УДК 546:548.736.3

КРИСТАЛІЧНА СТРУКТУРА СПОЛУКИ Gd₂Sb₅

О. Сенчук, Я. Токайчук, П. Демченко, Р. Гладишевський

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: senchuk91@gmail.com

Кристалічну структуру бінарної сполуки Gd_2Sb_5 уточнено за масивом даних рентгенівської порошкової дифракції: структурний тип Dy_2Sb_5 , символ Пірсона mP28, просторова група $P2_1/m$, a = 13,1668(7), b = 4,18428(3), c = 14,7366(9) Å, $\beta = 102,436(4)^\circ$, V = 792,84(7) Å³. Структуру можна описати як укладку колон координаційних многогранників атомів Gd – тригональних призм з трьома додатковими атомами навпроти прямокутних граней – вздовж кристалографічного напряму [0 1 0]. Між цими колонами формуються гексагональні канали, зайняті атомами Sb, які утворюють зигзагоподібні ланцюжки.

Ключові слова: гадоліній, стибій, рентгенівський дифракційний метод порошку, бінарна сполука, кристалічна структура.

Згідно з діаграмою стану системи Gd–Sb у ній існує чотири бінарні сполуки: Gd₅Sb₃, Gd₄Sb₃, GdSb і GdSb₂ [1]. Крім того, у літературі є відомості про існування ще двох сполук: Gd₁₆Sb₃₉ [2] і Gd₂Sb₅ [3]. Координати атомів визначено для сполук Gd₅Sb₃, Gd₄Sb₃, GdSb і Gd₁₆Sb₃₉, тоді як для сполук Gd₂Sb₅ і GdSb₂ визначено лише параметри елементарної комірки та встановлено структурний тип, причому для сполуки GdSb₂ повідомлено про дві високотискові модифікації [4, 5]. Під час систематичного дослідження діаграми стану потрійної системи Gd–Ti–Sb [6] ми підтвердили існування чотирьох бінарних сполук у системі Gd–Sb при 600°C: Gd₅Sb₃ (структура типу Mn₅Si₃), Gd₄Sb₃ (Th₃P₄), GdSb (NaCl) та Gd₂Sb₅ (Dy₂Sb₅), тоді як існування сполук GdSb₂ і Gd₁₆Sb₃₉ при 600°C підтверджено не було. Кристалографічні характеристики бінарних сполук системи Gd–Sb, відомі з літератури та визначені у цій праці при 600°C, наведено в табл. 1.

Мета нашої праці – визначити параметри структури бінарної сполуки Gd₂Sb₅ та провести її кристалохімічний аналіз.

[©] Сенчук О., Токайчук Я., Демченко П., Гладишевський Р., 2017

(виділено результати, отримані в цій праці)							
Сполиса	Струдстурний тип	Символ	Просторова Параметри комір		Іараметри комірки,	Å	Пim
Сполука	Структурний тип	Пірсона	група	а	b	С	JIII.
CdSh	Mn Si	<i>k</i> D 16	D6 Imam	9,0173	-	6,3242	[7]
Ou ₅ SD ₃	IVIII5513	<i>nF</i> 10	r 0 ₃ /mcm	9,0219(3)	-	6,3204(3)	*
CdSh	Th.D.	000	1424	9,224	-	-	[8]
004503	1113F 4	0128	1-450	9,2240(3)	-	-	*
CdSh	N ₂ C1	a F 9	Em 2m	6,21	-	-	[9]
Gasb	NaCi	CF 8	rm-sm	6,2144(2)	-	-	*
$GdSb_2$	SmSb ₂	oS24	Cmce	6,157	5,986	17,83	[10]
GdSb ₂	HoSb ₂	<i>oS</i> 6	C222	3,296	5,93	8,03	[10]
Cd Sh	Cd Sh	m S124	C2/m	5,7395	4,151	13,209	[2]
Gu ₁₆ SD ₃₉	Ou ₁₆ SD ₃₉	<i>m</i> 3124	C2/m		$\beta = 99,21^{\circ}$		[2]
				13,1747	4,1864	14,7521	[3]
Gd_2Sb_5	Dy ₂ Sb ₅	mP28	P2 ₁ /m		$\beta = 102,485^{\circ}$		[3]
				13,1668(7)	4,18428(3)	14,7366(9)	*
					$\beta = 102.436(4)^{\circ}$		

Кристалографічні характеристики бінарних сполук системи Gd-Sb

Результати цієї праці.

Для синтезу сплавів Gd_{62.5}Sb_{37.5}, Gd_{42.9}Sb_{57.1}, Gd₅₀Sb₅₀, Gd_{33.3}Sb_{66.7}, Gd_{29.1}Sb_{70.9}, Gd_{28.6}Sb_{71.4} і Gd₂₅Sb₇₅, склади яких відповідають складам відомих бінарних сполук системи Gd-Sb, використано наважки вихідних металів Gd і Sb з вмістом основного компонента 99,99 мас. %. Сплави виготовили електродуговим плавленням шихти металів в атмосфері аргону, додатково очищеного за допомогою гетера, - пористого Ті. Для досягнення однорідності зразки переплавили двічі. Гомогенізуючий відпал сплавів провели у вакуумованих кварцових ампулах за температури 600°С впродовж 30 діб у муфельній електропечі VULCAN-A550. Після відпалу ампули зі сплавами загартували в холодній воді. Втрати маси під час синтезу сплавів не перевищили 1 %. Масиви рентгенівських порошкових дифракційних даних для визначення фазового складу зразка одержали на дифрактометрі ДРОН-2.0 М (проміння Fe Ka, інтервал сканування 30-90° 20, крок сканування 0,05° 20, швидкість сканування – 2°/хв). Рентгенофазовий аналіз провели порівнянням експериментальних дифрактограм синтезованих зразків з розрахованими дифрактограмами бінарних сполук за допомогою пакету програм STOE WinXPow [11]. Параметри елементарної комірки індивідуальних фаз уточнили за допомогою пакету програм FullProf Suite [12] (див. табл. 1). Усі зразки з вмістом < 50 ат. % Sb містили як домішкову фазу сполуку GdSb, яка є термодинамічно дуже стабільною і має високу температуру топлення (~2130°С). Тому для подальшого рентгеноструктурного дослідження вибрано зразок складу Gd₂₅Sb₇₅, що зміщений від ідеального складу сполуки Gd₂Sb₅ у бік Sb і містить найменшу кількість фази GdSb. Кристалічну структуру бінарної сполуки Gd₂Sb₅ уточнено методом Рітвельда (пакет програм FullProf Suite) за масивом рентгенівських дифракційних даних, одержаним на порошковому дифрактометрі STOE Stadi P (проміння Cu $K\alpha_1$, інтервал сканування 6–110,625° 2 θ , крок сканування $0.015^{\circ} 2\theta$). За початкову модель взяли координати атомів у структурі сполуки Dy₂Sb₅ [3]. Умови експерименту та результати уточнення кристалічної структури індивідуальних фаз у зразку складу Gd₂₅Sb₇₅ наведено в табл. 2, експериментальну, розраховану та різницеву дифрактограми зразка зображено на рис. 1.

43

Таблиця 1

Таблиця 2

Сполука Gd₂Sb₅ GdSb Вміст у зразку, мас. % 91,9(15) 8,1(2) Структурний тип Dy₂Sb₅ NaCl Символ Пірсона mP28cF8 $P2_1/m$ Просторова група Fm-3m Параметри елементарної комірки: *a*, Å 13,1668(7) 6,2195(4) *b*, Å 4,18428(3) _ *c*, Å 14,7366(9) _ <u>β</u>, ° 102,436(4) 792,84(7) 240,58(3) Об'єм елементарної комірки V, Å³ Кількість формульних одиниць Z 4 4 Γ устина D_X , г·см³ 7,703 7,735 Параметр текстури G [напрям] 0,815(8) [0 0 1] Параметри профілю: U0,12(3) V -0,04(2)W 0,033(4) Параметр змішування η 0,915(15) 0,029(6), 0,0027(18) Параметри асиметрії Р₁, Р₂ $R_{\rm B}$ R_F Фактори достовірності: 0,0614 0,0479 0,0625 0,0376 $R_{\rm p}$ 0,0354 R_{wp} 0,0449 R_{exp} 0,0422 1,13

Рис. 1. Експериментальна (кільця), розрахована (суцільна лінія) та різницева (внизу) дифрактограми зразка Gd₂₅Sb₇₅. Вертикальні риски вказують положення відбить індивідуальних фаз (дифрактометр STOE Stadi P, проміння Cu Kα₁)

О. Сенчук, Я. Токайчук, П. Демченко, Р. Гладишевський	
ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2017. Випуск 58. Ч. 1	

Кристалічна структура бінарної сполуки Gd_2Sb_5 при 600°С належить до структурного типу Dy_2Sb_5 . Координати та ізотропні параметри зміщення атомів у структурі сполуки Gd_2Sb_5 наведено у табл. 3. Структура характеризується впорядкованим заповненням 14 правильних систем точок 2*e* просторової групи $P2_1/m$, чотири з яких зайняті атомами Gd, а десять інших – атомами Sb. Структура типу $Dy_2Sb_5 \in$ типовим представником шаруватих структур. У межах елементарної комірки вздовж короткого параметра *b* елементарної комірки містяться два шари атомів з координатами *y* = 1/4 та 3/4; отже, всі атоми розташовані на площинах симетрії *m*, перпендикулярних до осі 2_1 .

Міжатомні віддалі та координаційні многогранники атомів у структурі сполуки Gd₂Sb₅ наведено у табл. 4. Координаційні многогранники для атомів Gd сформовані атомами Sb, що утворюють тригональні призми з центрованими бічними гранями (тетрагональні антипризми з одним додатковим атомом) GdSb₉. Координаційне оточення атомів Sb сформоване або виключно атомами Gd, або атомами Gd і Sb, або виключно атомами Sb. Так, координаційними многогранниками атомів позиції Sb5 є тригональні призми <u>Sb5</u>Gd₆; Sb1 – октаедри <u>Sb1</u>Sb₆; Sb9 і Sb10 – тригональні призми з одним додатковим атомом <u>Sb9</u>Gd₅Sb₂ i <u>Sb10</u>Gd₃Sb₄, відповідно; Sb3 i Sb8 – пентагональні піраміди SbGd₃Sb₃; Sb2, Sb4, Sb6 і Sb7 – восьмивершинники SbGd₄Sb₄ – зрощені через прямокутні грані дві тригональні призми, осі яких розвернуті на 90° (така фігура в геометрії має назву gyrobifastigium). Під час побудови координаційних многогранників у структурі цієї сполуки ми брали до уваги лише атоми першої координаційної сфери, оскільки за розгляду структури стає очевидним, що для всіх атомів цієї сполуки атоми другої координаційної сфери перебувають на значно більшій віддалі, ніж атоми першої координаційної сфери, тож включення другої сфери призведе до появи нелогічних координаційних многогранників. Так, мінімальна віддаль між двома найближчими атомами Gd у структурі становить близько 4,1 Å, а найменша віддаль від атома Gd до атома Sb другої координаційної сфери близько 3,93 Å, втім, найвіддаленіший від атома Gd атом Sb першої координаційної сфери розташований на віддалі 3,48(2) Å. Найбільша віддаль від атома Sb до іншого атома Sb у першій координаційній сфері становить 3,45(2) Å, а найближчий атом Sb другої координаційної сфери перебуває на віддалі близько 3,97 Å. Отже, існує значний розрив у віддалях від центральних атомів до атомів першої та другої координаційних сфер. Крім того, внаслідок значної частки ковалентного зв'язування у структурі Gd₂Sb₅ на атомах Sb виникає частковий негативний заряд, а на атомах Gd - частковий позитивний; це зумовлює зменшення різниці в ефективних радіусах атомів у структурі, оскільки аніони мають більший радіус, а катіони – менший. Отже, для цієї структури, незважаючи на відносно великі розміри атомів, що її утворюють, характерними є невеликі координаційні числа (6-8 для Sb та 9 для Gd).

