
V. Makarenko et al. Feedforward Semi-Active Model-Based Control of a Plate Carrying Concentrated Masses  79 
 
 

Copyright © 2013 National Aviation University 
http://www.nau.edu.ua 

MODERN  AVIATION  AND  SPACE  TECHNOLOGY 

UDC 681.516.2:534.014.4(045) 
Vitalii Makarenko1  

Werner Hufenbach2 

Niels Modler3 

Martin Dannemann4 

Vadim Tokarev5 

FEEDFORWARD SEMI-ACTIVE MODEL-BASED CONTROL OF A PLATE CARRYING 
CONCENTRATED MASSES 

1,5National Aviation University  
Kosmonavta Komarova avenue 1, 03680, Kyiv, Ukraine 

2,3,4Dresden Technical University  
Holbeinstr 3, 01307, Dresden, Germany  

E-mails: 1vitmakarenko@rambler.ru; 2ilk@ilk.mw.tu-dresden.de; 3niels.modler@ilk.mw.tu-dresden.de; 
4martin.dannemann@ilk.mw.tu-dresden.de; 5tokarev@nau.edu.ua 

Abstract. The multiobjective task of optimal control of vibration response of an elastic plate is considered. An 
application of a genetic algorithm for determination of the optimum compensating force frequency dependence and 
parameters of concentrated masses for different boundary conditions is described. The principle of virtual work and 
Ritz approach are employed for investigation of dynamic behaviour of mass-loaded plates, which are subjected to any 
number of forces. The optimisation problem is formulated as a constrained task. Optimization provided the reduction of 
both total acceleration level and compensating force. Numerical results show the appropriateness of the model for 
optimization of concentrated masses values and their location on a plate. Interpolation of optimal compensating force 
parameters frequency dependence is used for the design of feedforward control system. 
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1. Introduction 

Plates are often used in practical engineering work, 
e.g. aircraft, spacecraft and ships. In some cases it is 
necessary to mount devices on elements of a 
construction under condition of the minimal 
acoustical and vibrating loading.  

To provide effective work of these devices it is 
necessary to prevent resonance of the structural 
elements. One of the methods, which can be used in 
order to solve the problem of acoustical and 
vibrating loading reduction for engineering 
construction, is based on applying optimum 
distribution of the concentrated masses. Passive 
methods possess a large number of advantages 
compared to active structural acoustic or vibration 
control.  

The use of passive methods is usually less 
susceptible to errors, cheaper and requires no 
additional power supply.  

Chen and Handelman [1956] carried out a study 
on the determination of the fundamental natural 
frequency of a rectangular plate with a rigid mass 
under certain boundary conditions using the 
Rayleigh–Ritz method.  

Stokey and Zorowski [1963] developed a general 
method for determining approximately the natural 
frequencies of a rectangular plate with arbitrarily 
located masses.  

Laura et al. [1987] calculated the fundamental 
frequency of a plate carrying several concentrated 
masses using the optimized Rayleigh method. The 
effect of attached masses on free vibrations of 
rectangular plates is studied in paper [Amabili et al. 
2006] by considering rotary inertia of concentrated 
masses and geometric imperfections of the plate.  

The works written by Low and Dubey [Low, 
Dubey 1997; Chai, Low 1993; Low 1997; Low 
2003] summarise the existence of three different 
methods for eigenfrequency determination.  

The first is based on Rayleigh quotient [Chai, 
Low 1993; Low 1997; Low 2003]. It is used only for 
an approximation of the fundamental frequency and 
requires the shape function to be known.  

The investigation done by Ciancio et al. [2007] is 
based on the usage of Ritz variational method. This 
method is employed by the authors in the current 
study too. A number of other researchers have 
continued the trend of seeking harmonic solutions to 
the plate-mass problem.  
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For the more complicated boundary conditions 
and structures, carrying concentrated masses, the 
finite element method is utilised in order to calculate 
mode shapes and eigenfrequencies.  

Employing this method, Ranjan [2006] made a 
parametric study of mass value and location 
influence on the fundamental natural frequency of 
circular plate with clamped (CC) and simply 
supported (SS) boundary conditions. In this paper 
two types of classical boundary conditions are 
investigated: SS and CC condition.  

The dynamic behaviour of the rectangular plate 
excited by a harmonic force at a certain point is 
studied.  

At the decision of an optimizing problem 
additional restriction was used: the total weight of 
plates with concentrated masses and plate without 
masses remained a constant (mass-loaded plate had a 
smaller thickness). 

Unlike filtered signal least mean squares 
algorithm, which is usually used for feedforward 
control [Preumont 2003], proposed semi-active 
control methods gives possibility to control vibration 
response of flexible structure over its entire surface. 

The article is structured as follows. The task of 
optimal feedforward control is formulated, after that 
presentation of the governing equations for flexible 
structure is given.  

2. Problem statement 

In the case, when the frequency of oscillations varies 
with the time t, it is reasonable to apply control 
system (Fig. 1) to the flexible structure for proper 
adjustment of compensating force value FC and 
phase φC.  
 

 
Fig. 1. Feedforward control system 

Other parameters, which includes mass values mm 
and their location on flexible structure xm and ym, 
cannot be varied during exploitation of flexible 
structure. These parameters have to be determined 
prior to the application of control system to the 
flexible structure. If the location of exciting force is 
excluded from the set of feasible locations of 
additional masses and compensating force, then 
determination of optimum values for these 

parameters requires the application of optimization 
algorithm, which is able to find global optimum. 
Because in this case noise and vibration objective 
functions dependance on parameters mm, xm, ym, xc, 
yc possess several local minima. 

Multiobjective optimization task for semi-active 
method is formulated as follows:  
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where aLΣ  – r.m.s. acceleration level;  

cnOptF  – values of cnF  found from the 
optimization in first objective function. 

cnF  and cnϕ  are the value and phase of 
compensating force at mode n, which is 
characterized with the combination of nx and ny 
numbers, where nx is the number of halfwaves, 
which is contained in plate length а, ny is the number 
of halfwaves, which is contained in plate width b. 

Optimization is done with the following control 
parameters: ccmmm yxyxm ,,,,  and constrains:  

1) ,
M

m plate
m

m Mζ≤∑   

2) gapmgap xaxx −<< , gapcgap xaxx −<< ; 

3) gapmgap ybyy −<< , gapcgap ybyy −<< ; 

4) 0=olapS , 

where ζ=0.3; 

plateM  is mass of plate part, which oscillates;  

gapx  and gapy  are gaps from the plate 
boundaries;  

olapS  is area of attached to the plate objects' 
overlap.  

Evaluation of 2
na Σ in the first objective of eq. (1) 

includes optimization of the following expression 
with control parameters ,cn cnF ϕ : 

min 2 4

0 0

( ) *( )
a b

n n n na w w dxdyω ω ωΣ = ∫ ∫   (2) 

Optimization in eq. (2) is performed separately 
for every mode n. The value of transverse motion of 
flexible structure w in (2) can be estimated based on 
analytical model of flexible structure. 



V. Makarenko et al. Feedforward Semi-Active Model-Based Control of a Plate Carrying Concentrated Masses  81 
 

 

3. Simplified analytical modelling of plate 

Consider transverse motion of a plate with finite 
dimensions of its area a b h× ×  with concentrated 
masses mm  attached at the points ( , )m mx y  (Fig. 2).  
 

 
Fig. 2. Setup and geometry of the investigated plate 
 
External force ( )FF t  is located in the point 

( ),F Fx y . 
The mathematical model of plate oscillation can 

be constructed on the basis of a principle of virtual 
work [Chen, Handelman 1956]. The principle of 
virtual work for the considered model of plate can be 
written in the following form: 
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where ( , , )w x y t
ur

 is a vector of transverse 
displacement at plate oscillation, dots above w&&  

denote derivative with respect to time and indices 
xyw  denote the derivative with respect to plate 

coordinates x and y;  
mm  − the masses which are in points ( , )m mx y ;  

ρ  is density of plate material; 
,m mIρ  − density and moment of inertia of the  

m-th mass;  
sh Fk  is shaker stiffness; 

M and K are respectively the number of masses 
and forces.  

nr  − a vector normal to the plate; 
D − plate stiffness: 

)1(12 2

3

ν−
=

EhD ; 

E − complex Young’s modulus:  
E=E'·(1+i η); 
E' – Young’s modulus;  
ν – Poisson’s ratio;  
η – damping loss factor;  
The plate is loaded by a harmonic force  

( ) exp( )F F FF t F i tω ϕ= − + ,  

which has a phase Fϕ  and angular frequencyω . For 
harmonic oscillations of a plate the equation (3) 
takes a form: 

0=Φδ , (4) 
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In order to receive the solution of equation (4) 
Ritz method is used. In accordance with Ritz method 
the form of transverse motion of plates is expressed 
by means of functions, which ( )n xϕ  satisfy the 
geometrical boundary conditions.  

For example, displacement for plate oscillation 
can be presented in the form: 

{ }

( ) ( )n nx ny
n

w A X x Y y
∞

=∑ , (5) 

where { } ( , )x yn n n=  is combination of modal 
numbers, nA  are the unknown coefficients.  

For CC plate ( )nxX x  and ( )nyY y  are beam 
functions which satisfy boundary conditions of the 
CC beam: 

( ) cos cosh (sin sinh ),nx nxX x α α γ α α= − − −  

( ) cos cosh (sin sinh ),ny nyY y β β γ β β= − − −  

nx x
a

λα = ; 
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For SS plate ( )nxX x  and ( )nyY y  are beam 
functions which satisfy boundary conditions of the 
SS beam: 

( ) sin x
nx

nX x
a
π

= ; 

( ) sin .y
ny

n
Y y

b
π

= . 

Due to orthogonally of accepted beam functions, 
function Φ  (4) can be simplified. Orthogonal 
properties of used CC and SS beam functions can be 
found in [Berthelot 1999].  

Because nAδ  is finite and arbitrary quantity, the 
expression (4) can be executed only in the following 
case: 
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linear equations with quantity unknown variables An 
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where fnsBb  depends on boundary conditions: 
for CC plate: 
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for SS plate: 
4 4 4

4 4 2 2
3 34 4 2fnnB x y x y

b ab D n n n n
a b ab
π π π⎛ ⎞

= − + +⎜ ⎟
⎝ ⎠

. 

The system of equation (7) can be solved 
numerically after evaluation of all necessary 
coefficients.  

Solution is valid for any number of forces and 
masses. 

In order to find the eigenfrequencies the 
following generalized eigenvalue problem has to be 
solved 

VBVB ωλ=f ,  

where eigenfrequencies can be expressed in terms of 
eigenvalue λ as follows: λω −= . 

4. Comparison of the received solution to 
experimental results 

Reduction of acoustic radiation and vibration 
response of constructions due to the increase of 
mass, when the sizes of its active area are preserved, 
is obvious. In the case, when weight of construction 
remains unchanged, the efficiency of passive method 
of reduction of vibration response and acoustic 
radiation by the concentrated masses needs to be 
proved. 

Properties of the investigated CC plate are 
resulted in a Table 1.  

Table 1. Properties of the investigated plate 

Property Value Dim. 
Length, a 0.864 m 
Width, b 0.562 m 
Thickness, h 1.97·10

-3
 m 

Density, ρ 7970 kg/m
3
 

Mass, suspended on plate, 
Fm  31·10

-3
 kg 

Young’s modulus, E 171·10
9
 Pa 

Poisson coefficient, ν 0.3 — 
Material (DIN 17100) Steel 37   
Damping loss factor, η 0.01  — 

 

Two plates are used for research. In an 
experiment with the first plate, which has 1.97 mm 
thickness (Table 1), the impedance head Brüel and 
Kjær 8001 attached to the plate represents only one 
point mass. The second, slightly thinner plate is 
equipped with additional point masses to remain the 
same overall weight. 

Experimental researches of the second plate with 
a thickness of 1.47 mm is executed after the 
calculation of optimum parameters of additional 
mass by a genetic algorithm. On the basis of the 
known solution for w , objective function for a 
genetic algorithm is created:  

max

min

2

0 0

10 lg ( , ) *( , ) .
f a b

obj
f

L w x y w x y dxdydfωΣ = ∫ ∫ ∫  

(8) 
This function takes into account vibration speed 

over the whole active area of plate. When 
optimization was performed, the integration over   
the plate area was conducted with relative accuracy 
of  0.1%.  

Integration over the frequency was conducted 
with accuracy of 0.05%.  

This provides sufficient quantity points in order 
to take into account all modes of vibrations in the 
considered frequency range. In each of these points 
integrand is evaluated.  

Total maximal mass of the additional masses is 
limited by the difference of the masses of active 
areas between plates, which have thicknesses of 1.97 
and 1.47 mm.  

In such way we provide equality between mass of 
more thick plate and mass of thin plate with 
additional masses.  

With the purpose of measurements’ 
simplification by the laser scanning head of Polytec 
PSV-400 (LSV) the additional masses are attached 
from the side of plate, to which the modal exciter 
Brüel and Kjær 4809 is fastened. Thus, the top side 
of the plate remains flat, simplifying the optical 
measurement.  

Optimization was conducted for the five 
additional masses. For some masses the results of 
optimization have shown very small values of 
masses with no practical relevance (weight less than 
production accuracy).  

Thus, the amount of the masses was limited to 
three, and then to one. During optimization the 
stiffness of modal exciter is taken into account, in 
accordance to its specifications.  

During optimization, “overlap conditions” are 
used in order to exclude these positions of the point 
masses, where they would clash with the impedance 
head.  

Setting the task in this way, eliminates evident 
solution in accordance with which mass must be 
placed in position of force application.  
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Checking for implementation of conditions was 
inserted in the Matlab function “isTrialFeasible”. 
This function is used by the functions of genetic 
algorithm, which create an initial population, and 
functions of crossover. Also there is a mutation 
function “mutationadaptfeasible”, which calls 
“isTrialFeasible” function. Implementation of 
discrete limiting conditions is thus provided during 
the whole process of evolution.  

During optimization, individuals, which do not 
have physical sense, are not created saving 
calculation time.  

The result of optimization, which is received 
from genetic algorithm, was deepened with the 
hybrid optimization function. As a hybrid function 
the intrinsic Matlab function “patternsearch” is 
used, that also satisfies to all mentioned above 
constraints.  

During optimization the followings modes shapes 
are taken into account: 1-1, 2-1, 1-2, 2-2, 3-1, 1-3,   
2-3, 3-2, 4-1, 3-3, 2-4, 4-2.  

The range of frequencies, in which optimization 
was conducted, is 20-200 Hz.  

The result of optimization is a set of parameters 
containing the value of the optimal masses and their 
position, which are represented on Fig. 3. 
 

56
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2

223

218

14
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50
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1.895 kg

B&K 8001
0.031 kg  

 

Fig. 3. Scheme of mass location on the active plate 
area (values given in millimeters) 

 

The dependence of the objective function on the 
frequency of the modal exciter is shown in Fig. 4 
(Numbers mark the modes’ numbers. res. denotes 
resonance of experimental setup).  

Abbreviation res. on Fig. 4 marks resonance of 
experimental setup, which was accompanied by 
transverse motion of CC edges of plate.  

