ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2018. Випуск 59. Ч. 1. С. 123–130 Visnyk of the Lviv University. Series Chemistry. 2018. Issue 59. Pt. 1. P. 123–130

УДК 621.315.592

ДОСЛІДЖЕННЯ ЕЛЕКТРОКІНЕТИЧНИХ, МАГНІТНИХ ТА ЕНЕРГЕТИЧНИХ ХАРАКТЕРИСТИК НАПІВПРОВІДНИКОВОГО ТВЕРДОГО РОЗЧИНУ ТіNi_{1-x}Cu_xSn

Ю. Стадник¹, Л. Ромака¹, В. В. Ромака², В. Крайовський², А. Горинь¹

¹Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail:stadnykyu@gmail.com;

²Національний університет "Львівська політехніка", вул. С. Бандери, 12, 79013 Львів, Україна

Досліджено залежності питомого електроопору і коефіцієнта термо-ерс в діапазоні температур T=80–400 К, магнітні характеристики за кімнатної температури та розраховано електронну структуру напівпровідникового твердого розчину TiNi_{1-x}Cu_xSn (структурний тип MgAgAs) при x=0,005–0,10. З'ясовано, що поява екстремуму у зміні значень періоду елементарної комірки a(x) на ділянці концентрацій x=0–0,01 пов'язана з упорядкуванням кристалічної структури TiNi_{1-x}Cu_xSn. Розрахунки електронної структури TiNi_{1-x}Cu_xSn спрогнозували, а експериментальні дослідження підтвердили механізм генерування структурних дефектів донорної природи під час заміщення атомів Ni на Cu. Показано, що досліджений напівпровідниковий твердий розчин TiNi_{1-x}Cu_xSn є перспективним термоелектричним матеріалом.

Ключові слова: питомий електроопір, коефіцієнт термо-ерс, електронна структура, магнітна сприйнятливість, рівень Фермі.

DOI: https://doi.org/10.30970/vch.5901.123

Як відомо, оптимізація параметрів термоелектричних матеріалів для отримання максимальних значень термоелектричної добротності залежить від багатьох чинників, зокрема, концентрації носіїв електричного струму (ступеня легування), механізмів розсіювання, теплопровідності, вибору кристалографічної орієнтації тощо. Легування інтерметалічних напівпровідників, зокрема, *n*-ZrNiSn, *n*-TiNiSn та *n*-HfNiSn (структурний тип MgAgAs, просторова група $F\overline{4}3m$ [1]), спроможне отримати одночасно високі значення електропровідності та коефіцієнта термо-ерс, що забезпечує високу ефективність перетворення теплової енергії в електричну.

У праці [2] показано, що максимальні значення термоелектричної добротності досягають у термоелектричних напівпровідникових матеріалах *n*-типу провідності за умови їхнього легування донорними домішками, а в матеріалах *p*-типу – акцепторними. Таке легування спроможне за найменших концентрацій домішки

[©]Стадник Ю., Ромака Л., Ромака В. та ін., 2018

наблизити рівень Фермі $\varepsilon_{\rm F}$ на відстань $k_{\rm B}T$ відповідно до рівнів протікання зони провідності та валентної зони, що абезпечує, з одного боку, високі значення питомої електропровідності, з іншого – ще високі значення коефіцієнта термо-ерс.

У запропонованій праці досліджено напівпровідниковий твердий розчин TiNi_{1-x}Cu_xSn, отриманий шляхом заміщення атомів Ni $(3d^84s^2)$ на Cu $(3d^{10}4s^1)$, що генерує у кристалі структурні дефекти донорної природи (Cu володіє більшим числом 3*d*-електронів, ніж Ni). Відповідно до умов [2] цей твердий розчин повинен володіти високою ефективністю перетворення теплової енергії в електричну. Своєю чергою, результати дослідження подібного твердого розчину ZrNi_{1-x}Cu_xSn [2] виявили високі значення термоелектричної добротності.

