв'язки

Таблиця 4

Геометрія вибраних водневих зв'язків у структурі сполуки (Å, °)

Зв'язок	Координати атома А		d, Å		ω, °
D - H - A	Симетрія	D - H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
C16—H16B…F2 ⁱ	-x+1, y-1/2, -z+1/2	0,98	2,51	3,394(4)	149
O1—H1A…F3 ⁱⁱ	-x+1, -y+1, -z+1	0,83	1,83	2,654(3)	173
O1—H1B…F1 ⁱⁱⁱ	-x+2, -y+1, -z+1	0,71	1,98	2,678(3)	166
N21—H21…F5 ⁱⁱ	-x+1, -y+1, -z+1	0,88	1,77	2,637(3)	170
N22—H22…O1 ⁱⁱ	-x+1, -y+1, -z+1	0,88	1,86	2,717(3)	165
C24—H24…F6 ⁱ	-x+1, $y-1/2$, $-z+1/2$	0,95	2,58	3,460(4)	154
C26—H26B…F1 ^{iv}	x-1, y, z	0,98	2,57	3,396(4)	142
C26—H26C…F2 ⁱ	-x+1, $y-1/2$, $-z+1/2$	0,98	2,34	3,289(3)	164
C27—H27C…F2 ^v	x-1, y-1, z	0,98	2,61	3,375(4)	135
N11—H11…O1	x, y, z	0,88	1,90	2,745(3)	160
N12-H12-F6	x, y, z	0,88	1,81	2,677(3)	167
C17—H17B…F5 ^{vi}	x, y–1, z	0,98	2,50	3,309(4)	140
C17—H17C…F3 ⁱⁱ	-x+1, -y+1, -z+1	0,98	2,60	3,433(4)	142

Варто згадати про π - π взаємодію між ядрами гетероциклів $Hdmpz^+$ у структурі досліджуваної сполуки [19], яка є суттєво слабшою порівняно з водневими зв'язками чи навіть електростатичною взаємодією $(Hdmpz^+)_2(SiF_6^{2-})$, проте є помітною, адже органічні катіони укладаються вздовж напряму осі х у майже ідеальні колони (рис. 2). Довжина π - π -стекінгу становить 3,524(4) Å. Центри кілець Hdmpz+ розташовані одне над одним, проте повернені один відносно одного на кут ~ 35° через присутність у катіоні гетероциклу двох метильних замісників.

- 1. *Mukherjee R.* Coordination chemistry with pyrazole-based chelating ligands: molecular structural aspects // Coord. Chem. Rev. 2000. Vol. 203. P. 151–218.
- 2. *Hanifehpour Y., Soltani B., Mirtamizdoust B.* et al. Thermolysis synthesis of pure phase nano-sized cobalt(II) oxide from novel cobalt(II)-pyrazole discrete nano coordination compound // J. Inorg Organomet. Polym. 2016 DOI 10.1007/s10904-016-0326-6.
- Herbert M., Montilla F., Álvarez E. et al. New insights into the mechanism of oxodiperoxomolybdenum catalysed olefin epoxidation and the crystal structures of several oxo-peroxo molybdenum complexes // Dalton Trans. 2012. Vol. 41. P. 6942–6956.
- Arroyo M., García-de-Prada M. T., García-Martín C. et al. Fac-acetato-bis(pyrazole) complexes: a systematic study on intra- and intermolecular hydrogen bonds // J. Organomet. Chem. 2009. Vol. 694. N 19. P. 3190–3199.
- Denisova T. O., Amel'chenkova E. V., Pruss I. V. et al. Copper(II) trimethylacetate complexes with 3,5-dimethylpyrazole // Russ. J. Inorg. Chem. 2006. Vol. 51. N 7. P. 1020–1064.
- 6. Singh U. P., Kashyap S., Butcher R. J. et al. Effect of electron donating substituents on supramolecular structure of salts having phenylphosphonic acid and pyrazoles // Struct. Chem. 2011. Vol. 22. N 4. P. 931–941.
- Amel'chenkova E. V., Denisova T. O., Nefedov S. E. Synthetic modeling of the active site of native metalloenzymes by trimethylacetatozinc complexes // Russ. J. Inorg. Chem. 2006. Vol. 51. N 8. P. 1218–1263.
- 8. *Giles I. D., DePriest J. C., Deschamps J. R.* Effect of substitution and the counterion on the structural and spectroscopic properties of CuII complexes of methylated pyrazoles // J. Coord.Chem. 2015. Vol. 68. N 20. P. 3611–3635.
- 9. *Denisova T. O., Amel'chenkova E. V., Kislina I. S.* et al. Structure of 1:1 and 2:1 complexes of 3,5-dimethylpyrazole with HCl and HO₃SCF₃. // Russ. J. Inorg. Chem. 2006. Vol. 51. N 11. P. 1755–1762.
- 10. *Milione S., Grisi F., Centore R.* et al. Neutral and cationic heteroscorpionate aluminum complexes: synthesis, structure, and ring-opening polymerization of ε-caprolactone // Organometal. 2006. Vol. 25. N 1. P 266–274.
- 11. Agilent, CrysAlis PRO, Agilent Technologies, Yarnton, England, (2011).
- 12. Sheldrick G. M. SHELXT Integrated space-group and crystal-structure determination // Acta Cryst. 2015. Vol. A71. P. 3–8.
- 13. Sheldrick G. M. Crystal structure refinement with SHELXL // Acta Cryst. 2015. Vol. C71. P. 3–8.
- Dolomanov O. V., Bourhis L. J., Gildea R. J. et al. OLEX²: a complete structure solution, refinement and analysis program // J. Appl. Cryst. 2009. Vol. 42. P. 339–341.
- 15. *Clark R. C., Reid J. S.* The analytical calculation of absorption in multifaceted crystals // Acta Cryst. A. 1995. Vol. 51. N 6. P. 887–897.
- 16. Luk'yanov M. Yu., Pavlyuk A. V., Goreshnik E. A. et al. 3-(Diallylamino)propanenitrile ((C₃H₅)₂NC₂H₄CN, L) π-complexes with copper(I) ionic salts. Syntheses and crystal structures of compounds [Cu(H⁺L)ClO₄]ClO₄H₂O, [Cu(H⁺L)BF₄]BF₄H₂O, and [Cu(H⁺L)(H₂O)]SiF₆H₂O // Russ. J. Coord. Chem. 2012. Vol. 38. N 9. P. 639–645.

- 17. *Steiner T.* The Hydrogen Bond in the Solid State. T. Steiner // Angew. Chem. Int. Ed. 2002. Vol. 41. N 1. P. 48–76.
- 18. *Desiraju G. R.* Hydrogen Bridges in Crystal Engineering: Interactions without Borders // Acc. Chem. Res. 2002. Vol. 35. N 7. P. 565–573.
- 19. *Janiak C.* A critical account on pi-pi stacking in metal complexes with aromatic nitrogencontaining ligands // J. Chem. Soc., Dalton Trans. 2000. Vol. 21. P. 3885–3896.

CRYSTAL STRUCTURE OF 3,5-DIMETHYLPYRAZOLIUM (HDMPZ⁺) HEXAFLUOROSILICATE MONOHYDRATE OF (HDMPZ)₂SiF₆·H₂O COMPOSITION

M. Luk'yanov

Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: mishalukianov@gmail.com

Starting from isopropanolic solution of 3,5-dimethylpyrazole and 19 % water solution of H₂SiF₆, (*H*dmpz)₂SiF₆·H₂O compound have been obtained and X-ray structurally characterized by single crystal method. High-quality crystals of compound appeared during six days. The compound crystallizes in the monoclinic system: Sp. gr. – *P*2₁/*c*, *a* = 7.036(2), *b* = 10.560(3), *c* = 20.764(5) Å, $\beta = 94.44(3)^{\circ}$, V = 1538.1(7) Å³, Z = 4, $D_x = 1.530(3)$ г/см³, R(F) = 0,090 for 3405 independent reflections with $F \ge 4\sigma(F)$.

Understanding of a coordination behaviour of pyrazole methyl-derivatives in reactions with diverse anions under controlled conditions will allow to complete our knowledge about such compounds and to understand an influence of anion type and a nature of ligand on a structure and properties of appeared complexes.

The structure of the compound is formed by two crystallographically independent cations of 3,5-dimethylpyrazole which are bound to a molecule of crystallization water and inorganic anion SiF_6^{2-} by system of hydrogen bonds (N–H…F and C–H…F), electrostatic interaction forces and π - π -stacking.

Key words: compound of 3,5-dimethylpyrazole, hexafluorosilicate-ion, crystal structure, hydrogen bonds.

Стаття надійшла до редколегії 01.11.2016 Прийнята до друку 04.01.2017