Таблиця 3

45

Координати атомпв у структурт сполуки Об2505						
Атом*	ПСТ	x	у	z		
Gd1	2e	0,0638(10)	1/4	0,3645(11)		
Gd2	2e	0,3250(11)	1/4	0,5812(10)		
Gd3	2e	0,3321(10)	1/4	0,8621(11)		
Gd4	2 <i>e</i>	0,6065(11)	1/4	0,7724(12)		
Sb1	2 <i>e</i>	0,0260(12)	1/4	0,0919(12)		
Sb2	2 <i>e</i>	0,1318(12)	1/4	0,6803(13)		
Sb3	2 <i>e</i>	0,2781(11)	1/4	0,0600(12)		

Координати атомів у структурі сполуки Gd₂Sb₅

				Закінчення табл. З
Sb4	2e	0,2896(11)	1/4	0,3475(12)
Sb5	2e	0,5649(13)	1/4	0,2675(13)
Sb6	2 <i>e</i>	0,5815(12)	1/4	0,5559(13)
Sb7	2e	0,5712(11)	1/4	0,9673(12)
Sb8	2 <i>e</i>	0,8664(11)	1/4	0,1718(11)
Sb9	2 <i>e</i>	0,8616(12)	1/4	0,4799(12)
Sb10	2 <i>e</i>	0,8682(12)	1/4	0,7762(13)
* P_{1} (Cd1 Cd4) -	0.95(15) Å ² D (Ch	1 SF10) = 0.52(7) λ^2		

 $B_{iso} (Gd1-Gd4) = 0,85(15) \text{ Å}^2, B_{iso} (Sb1-Sb10) = 0,52(7) \text{ Å}^2.$

Таблиця 4

Міжатомні віддалі (δ), координаційні числа (КЧ) та координаційні многогранники (КМ) атомів у структурі сполуки Gd₂Sb₅

	Атоми	δ , Å	КЧ	КМ
Gd1	- 1 Sb4 - 2 Sb9 - 2 Sb10 - 2 Sb2 - 1 Sb8 - 1 Sb9	3,04(2) 3,103(16) 3,21(2) 3,273(16) 3,412(19) 3,45(2)	9	Gd1Sb ₉
Gd2	- 2 Sb5 - 1 Sb2 - 2 Sb9 - 2 Sb6 - 1 Sb4 - 1 Sb6	3,171(16) 3,19(2) 3,205(15) 3,32(2) 3,37(2) 3,48(2)	9	Gd2Sb ₉
Gd3	- 1 Sb3 - 2 Sb7 - 2 Sb8 - 1 Sb7 - 2 Sb5 - 1 Sb2	3,15(2) 3,196(18) 3,301(15) 3,308(17) 3,31(2) 3,33(2)	9	Gd3Sb ₉
Gd4	- 1 Sb7 - 2 Sb5 - 1 Sb6 - 2 Sb4 - 2 Sb3 - 1 Sb10	3,01(3)3,041(15)3,14(3)3,227(19)3,343(16)3,43(2)	9	Gd4Sba

46

				Продовження табл. 4
Sb1	- 1 Sb8 - 2 Sb10 - 2 Sb1 - 1 Sb3	2,62(2) 2,990(16) 3,372(19) 3,45(2)	6	<u>Sb1</u> Sb ₆
Sb2	- 2 Sb8 - 2 Sb9 - 1 Gd2 - 2 Gd1 - 1 Gd3	3,018(17) 3,170(19) 3,19(2) 3,273(16) 3,33(2)	8	<u>Sb2</u> Gd ₄ Sb ₄
Sb3	- 2 Sb7 - 1 Gd3 - 2 Gd4 - 1 Sb1	2,969(16) 3,15(2) 3,343(16) 3,45(2)	6	<u>Sb3</u> Gd ₃ Sb ₃
Sb4	- 2 Sb6 - 1 Gd1 - 2 Sb10 - 2 Gd4 - 1 Gd2	2,872(14) 3,04(2) 3,223(16) 3,227(19) 3,37(2)	8	<u>Sb4</u> Gd ₄ Sb ₄
Sb5	- 2 Gd4 - 2 Gd2 - 2 Gd3	3,041(15) 3,171(16) 3,31(2)	6	Sb5Gd ₆