Зразки твердого розчину TiNi_{1-x}Cu_xSn синтезовано шляхом сплавляння шихти вихідних компонентів в електродуговій печі в інертній атмосфері аргону з наступним гомогенізуючим відпалюванням упродовж 720 год за температури 1073 К. Рентгенофазовий аналіз проводили з використанням дифрактометра ДРОН–4.0, (FeK*a*-випромінювання). Склад фаз контролювали за допомогою рентгеноспектрального аналізу (електронний мікроскоп РЕММА 102-02). Для обчислення періодів ґратки використовували комплекс програм CSD [3]. Електронна структура розрахована методом ККR у наближенні когерентного потенціалу (СРА) і локальної густини (LDA) [4] з використанням обмінно-кореляційного потенціалу Moruzzi– Janak–Williams [5]. Проведено вимірювання температурних залежностей питомого електроопору (ρ), коефіцієнта термо-ерс (α) стосовно міді (*T*=80–400 K) та магнітної сприйнятливості (χ) (метод Фарадея) за кімнатної температури і напруженості магнітного поля *H*≤10 кЕ для зразків твердого розчину TiNi_{1-x}Cu_xSn у діапазонах: $N_D^{Cu} \approx 3, 8 \cdot 10^{19}$ см⁻³ (*x*=0,005)–1,9 · 10²¹ см⁻³ (*x*=0,10).

Мікрозондовий аналіз концентрації атомів на поверхні зразків TiNi_{1-x}Cu_xSn включно до складу x = 0-0,10 визначив їхню відповідність вихідним складам шихти, а рентгенівський фазовий аналіз показав відсутність слідів сторонніх фаз на дифрактограмах, крім основної фази, яка індексується у структурному типі MgAgAs [1].

Ураховуючи більший атомний радіус $Cu(r_{Cu}=0,128$ нм) порівняно з Ni($r_{Ni}=0,124$ нм), логічно очікувати на монотонне збільшення значень періоду елементарної комірки a(x) TiNi_{1-x}Cu_xSn. Однак рентгеноструктурні дослідження показали, що на ділянці концентрацій x=0-0,01 на залежності a(x) з'являється максимум (рис. 1), вказуючи на більш складні структурні зміни у кристалі. Бачимо, що в діапазоні концентрацій x=0-0,005 значення періоду елементарної комірки a(x) TiNi_{1-x}Cu_xSn стрімко збільшуються, однак на ділянці x=0,005-0,01 так само стрімко зменшуються, а за концентрацій $x\geq0,01$ відбувається, як і очікували, практично монотонне збільшення значень a(x). Ймовірною причиною такої непрогнозованої зміни періодів може бути той факт, що сполука TiNiSn є неупорядкованою [2].

У праці [2] показано, що у кристалічній структурі сполуки ТіNiSn атоми Ni частково, до ~1% ($z\approx0,01$), займають позиції 4*a* атомів Ti ($3d^25s^2$), що генерує у кристалі структурні дефекти донорної природи ("апріорне легування"), оскільки у Ni більше 3*d*-електронів, а формула сполуки має вигляд (Ti_{1-z}Ni_z)NiSn. Це приводить до появи у забороненій зоні *n*-TiNiSnдомішкового донорного рівня ε_D^1 на відстані 16,9 меВ від дна зони провідності.

Можна допустити, що на ділянці концентрацій $0 \le x \le 0,01$ відбувається витіснення у позиції 4a невеликих атомів Ni більшими атомами Ti, що *впорядковує* кристалічну структуру TiNi_{1-x}Cu_xSn та "заліковує" структурні дефекти донорної природи, як це бачимо у багатьох інших твердих розчинах, досліджених у праці [2].

124

125

Рис. 1. Зміна значень періоду елементарної комірки a(x) твердого розчину TiNi_{1-x}Cu_xSn Fig. 1. Variation in the lattice parameter a(x) of TiNi_{1-x}Cu_xSn solid solutions

Одночасно із витісненням атомів Niз позиції 4*a* відбувається процес заміщення Ni у позиції 4*c* на більші атоми Cu. Ураховуючи, що різниця атомних радіусів Ti та Ni становить ($r_{Ti}-r_{Ni}$) = 0,022 нм, а Ni та Cu ($r_{Cu}-r_{Ni}$) = 0,004 нм, то зміну значень a(x) на ділянці концентрацій x=0-0,005 буде визначати саме процес витіснення Ni з позиції 4*a* великими атомами Ti, оскільки внесок такого заміщення у сумарну зміну значення a(x) у п'ять разів більший, ніж внесок при заміщенні атомів Ni на Cu. Саме такі структурні зміни у TiNi_{1-x}Cu_xSn на ділянці концентрацій x=0-0,005, ймовірно, зумовлять стрімкий ріст значень періоду елементарної комірки a(x) (рис. 1). Після витіснення основної частини атомів Ni з позиції Ti (упорядкування структури) зміну значень a(x) визначатиме зайняття атомами Cu позиції 4*c*, що лише тепер приведе до монотонного збільшення значень a(x), як і прогнозувалося. Упорядкування кристалічної структури TiNi_{1-x}Cu_xSn робить її стійкою до температурних та часових змін, створюючи передумови для отримання термоелектричного матеріалу зі стабільними характеристиками.

Зміни у кристалічній структурі TiNi_{1-x}Cu_xSn приведуть до трансформації електронної структури. Наприклад, наявний у *n*-TiNiSn домішковий донорний рівень ε_D^1 , сформований унаслідок витіснення ~1% атомів Ti атомами Ni [2], повинен зникнути за концентрацій x>0,01. Оскільки Cu володіє більшим числом *d*-електронів, ніж Ni, тозаміщення Ni на Cu генерує у позиції 4*c* структурний дефект донорної природи, що спричинить появу у забороненій зоні іншого домішкового донорного рівня ε_D^2 .Наявність значного числа донорів ε_D^2 і буде визначати кінетичні характеристики твердого розчину TiNi_{1-x}Cu_xSn.

Для прогнозування поведінки рівня Фермі $\varepsilon_{\rm F}$, ширини забороненої зони та кінетичних характеристик TiNi_{1-x}Cu_xSn проведено розрахунок густини електронних станів (DOS) (рис. 2). Беручи до уваги, що кристалічна структура TiNi_{1-x}Cu_xSn, x>0, упорядкована, розрахунок DOS проведено для випадку впорядкованого варіанта структури. Як бачимо з рис. 2, при уведенні в *n*-TiNiSn найменш досяжних в експерименті концентрацій донорної домішки Cu рівень Фермі $\varepsilon_{\rm F}$ (пунктирна лінія) починає дрейфувати до зони провідності $\varepsilon_{\rm C}$, яку перетне за певних концентрацій Cu: реалізується перехід провідності діелектрик-метал [2]. Отже, результати розрахунку густини електронних станів TiNi_{1-x}Cu_xSn підтверджують прогнозовану донорну природу генерованих у кристалі структурних дефектів. 126

Рис. 2. Розрахунок густини електронних станів DOS для TiNi_{1-x}Cu_xSn Fig. 2. Distribution of the total DOS of TiNi_{1-x}Cu_xSn

Прогнозована поведінка рівня Фермі $\varepsilon_{\rm F}$ супроводжується цікавою поведінкою густини станів на рівні Фермі $g(\varepsilon_{\rm F})$ (рис. 3, залежність 1). Так, легування *n*-TiNiSn донорною домішкою Си очікувано приводить до збільшення густини станів на рівні Фермі.

Рис. 3. Зміна значень густини електронних станів на рівні Фермі $g(\varepsilon_F)(1)$ та магнітної сприйнятливості $\chi(x)(2)$ для TiNi_{1-x}Cu_xSn за температури *T*=300 K Fig. 3. Variation in density of states at the Fermi level $g(\varepsilon_F)(1)$ and magnetic susceptibility $\chi(x)(2)$ for TiNi_{1-x}Cu_xSn at *T*=300 K

Наведені результати розрахунків зміни значень $g(\varepsilon_F)$ узгоджуються з результатами експериментальних вимірювань магнітної сприйнятливості χ TiNi_{1-x}Cu_xSn за температури T = 300 К(рис. 3, залежність 2). Дослідження показали, що всі зразки TiNi_{1-x}Cu_xSn є парамагнетиками Паулі, в яких магнітну сприйнятливість визначають виключно електронним газом і пропорційна густині станів на рівні Фермі $g(\varepsilon_F)$. Як бачимо з рис. 3, залежність $\chi(x)$ TiNi_{1-x}Cu_xSn при x > 0 монотонно зростає та практично повторює хід залежності $g(\varepsilon_F)$, вказуючи на донорну природу генерованих структурних дефектів.

Температурні та концентраційні залежності питомого електроопору ρ та коефіцієнта термо-ерс α TiNi_{1-x}Cu_xSn наведені на рис. 4, 5. Легування напівпровідника *n*-TiNiSn найменшою концентрацією донорної домішки Cu, x = 0,005, приводить до металізації провідності у температурному діапазоні T = 80-360 К (рис. 4, *a*), зумовленої перетином рівнів Фермі ε_F та протікання зони провідності.

Стрімке наближення рівня Фермі ε_F до зони провідності показує, що генерований домішковий донорний рівень ε_D^2 розташовується на відстані $k_F T$ біля дна зони провідності, а температурний інтервал T=80-360 К достатній для перетину рівнів Фермі ε_F та протікання зони провідності TiNi_{0.995}Cu_{0.005}Sn. Однак за температури T>360 К значення питомого електроопору зменшуються з ростом температури: реалізується зворотний перехід провідності у заборонену зону. Зазначимо, що знак коефіцієнта термо-ерс TiNi_{0.995}Cu_{0.005}Sn за усіх температуру залишався від'ємним (рис. 5), що дає нам право ідентифікувати переходи провідності діелектрик-метал та метал-діелектрик з перетином рівнем Фермі ε_F дна зони провідності.

Рис. 4. Температурні залежності питомого електроопору $\rho(T)$ для TiNi_{1-x}Cu_xSn Fig. 4. Temperature dependencies of electrical resistivity $\rho(T)$ of the TiNi_{1-x}Cu_xSn

Така, на перший погляд, неочікувана поведінка рівня Фермі $\varepsilon_{\rm F}$ TiNi_{0,995}Cu_{0,005}Sn у температурному діапазоні *T*=80–380 К насправді має доволі просте пояснення. Дійсно, концентрація донорів домішкового донорного рівня $\varepsilon_{\rm D}^{1}$ (*z*=0,01) [2] переважає концентрацію донорів $\varepsilon_{\rm D}^{2}$, генерованих у напівпровіднику за найменшої концентрації донорної домішки Cu, *x*=0,005. Одночасно, як показують результати експерименту, глибина залягання донорного рівня $\varepsilon_{\rm D}^{1}$ є набагато більшою, ніж $\varepsilon_{\rm D}^{2}$. Зворотний перехід провідності метал-діелектрик зумовлений виснаженням

домішкового донорного рівня ε_D^2 за температур $T \ge 360$ К, після чого відбувається термічна активація електронів з глибшого донорного рівня ε_D^1 , що відображається у зменшенні значень $\rho(T)$ TiNi_{0.995}Cu_{0.005}Sn.

128

Те, що атоми Cu, уведені в *n*-TiNiSn, генерують дефекти донорної природи, показують залежності зміни значень коефіцієнта термо-ерс $\alpha(x)$ TiNi_{1-x}Cu_xSn (рис. 5). Про це свідчить також від'ємний знак коефіцієнта термо-ерс $\alpha(x)$ TiNi_{1-x}Cu_xSn для усіх досліджених концентрацій та температур, а електрони є основними носіями струму. Результати кінетичних досліджень узгоджуються з результатами розрахунку електронної структури TiNi_{1-x}Cu_xSn.

З отриманих результатів можемо прогнозувати високу ефективність перетворення теплової енергії в електричну у TiNi_{1-x}Cu_xSn, про що свідчать результати зміни значень коефіцієнта термоелектричної потужності $Z^*(x)$ за температури 380 К (див. таблицю). Бачимо, що за концентрації Cux \approx 0,01 значення $Z^*(x)$ TiNi_{1-x}Cu_xSn є найбільшим, тому що згідно з дослідженими електрокінетичними характеристиками саме за цих концентрацій рівень Фермі ε_F перебуває на відстані k_bT від дна зони провідності, що забезпечує, з одного боку, високі значення питомої електропровідності, а з іншого – більш високі значення коефіцієнта термо-ерс.

Рис. 5. Зміна значень коефіцієнта термо-ерс $\alpha(x)$ для TiNi_{1-x}Cu_xSn за різних температур (*a*) та концентрацій (б)

Fig. 5 Variation in the thermoelectric power $\alpha(x)$ of TiNi_{1-x}Cu_xSn at various temperatures (*a*) and concentrations (*b*)

Значення коефіцієнта термоелектричної потужності $Z^*(x)$ твердого розчину TiNi_{1-x}Cu_xSnпри 380 K Variation in the thermoelectric power factor $Z^*(x)$ TiNi_{1-x}Cu_xSn solid solutions at 380 K

	1	() I-A A	
x	<i>р</i> , мкОм∙м	<i>а</i> , мкВ/К	Z*, мкВт/К ² см
0	42,65	-285,18	19,07
0,005	20,41	-219,62	23,63
0,01	10,52	-190,61	34,54
0,03	5,31	-120.05	27,14
0,05	4,58	-99,57	21,65
0,10	2,98	-75,33	19,04

Подібні результати отримано під час легування напівпровідника *n*-TiNiSn шляхом заміщення атомів Ni атомами ванадію, що супроводжується як упорядкуванням структури вихідної сполуки, так і генеруванням у твердому розчині TiNi_{1-x}V_xSncтpyктypних дефектів донорної природи, які приводять до збільшення коефіцієнта термоелектричної потужності порівняно з нелегованою сполукою [6].

Отже, внаслідок комплексного дослідження електрокінетичних, магнітних характеристик та розрахунку електронної структури твердого розчину TiNi_{1-x}Cu_xSn визначено механізми генерування структурних дефектів донорної природи, які визначають механізми електропровідності матеріалу, а досліджений напівпровідниковий твердий розчин є перспективним термоелектричним матеріалом.

- 1. *Romaka V. V., Romaka L. P., Krajovskii V. Ya., Stadnyk Yu. V.* Stannides of earth and transition metals. Lviv, Lvivska politeknika, 2015. 224p. (in Ukrainian).
- 2. *Romaka. V. A., Romaka. V. V., Stadnyk Yu. V.* Intermetallicsemiconductors: properties and application. Lviv, Lvivska politeknika, 2011. 488 p. (in Ukrainian).
- Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Version 4) // J. Appl. Cryst. 2014. Vol. 47. P. 803–805. DOI: doi.org/10.1107/S1600576714001058
- 4. Schruter M., Ebert H., Akai H., Entel P., Hoffmann E., Reddy G. First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys // Phys. Rev. B. Vol. 52. 1995. P. 188–209.
- 5. *Moruzzi V. L., Janak J. F., Williams A.R.* Calculated electronic properties of metals. NY: PergamonPress, 1978. 348 p.
- 6. *Stadnyk Yu. V., Romaka L. P., Horyn' A. M., Romaka V. V.* Thermoelectric power factor of *n*-TiNiSn doped by vanadium impurity // Journal of Thermoelectricity. 2010. No. 1, P. 30–38.

INVESTIGATION OF ELECTROKINETIC, MAGNETIC AND ENERGY STATE CHARACTERISTICS OF TiNi_{1-x}Cu_xSn SEMICONDUCTIVE SOLID SOLUTION

Yu. Stadnyk¹*, L. Romaka¹, V. V. Romaka², V. Krajovskii², A. Horyn¹

¹Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail:stadnykyu@gmail.com;

²National University "Lviv Polytechnic", S. Bandera Str., 12, 79013 Lviv, Ukraine

Electrokinetic and magnetic properties, electronic structure of the TiNi_{1-x}Cu_xSn semiconductive solid solution (half-Heusler phase, MgAgAs structure type) have been investigated in the concentration region x = 0.005-0.1. The alloys have been prepared by arc melting of the stoichiometric amounts of constituent elements and annealing for homogenization at 1073 K for 720 hours. The

measurements of static magnetic susceptibility (χ) by Faraday balance technique at 300 K and in the magnetic fields up to 0.1 T indicated that the studied TiNi_{1-x}Cu_xSn samples were Pauli paramagnets. The temperature and concentration dependences of electrical resistivity ρ and thermopower coefficient α were measured in the temperature interval *T*=80–400 K and concentration range x = 0.005-0.1. It has been established that the appearance of an extremum in the variation of unit cell parameter *a* (*x*) values in the concentration range x = 0-0.01 was caused by ordering of the TiNi_{1-x}Cu_xSn crystal structure. The mechanism of structural defects generation with the donor nature upon substitution of Ni atoms by Cu ones has been predicted by calculations of the electronic structure of TiNi_{1-x}Cu_xSn solid solution and confirmed by experimental studies.

The studies conducted showed that all TiNi_{1-x}Cu_xSn samples were Pauli paramagnets, in which the magnetic susceptibility was determined solely by electron gas and was proportional to the density of states at the Fermi level. The doping *n*-TiNiSn semiconductor with the smallest concentration of Cudonor impurity, x = 0.005 leads to the metallization of conductivity in the temperature range T = 80-360 K due to the intersection of Fermi and percolation 1 levels of conduction band. At temperatures T > 360 K, electrical resistivity levels decrease with increasing temperature: the inverse transition of the conductivity of metal-dielectric is realized and the Fermi level drifts from the conduction band to the band gap. The sign of thermopower coefficient of TiNi_{0.995}Cu_{0.005}Sn remained negative at all temperatures. This indicates that the dielectric-metal and metal-dielectric conduction transitions are related to the intersection of the bottom of conduction band by the Fermi level.

According to the obtained results, the doping of *n*-TiNiSn initial compound by Cu donor impurity leads to increase in the thermoelectric power factor, and the investigated $TiNi_{1-x}Cu_xSn$ semiconductive solid solution is a promising thermoelectric material.

*Keywords:*electrical resistivity, thermopower, electronic structure, magnetic susceptibility, Fermi level.

Стаття надійшла до редколегії 23.10.2017 Прийнята до друку 11.04.2018