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Abstract. Presented is a gas turbine engine bearing diagnostic system that integrates information from various 
advanced vibration analysis techniques to achieve robust bearing health state awareness. This paper presents a 
computational algorithm for identifying power frequency variations and integer harmonics by using wavelet-based 
transform. The continuous wavelet transform with  the complex Morlet wavelet is adopted to detect the harmonics 
presented in a power signal. The algorithm based on the discrete stationary wavelet transform is adopted to denoise the 
wavelet ridges. 
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1. Introduction 

Improving the reliability and maintainability of gas 
turbine engines is becoming more critical to end 
users concerned with reducing costs and increasing 
availability.  

In order to reduce the cost and inconvenience of 
unscheduled repairs, design engineers have 
traditionally estimated the statistical reliability of such 
faulty bearings and assigned a conservative safe life 
replacement interval (based on time or usage).  

However, evidence has indicated that actual usage 
of military aircraft systems varies considerably 
depending on intended use and operating environment.  

Unanticipated and extreme operating scenarios 
are major causes of failures and unscheduled 
maintenance events.  

Actual operational lives for aircraft are 
commonly extended past their original design lives 
because of the critical mission they perform.  

Thus, the unfortunate reality of statistical- based 
preventative removals is that significant useful life 
remains in most units while limited failures continue 
to occur in the field.  

The former represents an opportunity to reduce 
maintenance time and life-cycle costs and increase 
readiness, while the latter represents a significant 
opportunity to improve safety through the 
implementation of diagnostic and prognostic 
techniques that will enable the transition from the 
traditional safe life removal/change intervals to 
condition-based approaches.  

A Condition-based Maintenance strategy promises to 
reduce the costs associated with scheduled maintenance 
by monitoring the actual condition, or health, of the 

component and replacing component only when 
necessary and at optimally scheduled maintenance 
times.  

Vibration-based features are of particular 
importance in determining the condition of the 
bearing within this system and are the focus of this 
paper.  

Analysis has shown that vibration features offer 
better incipient fault detection than the widely used 
and accepted oil consumed analysis. In addition, 
vibration-based diagnostics offers isolation capabilities 
beyond oil debris monitoring [1, 2]. 

The accuracy of bearing health predictions is 
critical to a robust and effective Prognostic and 
Health Management  implementation. 

Substantial research has focused on the development 
of robust and accurate features that can be used to 
increase the accuracy of health predictions; however, 
many of these developments have occurred in 
laboratory settings.  

Although suitable for proof-of-concept validation, 
the idealized laboratory test rig is often a simplified form 
of the target system, such as a gas turbine engine.  

Confounding issues, such as indirect vibration 
transmission path, operating condition issues, and noise 
sources, are often absent from the development 
laboratory. Complete validation of the feature or sensor 
is therefore possible only through actual engine tests.  

Therefore, we used data collected from an actual 
gas turbine engine, mounted in a full scale test cell, 
to validate the developed techniques.  

Some of the results of these tests are presented herein. 
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2. Analysis of last researches  

Solving the problem of synthesis, application efficiency, 
operation control systems aircraft turbine engine 
devoted to the work of scientists: V.Y. Berezhnoy [1], 
O.D. Degtyarev [1], M.M. Kudin [1], O.P. Saveliev [1], 
A. N. Sinyakov [6], F.A. Shamayrdanov [6], M.S. Kulik 
[7], J.M. Tereshchenko [7], V.V. Panin [7],  
S.V. Zhernakov [8].  

Bearing failures are of particular concern in high 
performance turbines because of the potential for 
catastrophic, cascading consequences throughout the 
system.  

An ability to predict early stage bearing failures 
will therefore affect turbine reliability and life-cycle 
costs both positively and dramatically. 

Thats why we used wavelet-analysis. 

3. Wavelet Transform and analyzing wavelet 

Wavelet Transform (WT) has been drawing a lot of 
attention from scientists and engineers over the years 
due to its ability to extract time signal and frequency 
information simultaneously. WT can be continuous 
or discrete.  

Continuous Wavelet Transform (CWT) is adopted 
for harmonic analysis because of its ability to 
preserve phase information [2]. 

The wavelet transform of a continuous signal, 
)t(f , is defined as (1), 
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where )(* tