ISSN 2078-5615. Вісник Львівського університету. Серія хімічна. 2018. Випуск 59. Ч. 1. С. 46–52 Visnyk of the Lviv University. Series Chemistry. 2018. Issue 59. Pt. 1. P. 46–52

УДК 546.22/.24-165

ФАЗОВІ РІВНОВАГИ В СИСТЕМІ ТІ₂Se-In₂Se₃-GeSe₂ ПРИ 520 К

О. Цісар¹*, Л. Піскач¹, В. Бабіжецький², В. Левицький^{2*}, Б. Котур², Л. Марушко¹, І.Олексеюк¹, О. Парасюк¹

¹ Східноєвропейський національний університет імені Лесі Українки, пр. Волі, 13, 43025 Луцьк, Україна e-mail: oxana.tsisar@gmail.com;

² Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна e-mail: v.levyckyy@gmail.com

За результатами рентгенофазового аналізу побудовано ізотермічний переріз діаграми стану квазі-потрійної системи $Tl_2Se_{-}In_2Se_{3}$ -GeSe₂ при 520 К. Підтверджено існування п'яти тернарних та двох тетрарних сполук. Нових сполук не знайдено. Система характеризується утворенням твердих розчинів незначної протяжності на основі вихідних бінарних сполук. Найбільшу область гомогенності має твердий розчин на основі тернарної сполуки TlInSe₂ (до 25 мол. % GeSe₂) вздовж квазібінарного перерізу TlInSe₂-GeSe₂. Протяжність решти твердих розчинів не перевищує 1 мол. % при 520 К.

Ключові слова: квазіпотрійна система, ізотермічний переріз, фазові рівноваги, кристалічна структура.

DOI: https://doi.org/10.30970/vch.5901.046

Системи A^I–C^{III}–D^{IV}–X (A^I – Cu, Ag; C^{III} – Ga, In; D^{IV} – Si, Ge, Sn; X – S, Se) характеризуються утворенням тетрарних сполук, які мають широкий спектр складів, структурних варіантів і можливих застосувань [1]. Завдяки ацентросиметричності кристалічної структури сполуки є перспективними матеріалами нелінійної оптики [2]. Крім того, для цих систем характерне утворення твердих розчинів на основі A^IC^{III}X₂, механізм формування яких полягає у поступовому заміщенні атомів елементів III групи на атоми елементів IV групи у їх кристалографічних позиціях, натомість, кристалографічні позиції атомів I групи стають дефектними [3]. Для цих систем найбільш типовими є сполуки складів $A_2^I C^{III}_2 D^{IV} X_6$ і $A^I C^{III} D^{IV} X_4$, наприклад, $Ag_2In_2Si(Ge)S_6$ (IIГ *Cc*) [2] та AgGaGeS₄ (IIГ *Fdd2*) [4]. У системі AgGaSe₂–GeSe₂ також утворюється сполука складу AgGaGe₃Se₈, яка кристалізується у просторовій групі *Fdd2* [5].

Останніми роками з'явилося чимало публікацій [6–12] про тетрарні сполуки, де А^I представлений елементами головної підгрупи (Li, Na, K, Rb, Cs).

Для систем Li–C^{III}–D^{IV}–X відоме утворення сполук складів Li₂C^{III}₂D^{IV}X₆. Зокрема, сульфід Li₂Ga₂GeS₆ (ПГ *Fdd*2) вирізняється перспективними нелінійно оптичними властивостями [6]. При заміні Ga на In утворюються Li₂In₂Si(Ge)S₆(Se₆) з

[©] Цісар О., Піскач Л., Бабіжецький В. та ін., 2018

моноклінною структурою (ПГ *Cc*) [7]. Також знайдено сполуку складу LiGaGe₂Se₆ із нецентросиметричною ромбічною структурою (ПГ *Fdd*2) [8]. Крім того, у цих системах утворюються сполуки складів LiC^{III}D^{IV}X₄, наприклад, LiInSnS₄ (ПГ *Fd*-3*m*) [9].

У випадку Na- та K-вмісних систем відоме утворення сполуки KInGeS₄ (ПГ *Pa*-3), KInSnS₄ (диморфна, ПГ *P6/m* і ПГ *R*-3m), NaInSnS₄ (ПГ *P6/m*), які є широкозонними напівпровідниками. Шаруваті сполуки NaInSnS₄ і KInSnS₄ легко піддаються іонообмінним реакціям за кімнатної температури і, отже, мають потенційні можливості застосування у технологіях для видалення ядерних відходів [9]. У праці [10] йдеться про утворення сполук Na₂In₂Si(Ge)S₆(Se₆) з моноклінною структурою (просторова група *Cc*). Автори [11] подають результати дослідження нецентросиметричних тетрарних сульфідів натрію. Зокрема, сполука Na₂Ga₂GeS₆ є ізоструктурною до Li₂Ga₂GeS₆, a Na₂In₂SiS₆ і Na₂In₂GeS₆ – ізоструктурні до Li₂In₂GeS₆. Сполука Na₂Ga₂SnS₆ має два структурні варіанти (ПГ *Fdd*2 і ПГ *Cc*). Сполуки Na₂Ga₂GeS₆, Na₂Ga₂SnS₆ і Na₂In₂GeS₆ є перспективними нелінійно-оптичними матеріалами, зокрема, проявляється здатність до генерації другої гармоніки.

У системах, де I – Rb і Cs, утворюються сполуки з кубічною сингонією: RbInGeS₄, RbInSnS₄, CsInSnS₄ (ПГ *Pa*-3) і CsInGeS₄, яка є диморфною (ПГ *Pa*-3 і ПГ *Pnma*) [9]. В селенідній системі з Cs йдеться про утворення двох тетрарних сполук складів CsInGeSe₄ (ПГ *Pnma*) та Cs₄In₈GeSe₁₆ (ПГ *C*2/*c*) [12].

Натомість, у випадку спорідненого до лужних металів Tl відоме лише утворення сполук 1-1-1-4 (наприклад, TlInGeS₄ (диморфна, ПГ *Pa*-3 і ПГ *Pnma*)) [9]. Під час перевірки можливості утворення сполук іншого складу в Tl-вмісних системах ми вперше виявили нову тетрарну сполуку TlInGe₂Se₆ (ПГ *R*3) [13], яка утворюється в квазіпотрійній системі Tl₂Se–In₂Se₃–GeSe₂. Згодом знайдено ще дві сполуки TlInGe₂Se₆, TlGaSn₂Se₆, що кристалізуються в структурному типі TlInGe₂Se₆ [14, 15]. Крім того, в системі TlInS₂–GeS₂ виявлено сполуку складу TlInGe₃S₈, яка кристалізується у просторовій групі *P*2₁/*a* [16].

Працю присвячено дослідженню фазових рівноваг в квазіпотрійній системі $Tl_2Se_{-}In_2Se_{3}$ -GeSe₂, що є одним з етапів систематичного дослідження взаємодії та кристалічної структури сполук у системах Tl_2X -Ga(In)₂X₃-Si(Ge, Sn)X₂, де X – S, Se.

Бінарним сполукам Tl₂Se, GeSe₂, In₂Se₃ притаманне конгруентне плавлення, вони можуть бути вихідними компонентами досліджуваної квазіпотрійної системи. Відомості про кристалохімічні та деякі фізичні властивості бінарних сполук наведено в табл. 1.

Таблиця 1

Кристалографічні параметри, температури плавлення ($T_{T\Pi}$) та фазових перетворень ($T_{\Phi\Pi}$) бінарних сполук системи $Il_2Se_-In_2Se_3-GeSe_2$

Table 1

Crystallographic parameters, temperatures of melting points and phase transformations of binary compounds of the Tl₂Se–In₂Se₃–GeSe₂ system

Споти	$T_{\Pi\Pi}/T_{\Phi\Pi}, K$	ПГ, сингонія	Параметри елементарної комірки, нм			Пim
Сполука			а	b	С	JIII.
Tl ₂ Se	663	P4/ncc	0,852	_	1,268	[17]
GeSe ₂	1013	$P2_{1}/c$	0,7016	1,6796	1,1831	۲ 10 ٦
			$\beta = 90,65^{\circ}$			[10]
α -In ₂ Se ₃	473	$P6_3/mmc$	0,4025	_	1,9235	[19]
β -In ₂ Se ₃	923	<i>R</i> -3 <i>m</i>	0,405	_	2,941	[19]
γ -In ₂ Se ₃	1023	$P6_1$	0,71286	_	1,9381	[20]
δ -In ₂ Se ₃	1173	гексагональна	0,4014	_	0,964	[19]

Квазіпотрійну систему Tl₂Se-In₂Se₃-GeSe₂ утворюють квазіподвійні системи Tl₂Se-In₂Se₃, Tl₂Se-GeSe₂ та In₂Se₃-GeSe₂. В системі Tl₂Se-In₂Se₃ у співвідношенні компонентів 1:1 формується сполука TlInSe₂, яка плавиться конгруентно при 1 023 К. У співвідношенні компонентів 1:5 утворюється сполука складу TlIn₅Se₈ з інконгруентним характером плавлення при 1 029 К. В системі наявні два евтектичні нонваріантні перетворення з координатами: 10,5 мол. % In₂Se₃, 614 K; 73,5 мол. % In₂Se₃, 908,7 К [21]. TlInSe₂ належить до напівпровідникових сполук з яскраво вираженою шарувато-ланцюговою структурою. Ця сполука характеризується вираженою анізотропією фізичних властивостей, зумовленою тим, що носії заряду в ній можуть вільно рухатися всередині шарів (ланцюгів), а між шарами (ланцюгами) їх рух обмежений через ван-дер-ваальсівську взаємодію та мале перекриття хвильових функцій сусідніх шарів (ланцюгів). Для TlInSe₂ вивчено електричні, фотоелектричні властивості, які є ефективними для використання сполуки в дозиметрії рентгенівського діапазону [22, 23]. В системі Tl₂Se-GeSe₂ утворюються три тернарні фази, які відрізняються характером плавлення: Tl₄GeSe₄ і Tl₂GeSe₃ плавляться конгруентно при 661 K i 706 K, відповідно, а $Tl_2Ge_2Se_5 - iнконгруентно$ при 778 К, наявні два евтектичні процеси, які відповідають складам 20 і 35 мол. % GeSe₂ з температурами плавлення 610 і 624 К, відповідно [24]. Система GeSe₂-In₂Se₃ – евтектичного типу (77 мол. % GeSe₂, 883 K) з утворенням β-, γ- і δ-твердих розчинів на основі поліморфних модифікацій In₂Se₃. Максимальну протяжність має твердий розчин на основі δ-In₂Se₃ (до 20 мол. % GeSe₂) [25]. Згідно з [26], протяжність твердого розчину на основі β-In₂Se₃ становить 5 мол. % GeSe₂. Відомості про кристалохімічні характеристики тернарних сполук подано у табл. 2.

У квазіподвійній системі TIInSe₂–GeSe₂ існують дві тетрарні сполуки з вмістом 50 та 66,7 мол. % GeSe₂. Сполука TIInGe₂Se₆ конгруентно плавиться при 910 К. Друга сполука, TIInGeSe₄, утворюється за перитектичною реакцією L + TIInGe₂Se₆ \leftrightarrow TIInGeSe₄ при 876 К [29]. Сполука TIInGe₂Se₆ кристалізується у власному структурному типі, у тригональній сингонії, просторовій групі *R*3 з параметрами елементарної комірки a = 1,01798(2) нм, c = 0.92872(3) нм [13].

Таблиця 2

Кристалографічні параметри тернарних сполук системи Tl₂Se–In₂Se₃–GeSe₂ Table 2

Сполука	ПГ	Параметри елементарної комірки, нм			
		а	b	С	JIII.
TlInSe ₂	I4/mcm	0,8075	_	0,6847	[27]
TlIn ₅ Se ₈	<i>C</i> 2/ <i>m</i>	1,9990	0,39872 $\beta = 101.49^{\circ}$	0,9618	[28]
Tl ₂ Ge ₂ Se ₅	C2/c	1,5602	1,5549 $\beta = 107,10^{\circ}$	0,9052	[29]
Tl ₂ GeSe ₃	<i>P</i> -1	$0,6925 \qquad 0,6934 \qquad 0,8771 \\ \alpha = 90,55^{\circ}, \beta = 111,42^{\circ}, \gamma = 114,45^{\circ}$			
Tl ₄ GeSe ₄	<i>C</i> 2/ <i>c</i>	1,16700	0,73170 $\beta = 106,54^{\circ}$	2,56030	[29]

Crystallographic parameters of ternary compounds of the Tl₂Se-In₂Se₃-GeSe₂ system

48

Для дослідження фазових рівноваг у системі Tl₂Se–In₂Se₃-GeSe₂ синтезовано 52 зразки з високочистих простих речовин: талію, германію, індію та селену (вміст основного компонента більший, ніж 99,9 мас. %). Зразки виготовляли їх сплавлянням у вакуумованих кварцових ампулах. Синтез проводили в печі шахтного типу. Ампули нагрівали до температури 950 К зі швидкістю 30 К/год. За максимальної температури витримка становила 5 год. Гомогенізаційний відпал зразків, які використовували для побудови ізотермічного перерізу системи Tl₂Se–In₂Se₃-GeSe₂, проводили при 520 К протягом 240 год. Після відпалу ампули зі зразками загартовували до кімнатної температури на повітрі. Дослідження одержаних зразків проводили методом порошкової рентгенівської дифракції. Дифрактограми зразків отримували на дифрактометрі ДРОН 4-13 з використанням Си*К*α-випромінювання, реєстрацію проводили у межах $10^{\circ} \le 2\theta \le 80^{\circ}$ з кроком лічильника 0,05° та часом збору інформації 5 с у точці.

За результатами рентгенофазового аналізу сплавів побудовано ізотермічний переріз діаграми стану квазіпотрійної системи Tl₂Se₋In₂Se₃-GeSe₂ при 520 K (рис. 1).

Рис. 1. Ізотермічний переріз діаграми стану системи Tl₂Se–In₂Se₃–GeSe₂ при 520 K Fig. 1. Isothermal section of the Tl₂Se–In₂Se₃–GeSe₂ phase diagram at 520 K

В обмежуючих бінарних системах $Tl_2Se-In_2Se_3$ та $Tl_2Se-GeSe_2$ за температури відпалу 520 К підтверджено існування тернарних сполук: TlInSe₂, TlIn₅Se₈, Tl₄GeSe₄, Tl₂GeSe₃ і Tl₂Ge₂Se₅; в системі In₂Se₃-GeSe₂ сполук не виявлено, що узгоджується з літературними даними. На перерізі TlInSe₂-GeSe₂ підтверджено існування тетрарних сполук TlInGeSe₄ і TlInGe₂Se₆.

Визначено існування 10 одно-, 19 дво- та 10 трифазних полів. Ізотермічний переріз характеризується незначною розчинністю на основі бінарних (Tl₂Se, GeSe₂, In₂Se₃), тернарних (Tl₄GeSe₄, Tl₂GeSe₃, Tl₂Ge₂Se₅, TlIn₅Se₈), та тетрарних (TlInGeSe₄ і TlInGe₂Se₆) сполук. Область гомогенності твердого розчину на основі сполуки TlInSe₂ згідно з даними [29] має найбільшу протяжність (до 25 мол. % GeSe₂) з квазібінарного перерізу TlInSe₂–GeSe₂.