Peaks on the spectrum with optimum mass on 
frequencies 65.4 and 76.8 Hz correspond to two 
different combinations of modes’ pair 1-2 and 3-1.  

Other unsigned on Fig. 4 modes cannot be 
referred to any known forms of vibrations. The 
modes 5-1, 5-2, 4-3 were not included in the set of 
modes, for which the optimization was performed.  

Appearance of these modes in the frequency 
range of optimization, leads to additional peaks on 
the spectrum of objective function. These peaks 
increase objective on frequencies, which exceed 
160 Hz. 

The wavelengths of higher modes are shorter, so 
any inaccuracy in gluing mass or force is more 
significant for that modes rather than for lower modes.  

On low frequencies we have another reason of 
reduction of method’s efficiency. Value of objective 
function for a mode 1-1, that is measured on a plate 
without the additional masses makes -11, on a plate 
with the optimum masses the objective function is 
equal -11.1.   

It means that on mode 1-1, at the use of optimum 
parameters of additional mass, take place a slight 
increase of objective function on 0.1. Due to the 
inclusion of mode in the frequency range of 
optimization and in the set of modes, which is taken 
into account during optimization, the increase 
objective function is insignificant.  

Because mode 1-1 has no nodes, diminishing of 
vibrations on a mode 1-1 is impossible at the use of 
method of reduction of vibration by the concentrated 
masses. Especially, if we take into account that in 
this case, there were no changes of total mass of 
construction. In the case when an increase of mass is 
allowed the reduction of vibration is possible also on 
the mode 1-1.  

Form of vibrations on the mode determines mode 
contribution to the total vibration response and 
acoustic radiation of plate. Both modes 2-1 and 1-2 
have one nodal line. Mode 2-1 has a greater value of 
objective function for a plate without mass than 
mode 1-2. Consequently the reduction of objective 
function is more important for a mode 2-1 than for a 
mode 1-2.  
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Fig. 4. Dependence of objective function (8) from 
frequency 
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During optimization in the wide frequency range 
an algorithm gives advantage to the modes which 
have a greater value of objective function. Unlike on 
the mode 1-2, there is reduction of objective 
function on the mode 2-1. The use of optimum mass 
results in displacement of nodal line for a mode 2-1 
in position of force. In any case effect of objective 
function reduction is achieved due to the change of 
mode shape in such way, that the vibration in the 
point of force application is decreased. Displacement 
of nodal line in position of force takes place not 
always. So for a mode 1-2 a nodal line for optimum 
configuration vice versa was remote from the point 
of force application. This results in the growth of 
objective function on this mode.  

At the use of method of vibration response and 
acoustic radiation attenuation with the concentrated 
masses the reduction of eigenfrequencies is typical. 
So on Fig. 4 we can find displacement of all present 
modes in the considered range. Peaks, which 
correspond to eigenfrequencies, are differently 
shifted along the frequency.  

The example of such phenomenon is a location of 
peaks of modes 4-1 and 3-2 on a spectrum 
represented on Fig. 4. Investigations shows that 
mass do not cause the change of vibration shape and 
accordingly do not cause the shift of eigenfrequency, 
only in the case of its location in the node of mode 
shape. The closer is the mass location to the peak of 
the mode shape the greater is the shift of 
eigenfrequency. Let us consider mode 4-1, its nodes 
are much closer to the location masses than nodes of 
mode 3-2, that caused greater shift along frequency 
of mode 3-2 than the mode 4-1. 

In the range of frequencies from 60 Hz the modes 
of vibrations of plate have sufficient quantity of 
nodes for the reduction of objective function for 
each of them. Total reduction of objective function, 
which is evaluated on the basis of experimental data, 
is 4.4436. 

Intensity of acoustic radiation was measured on 
the distance 50-55 mm from the acoustic centre of 
lower microphone to the surface of plate. 
Measurements are done with the use of signal with 
frequency, which changes linearly with speed    
20 Hz/s.  