				Закінчення табл. 4
Sb6	- 2 Sb4 - 1 Gd4 - 2 Sb6 - 2 Gd2 - 1 Gd2	2,872(14) 3,14(3) 3,188(17) 3,32(2) 3,48(2)	8	<u>Sb6</u> Gd ₄ Sb ₄
Sb7	- 2 Sb3 - 1 Gd4 - 2 Sb7 - 2 Gd3 - 1 Gd3	2,872(14) 3,01(3) 3,098(18) 3,196(18) 3,308(17)	8	<u>Sb7</u> Gd ₄ Sb ₄
Sb8	- 1 Sb1 - 2 Sb2 - 2 Gd3 - 1 Gd1	2,62(2) 3,018(17) 3,301(15) 3,412(19)	6	Sb8Gd ₃ Sb ₃
Sb9	- 2 Gd1 - 2 Sb2 - 2 Gd2 - 1 Gd1	3,103(16) 3,170(19) 3,205(15) 3,45(2)	7	Sb9Gd ₅ Sb ₂
Sb10	- 2 Sb1 - 2 Gd1 - 2 Sb4 - 1 Gd4	2,990(16) 3,21(2) 3,223(16) 3,43(2)	7	<u>Sb10</u> Gd ₃ Sb ₄

48

Рис. 2. Укладка координаційних многогранників атомів Gd (тригональні призми Sb₆ з трьома додатковими атомами Sb) та атомів Sb1 в гексагональних каналах у структурі сполуки Gd₂Sb₅

Кристалічну структуру сполуки Gd_2Sb_5 можна описати як укладку координаційних поліедрів атомів Gd (рис. 2). Вздовж напряму [0 1 0] формуються нескінченні колони тригональних призм з додатковими атомами навпроти бічних граней. Колони многогранників утворюють гексагональні канали, кожен з яких зайнятий зигзагоподібними ланцюжками атомів позиції Sb1, координаційними многогранниками для яких є деформовані октаедри <u>Sb1</u>Sb₆. Атоми Sb у структурі сполуки Gd₂Sb₅ утворюють складні поліаніонні стрічки з міжатомними віддалями 2,62(2)–3,103(16) Å. Значна частка ковалентного зв'язування у структурі даної сполуки зумовлює суттєве скорочення міжатомних віддалей порівняно з сумою атомних радіусів. Згідно з Емслі [13], атомний радіус Sb становить 1,82 Å, тоді як ковалентний – 1,41 Å; Gd, відповідно, 1,802 та 1,61 Å. Отже, міжатомні віддалі у цьому випадку добре узгоджуються саме з сумою ковалентних, а не атомних радіусів елементів. Подібні значення міжатомних віддалей в антимонідах рідкісноземельних металів вже були визначені для сполуки Dy₂Sb₅, яка є ізоструктурною до Gd₂Sb₅ [3], та авторами [14] для сполук *R*₂Ti₇Sb₁₂ (*R* = La–Nd).

2. Borzone G., Fornasini M. L., Parodi N., Ferro R. Gd–Sb system: standard enthalpies of formation of solid alloys and crystal structure of Gd₁₆Sb₃₉ // Intermetallics. 2000. Vol. 8. P. 189–194.

^{1.} Villars P., Cenzual K., Daams J. L. C., Hulliger F., Massalski T. B., Okamoto H., Osaki K., Prince A. (Eds.). Pauling File Binaries Edition. Materials Park: ASM International (OH). Release 2002/1.