У праці досліджено взаємодію компонентів у квазіпотрійній системі Tl₂Se–In₂Se₃–GeSe₂ при 520 К. Побудовано ізотермічний переріз цієї системи та підтверджено існування п'яти тернарних та двох тетрарних сполук. Подальші дослідження стосуватимуться аналізу взаємодії компонентів у квазіпотрійних системах Tl₂X–Ga(In)₂X₃–Si(Ge, Sn)X₂, де X – S, Se, і виявлення закономірностей у переходах Si \rightarrow Ge \rightarrow Sn ta S \rightarrow Se.

- 1. *Olekseyuk I., Gorgut G.* The Ag₂S–Ga₂S₃–GeS₂ system // X Sci.-tech. conf. "Complex oxides, chalcogenides and halcogenides for functional diagnostics". Coll. Abstr. Uzhhorod (Ukraine), 2000. P. 71 (in Ukrainian).
- Sachanyuk V., Gorgut G., Atuchin V. et al. The Ag₂S–In₂S₃–Si(Ge)S₂ systems and crystal structure of quaternary sulfides Ag₂In₂Si(Ge)S₆ // J. Alloys Compd. 2008. Vol. 452. P. 348–358. DOI: 10.1016/j.jallcom.2006.11.043
- Olekseyuk I., Gulyak A., Sysa L., et al. Crystal chemical properties and preparation of single crystals of AgGaSe₂–GeSe₂ γ-solid solutions // J. Alloys Compd. 1996. Vol. 241. P. 187–190. DOI: 10.1016/0925-8388(96)02295-5
- Pobedimskaya E. A., Alimova L. L., Belov N. V., Badikov V. V. The crystal structure of the Ag-germanogallium sulfide and GeS₂ // Sov. Phys. Doklady. 1981. Vol. 26. P. 259–263 (Transl. from Dokl. Akad. Nauk SSSR. 1981. Vol. 257(3). P. 611–614).
- 5. *Parasyuk O., Fedorchuk A., Gorgut G.* et al. Crystal growth, electron structure and photo induced optical changes in novel Ag_xGa_xGe_{1-x}Se₂ (*x* = 0.333, 0.250, 0.200, 0.167) crystals // Opt. Mater. 2012. Vol. 35. P. 65–73. DOI: 10.1016/j.optmat.2012.07.002
- Kim Y., Seo I.-S., Martin S. et al. Characterization of new infrared nonlinear optical material with high laser damage threshold, Li₂Ga₂GeS₆ // Chem. Mater. 2008. Vol. 20. P. 6048–6052. DOI:10.1021/cm8007304
- Yin W., Feng K., Hao W. et al. Synthesis, structure, and properties of Li₂In₂MQ₆ (M = Si, Ge; Q = S, Se): a new series of IR nonlinear optical materials // Inorg. Chem. 2012. Vol. 51. P. 5839–5843. DOI: 10.1021/ic300373z
- Lavrentyev A., Gabrelian B., Vu V., Ananchenko L., et al. Electronic structure and optical properties of noncentrosymmetric LiGaGe₂Se₆, a promising nonlinear optical material // Physica B. 2016. Vol. 501. P. 74–83. DOI: 10.1016/j.physb.2016.08.021
- Yohannan J. P., Vidyasagar K. Syntheses, structural variants and characterization of AInM'S₄ (A = alkali metals, Tl; M' = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS₄ and KInSnS₄ compounds // J. Solid State. Chem. 2016. Vol. 238. P. 291–302. DOI: 10.1016/j.jssc.2016.03.045