The received data are the result of 3 averaged 
sweeps without overlap. Fig. 5 shows the 1/12-
oktave acoustic power spectrum for two CC plates 
with parameters summarized in a Table. 1. On 
thinner plate optimum mass is placed in accordance 
with Fig. 5.  

40 60 80 100 120 140 160 180

10

20

30

40

50

L W
, d
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without mass. TSPL=56.7dB
with mass.     TSPL=47.6dB

 
Fig. 5. Sound power level of CC plate 

 

It follows from Fig. 5, that reduction of total 
level of sound power (TSPL) in the range of 
frequencies from 35 to 180 Hz composes 9.1 dB. 
The conducted experimental researches proved the 
efficiency of the method application for vibration 
response and acoustic radiation reduction with the 
concentrated masses at the preservation of total mass. 
5. Semi-active control of forced vibration 
Orthogonal properties of the beam functions make it 
possible to simplify eq. (2): 
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where *
nA  are complex conjugate Ritz coefficients. 

The problem is solved with the help of controlled 
elitist genetic algorithm with non-dominated sorting 
that is a modified version of the NSGA-II, 
implemented in Matlab function “gamultiobj”. 
Principle of this algorithm is shown in Fig. 6.  

 
 

Fig. 6. The scheme for illustration of the principle of 
multi-objective optimization using a genetic algorithm
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The calculation procedure for the block 
“Calculation of objective functions” is depicted in 
Fig. 7.  

 

 
 

Fig. 7. The algorithm of calculation of objective 
functions for the semi-active method of vibration 
reduction 
 

Chromosome of individual consists of the 
following sequence of genes , , , ,m m cm cm x y x y⎡ ⎤⎣ ⎦ , 

which are transmitted to the objective function of 
genetic algorithm. The dash over variables 
designates that the values are relative to 

, , , ,plateM a b a b⎡ ⎤⎣ ⎦ . Under the part of the objective 

function, which performs only at the first function 
call, is meant the calculation of values, which are the 
same for all individuals. These calculations include: 
assignment of plate parameters, mode numbers set, 
constant weight location and their values, mass of 
the plate and compensating force joint, plate density, 
density of additional masses, offsets from objects on 
the plate, parameters of the external excitation, beam 
function constants and calculation of constant 
intermediate values. 

Any optimization algorithm, which is able to 
quickly find a local optimum function of two 
variables, is suitable for finding of the optimal 
values of the function 2

Σna and parameters cnF       
and cnϕ .  

Nelder-Mead simplex method is used for 
optimization of the constrain of type 1 in equation 
(1). This method is implemented in Matlab functions 
“fminsearch”. 

The multi-objective genetic algorithm NSGA-II 
is not intended for use with nonlinear constraints. 
The objective functions aLΣ  and cOptF  are 

multiplied by the penalty factor Solap*5010  for 
exclution of overlapping from the set of feasible 
solutions. 

Optimization was performed for the parameters 
of the plate shown in Table 2 for the oscillation 
modes: 1-1, 2-1, 1-2, 2-2, 3-1, 1-3, 3-2, 2-3, 4-1, 3-3, 
1-4, 4-2, 2-4, 5-1, 4-3, 3-4, 1-5, 5-2.  

These modes cover the frequency range        
15-250 Hz, for which the optimization was 
performed. 

Table 2. Properties of the investigated plate from steel 
Ст3 and parameters of invariable masses 

Property Value Dim. 
Active area dimensions, a×b 0,392×0,351 m×m 
Thickness, h 0,53·10-3 m 
Density, ρ 7362,6 kg/m

3
 

Young’s modulus, E' 210e9 Pa 
Poisson coefficient, ν 0,3 – 
Damping loss factor, η 0,01 – 
Mass of compensating force 
joint, mc 

2,47·10-3 kg 

Mass of exciting force joint, 
me 

7,55·10-3 kg 

Accelerometer masses (KB11), 
ma 

14·10-3 kg 

Cross-section area of 
additional mass, bm×bm 0,02×0,02 m×m 

Additional mass density, ρm 7800 kg/m
3
 

6. Results of problem (1) solution for semi-active 
control method  

The result of the optimization is the Pareto front, 
depicted in Fig. 8.  