- 3. Jeitschko W., Altmeyer R., Schelk M., Rodewald U. Ch. Lanthanoid antimonides Ln_2Sb_5 (Ln = Sm, Gd, Tb, Dy) and rationalization of chemical bonding within the antimony polyanion by combining the Zintl-Klemm concept with bond-length bond-strength relationships // Z. Anorg. Allg. Chem. 2001. Vol. 627. P. 1932–1940.
- 4. *Villars P., Cenzual K.* (Eds.) Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds. Materials Park: ASM International (OH), Release 2014/15.
- 5. Villars P., Cenzual K., Gladyshevskii R. (Eds.) Handbook of Inorganic Substances 2016. Berlin: Walter de Gruyter, 2016. 1877 p.
- Senchuk O., Starokon' Ye., Tokaychuk Ya., Demchenko P., Gladyshevskii R. Phase equilibria in the Gd–Ti–Sb ternary system at 600°C and the crystal structure of the compound Gd₂Ti₁₁Sb₁₄ // Coll. Abs. XIII Int. Conf. Cryst. Chem. Intermet. Compd. Lviv, 2016. P. 70.
- 7. *Gupta S., Leon Escamilla E.A., Wang F., Miller G.J., Corbett J.D.* R_5Pn_3 -type phases of the heavier trivalent rare-earth-metal pnictides (Pn = Sb, Bi): New phase transitions for Er_5Sb_3 and Tm_5Sb_3 // Inorg. Chem. 2009. Vol. 48. P. 4362–4372.
- 8. *Holtzberg F., Methfessel M. S., Suits J. C.* Ferromagnetism in Gd–Bi, Sb compounds with the Th₃P₄ structure // Proc. 3 Conf. Rare Earth Res. 1964. P. 385–399.
- 9. Samsonov G. V., Abdusalyamova M. N., Shokirov K. Thermal expansion of rare earth monoantimonides // Izv. Akad. Nauk SSSR, Neorg. Mater. 1974. Vol. 10. P. 923–924.
- 10. Eatough N. L., Hall H. T. High-pressure synthesis of rare earth diantimonides // Inorg. Chem. 1969. Vol. 8. P. 1439–1445.
- 11. STOE WinXPow (Version 2.21). Darmstadt : Stoe & Cie, 2005.
- 12. *Rodríguez-Carvajal J.* Recent developments of the Program *FULLPROF //* Commission on Powder Diffraction (IUCr), Newsletter. 2001. Vol. 26. P. 12–19.
- 13. Эмсли Дж. Элементы. М.: Мир, 1993. 256 с.
- Bie H., Moore S. H. D., Piercey D. G., Tkachuk A. V., Zelinska O. Ya., Mar A. Ternary rare-earth titanium antimonides: Phase equilibria in the *RE*–Ti–Sb (*RE* = La, Er) systems and crystal structures of *RE*₂Ti₇Sb₁₂ (*RE* = La, Ce, Pr, Nd) and *RE*Ti₃(Sn_xSb_{1-x})₄ (*RE* = Nd, Sm) // J. Solid State Chem. 2007. Vol. 180. P. 2216–2224.

CRYSTAL STRUCTURE OF THE COMPOUND Gd₂Sb₅

O. Senchuk, Ya. Tokaychuk, P. Demchenko, R. Gladyshevskii

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: senchuk91@gmail.com

The crystal structure of the binary compound Gd_2Sb_5 was determined by means of X-ray powder diffraction: structure type Dy_2Sb_5 , Pearson symbol *mP28*, space group $P2_1/m$, a = 13.1668(7), b = 4.18428(3), c = 14.7366(9) Å, $\beta = 102.436(4)^\circ$, V = 792.84(7) Å³. It contains 14 sites in Wyckoff position 2*e*, four of which are occupied by Gd atoms and ten by Sb atoms. The coordination polyhedra of the Gd atoms are formed exclusively by Sb atoms, whereas those of the Sb atoms are formed either by Gd or Sb atoms, or by Gd and Sb atoms. The structure can be described as a packing

50

О. Сенчук, Я. Токайчук, П. Демченко, Р. Гладишевський	
ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2017. Випуск 58. Ч. 1	51

of the coordination polyhedra of the gadolinium atoms (trigonal prisms with three additional atoms above the rectangular faces), which form columns along the crystallographic direction $[0\ 1\ 0]$. Between the columns hexagonal channels, occupied by *zigzag* chains of additional Sb atoms, are formed.

Key words: gadolinium, antimony, X-ray powder diffraction, binary compound, crystal structure.

Стаття надійшла до редколегії 01.11.2016 Прийнята до друку 04.01.2017