- Li S. F., Liu B. W., Zhang M. J. et al. Syntheses, structures, and nonlinear optical properties of two sulfides Na₂In₂MS₆ (M = Si, Ge) // Inorg. Chem. 2016. Vol. 55. P. 1480–1485. DOI: 10.1021/acs.inorgchem.5b02211
- Yohannan J. P., Vidyasagar K. Syntheses and structural characterization of noncentrosymmetric Na₂M₂M'S₆ (M, M' = Ga, In, Si, Ge, Sn, Zn, Cd) sulfides // J. Solid State. Chem. 2016. Vol. 238. P. 147–155. DOI: 10.1016/j.jssc.2016.03.026
- Ward M. D., Pozzi E. A., Van Duyne R. P., Ibers J. A. Syntheses, structures, and optical properties of the indium/germanium selenides Cs₄In₈GeSe₁₆, CsInSe₂, and CsInGeSe₄ // J. Solid State. Chem. 2014. Vol. 212. P. 191–196. DOI: 10.1016/j.jssc.2014.01.023
- 13. *Khyzhun O., Parasyuk O., Tsisar O.* et al. New quaternary thallium indium germanium selenide TlInGe₂Se₆: crystal and electronic structure // J. Solid State. Chem. 2017. Vol. 254. P. 103–108. DOI: 10.1016/j.jssc.2017.07.014
- Khyzhun O., Babizhetskyy V., Kityk I. et al. Thallium indium germanium sulphide (TlInGe₂S₆) as efficient material for nonlinear optical application // J. Alloys Compd. 2018. Vol. 735. P. 1694–1702. DOI: 10.1016/j.jallcom.2017.11.257
- Parasyuk O., Babizhetskyy V., Khyzhun O. et al. Novel quaternary TlGaSn₂Se₆ single crystal as promising material for laser operated infrared nonlinear optical modulators // Crystals. 2017. Vol. 7. P. 341(1–16). DOI: 10.3390/cryst7110341
- Khyzhun O., Fedorchuk A., Kityk I., et al. Electronic structure and laser induced piezoelectricity of a new quaternary compound TlInGe₃S₈ // Mater. Chem. Phys. 2017. Vol. 204. P. 336–344. DOI: 10.1016/j.matchemphys.2017.10.054
- 17. *Stasova M. M.;Vainshtein B. K.* Determination of the structure of Tl₂Se by the electron diffraction method // Sov. Phys. Crystallogr. 1958. Vol. 3. P. 140–146. (Transl. from Kristallographiya. 1950. Vol. 3(2). P. 141–147).
- Dittmar G., Schafer H. Die Kristallstruktur von Germanium Diselenid // Acta Cryst. B. 1976. Vol. 32. P. 2726–2728. DOI: 10.1107/S0567740876008704
- Popovic S., Tonejc A., Grzeta-Plencovic B. et al. Revised and new crystal data for indium selenides // J. Appl. Crystallogr. 1979. Vol. 12. P. 416–420. DOI: 10.1107/S0021889879012863
- Pfitzner A., Lutz H. Redetermination of the crystal structure of gamma-In₂Se₃ by twin crystal X-Ray method // J. Solid State Chem. 1996. Vol. 124. P. 305–308. DOI: 10.1006/jssc.1996.0241
- 21. *Mucha I.* Phase diagram for the quasi-binary thallium(I) selenide–indium(III) selenide system // Thermochim. Acta. 2012. Vol. 550. P. 1–4. DOI: 10.1016/j.tca.2012.09.028
- Badr A., Ashraf I. Spectral photoelectronic features of TlInSe₂ single crystals // Phys. Scripta. 2012. Vol. 86. P. 035704. DOI: 10.1088/0031-8949/86/03/035704
- Bakhyshov A., Agaeva M., Darvish A. Electrical and optical properties of TlInSe₂ single crystals // Phys. Status Sol. (b). 1979. Vol. 91. P. 31–34. DOI: 10.1002/pssb.2220910152
- Glukh O., Sabov M., Barchii I., et al. Formation of ternary compounds in the Tl₂Se–GeSe₂ system // Inorg. Mater. 2009. Vol. 45. P. 1092–1096. DOI: 10.1134/S0020168509100045
- 25. *Rustamov P. G., Babaeva B. K.* Study of interaction in the In₂Se₃–GeSe₂ and In₂Se₃–Ge systems // Zh. Neorg. Khim. 1975. Vol. 20. P. 2456–2458 (in Russian).
- Krykhovets O. V. Phase equilibria and crystal chemical characteristics of the solid solutions and intermediate phases in the systems Ag₂Se– B^{III}₂Se₃–C^{IV}Se₂ (B^{III} Ga, In; C^{IV} Ge, Sn) // Abstract of Candidate's Thesis (Chemical Sciences), Lviv, 1999. 20 p. (in Ukrainian).

- Müller D., Eulenberger G., Hahn H. Über ternaere thalliumchalkogenide mit thalliumselenidstruktur // Z. Anorg. Allg. Chem. 1973. Vol. 398. P. 207–220. DOI: 10.1002/zaac.19733980215
- Walther R., Deiseroth H. Crystal structure of thallium pentaindium octaselenide, TlIn₅Se₈ // Z. Kristallogr. NCS. 1997. Vol. 212. P. 293–293. DOI: 10.1524/ncrs.1997.212.jg.293
- 29. *Mozolyuk M. Yu.* Phase equilibria and properties of phases in the systems Tl₂X–B^{II}X–D^{IV}X₂ i TlC^{III}X₂–D^{IV}X₂ (B^{II}–Hg, Pb; C^{III}–Ga, In; D^{IV}–Si, Ge, Sn; X–S, Se) // Abstract of Candidate's Thesis (Chemical Sciences), Uzhhorod, 2013. 20 p. (in Ukrainian).

PHASE EQUILIBRIA IN Tl₂Se-In₂Se₃-GeSe₂ SYSTEM AT 520 K

O. Tsisar^{1*}, L. Piskach¹, V. Babizhetskyy², V. Levytskyy^{2*}, B. Kotur², L. Marushko¹, I. Olekseyuk¹, O. Parasyuk¹

Lesya Ukrainka Eastern European National University, Voli Avenue, 13, 43025 Lutsk, Ukraine e-mail: oxana.tsisar@gmail.com;

Ivan Franko National University of Lviv, Kyryla i Mefodiya Str., 6, 79005 Lviv, Ukraine e-mail: v.levyckyy@gmail.com

Isothermal section of the quasi-ternary $Tl_2Se-In_2Se_3$ -GeSe₂ system at 520 K has been studied by means of X-ray phase analysis. 52 samples have been prepared from high-purity elements: thallium, germanium, indium and selenium, which were co-melted in evacuated quartz-glass ampoules. The synthesis was performed in a shaft-type furnace. The ampoules were heated up to 950 K at a rate of 30 K/h, with 5 h exposure at the maximum temperature. Homogenization annealing of samples was conducted at 520 K for 240 h. After annealing, the ampoules with samples were quenched down to room temperature in air. X-ray diffraction patterns of the samples were recorded with DRON 4-13 diffractometer, $CuK\alpha$ -radiation, 20 range 10–80°, scan step 0.05°, exposure time 5 s in each point.

Five ternary compounds – TlInSe₂, TlIn₅Se₈, Tl₄GeSe₄, Tl₂GeSe₃, and Tl₂Ge₂Se₅ – have been confirmed to occur in the limiting quasi-binary systems Tl₂Se–In₂Se₃ and Tl₂Se–GeSe₂ at 520 K. No compounds have been found in In₂Se₃–GeSe₂system, which is consistent with the literature data. On the TlInSe₂–GeSe₂ cross-section, the occurrence of two quaternary compounds TlInGeSe₄ and TlInGe₂Se₆has been confirmed. No new phases were formed at the annealing temperature being stable to room temperature. Positions of 10 single-phase, 19 two-phase and 10 three-phase fields have been identified. The isothermal section is characterized by low solid solubility based on binary (Tl₂Se, GeSe₂, In₂Se₃), ternary and quaternary compounds. The homogeneity region of solid solution TlIn_{1-x}Ge_xSe₂ has the largest extent (up to 25 mol. % GeSe₂) along the quasi-binary section TlInSe₂–GeSe₂, which is consistent with the results of earlier studies.

Keywords: quasi-ternary system, isothermal section, phase equilibria, crystal structure.

Стаття надійшла до редколегії 31.10.2017 Прийнята до друку 11.04.2018