 

0.32 0.34 0.36 0.38 0.4 0.42
86

88

90

92

94

FcOpt, N

L Σ
a, d

B

 
Fig. 8. The set of Pareto optimal solutions found 
with genetic algorithm 
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Above the line, consisting of the points of the 
front, the solution of optimization problem is not 
optimal. Under the Pareto front there are no 
solutions. Let us chose solution with objective 
functions [FcOpt; LΣa] = [0,417Н; 87,8 dB], because 
the difference in the values of the objective function 

cOptF  is not significant compared with the difference 
in objective function aLΣ  values. 

Selected solution in the parameter space (i.e. in 
relative coordinates on the plate) is shown on Fig. 9.  
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Fig. 9. The layout of the optimal mass (square), the 
exciting and the optimal compensating forces (circle) 
and accelerometers (points) in relative coordinates on 
the CC plate 
 

Spectra for the selected optimal solution are 
found in a similar way to the optimization problem 
solution in eq. (2). Algorithms of these calculation 
differ only in a set of frequencies, for which 
acceleration is computed. Solutions on the Pareto 
front are close to each other not only in the objective 
function space, but also in parameter space. The 
difference between the maximum and minimum 
values of the genes on the front are 

0,0 49;[ 0mm∆ = 0,0016;mx∆ = 0,0198;my∆ =

0,0527;cx∆ =  0,0331].cy∆ = The largest 
difference is observed in the location of 
compensating force xc. 

Optimal spectra are shown in Fig. 10, 11. I.e. 
when the compensating force with the parameters 
shown in Fig. 11 is applied to the plate then we get 
spectrum marked as “Semi-active” in Fig. 10. 
Fig. 10 shows the decrease of the total acceleration 
level on all modes of oscillation. However, there are 
frequencies (53,3 Hz, 58.9 Hz, 68 Hz, Hz 89.5 etc), 
where there is almost no reduction in the total 
acceleration level. These frequencies correspond to 
the zero values of compensating force on the 
spectrum of optimum compensating force values 
(Fig. 11, a).  
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Fig. 10. Optimal spectra of the total acceleration level 
 

On the spectrum of the optimal phase of 
compensating force (Fig. 11, b) at these frequencies 
takes place a sharp change in the phase on π  rad.  
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Fig. 11. The optimum spectrum of the compensating 
force value (a), phase (b) as a result of optimization 
for semi-active control method 
 

Such phenomena are caused by the fact that with 
the change in frequency occur change of the 
oscillation shape of the plate. Previous parametric 
studies of the active noise reduction methods have 
shown small effect of concentrated compensating 
forces at their placement in the nodes of the 
oscillation shapes. There are no points on the plate 
for the entire range of frequencies, through which 
the nodal line do not pass on some frequencies.  
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That's why optimization lead to solution, in 
which there is no reduction of the vibration of the 
individual intermediate frequencies. 

Fig. 10 shows that the semi-active method is the 
most effective. For accurate determination of the noise 
reduction methods' efficiency the concept of integral 
level of acceleration iaL is introduced as follows: 

max
4 *

2
{ }0 min

110lg d .
2

f N

ia n n
nf

L ab A A f
a

ω= ∑∫   

Fig. 10 shows values of acceleration level          
for initial configuration, configuration without 
compensating force (passive method), configuration 
without additional mass (active method) and 
configuration with optimal compensating force and 
mass (semi-active method). Significant reduction    
of the acceleration level in the frequency bands      
85-140 Hz and 180-220 Hz is caused by the usage of 
the concentrated mass. At the same time the 
placement of the compensating force and application 
of optimal spectra of compensating force can 
significantly reduce each single peak in the spectrum 
of the total acceleration level.  

Optimization shifts the location of compensating 
force so that its intersections with the nodal lines are 
at frequencies that do not make a significant 
contribution to the integral acceleration level. 

It can be concluded from the analysis that the 
total acceleration level compensation must be done 
with several compensating forces. Applying at least 
two compensating forces at different positions on the 
plate, we can get reduced total acceleration at each 
frequency in the low frequency band under 
consideration. 

For optimum feedforward control of flexible 
structures optimum compensating force amplitude 
and phase frequency dependence (Fig. 11) should be 
included in control system.  

Author suggests piecewise cubic Hermite 
polynomial interpolation of optimal frequency 
dependences with matlab function "pchip". Received 
piecewise polynomial representation of Fc(f) and 
φc(f) is then embedded into the control system 
(Fig. 1) in Simulink with "MATLAB Function" 
block type. 

7. Conclusions 

The change of the optimal parameters of the control 
signal, which is caused by the change of external 
disturbance frequency, led to the necessity of 
automatic control system design in a wide band of 

lower frequencies covering the first 10-15 
resonances of the elastic structure. 

Formulated and solved optimization problems 
allowed us to establish the optimal parameters of   
the control signal for integral vibration criteria        
of the flexible mechanical structures. Multicriteria 
optimization task of takes into account the criterion 
of vibration and criteria, the reduction of which 
leads to a decrease in the control signals values. 
Experimental verification of the proposed models    
of control objects, showed a satisfactory 
correspondence between the results of calculations 
and measured data. 

Application of optimization results to the elastic 
CC plate in experimental conditions demonstrated 
decrease of root-mean square velocity level 
integrated over the plate surface on the 5.5 dB and 
reduction of total sound power level on 9.1 dB. 

Combination of active and passive methods for 
reduction of the vibrations of flexible structures 
allowed us to obtain additional reduction of 
vibration integrated over the entire plate surface      
by 10 dB. 
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Розглянуто багатокритеріальну задачу оптимального управління вібраційною відповіддю пружної пластини. 
Описано застосування генетичного алгоритму для визначення оптимальної залежності компенсуючої сили від 
частоти і параметрів концентрованих мас для різних граничних умов. Використано принцип віртуальної роботи 
і підхід Рітца для дослідження динаміки пластини з приєднаною масою, що знаходиться під дією довільної 
кількості сил. Задачу оптимізації, яка забезпечує зниження як сумарного рівня віброприскорення, так і 
компенсуючої сили, сформульовано як задачу з обмеженнями. Зазначено, що числові результати показують 
придатність моделі для оптимізації величин концентрованих мас та їх розміщень на пластині. Інтерполяцію 
залежності компенсуючої сили від частоти використано для синтезу системи управління з прямим           
зв’язком. 
Ключові слова: вібрація пластин; комбінований метод; концентрована маса; управління з прямим          
зв’язком. 
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Рассмотрена многокритериальная задача оптимального управления вибрационным ответом упругой пластины. 
Описано применение генетического алгоритма для определения оптимальной зависимости компенсирующей 
силы от частоты и параметров концентрированных масс для различных граничных условий. Использован 
принцип виртуальной работы и подход Ритца для исследования динамики пластины с присоединенной массой, 
находящейся под действием произвольного количества сил. Задача оптимизации, которая обеспечивает 
снижение как суммарного уровня виброускорения, так и компенсирующей силы, сформулирована как задача с 
ограничениями. Отмечено, что численные результаты показывают применимость модели для оптимизации 
величин концентрированных масс и их размещений на пластине. Интерполяция зависимости компенсирующей 
силы от частоты использована для синтеза системы управления с прямой связью. 
Ключевые слова: вибрация пластин; комбинированный метод; концентрированная масса; управление с 
прямой связью. 
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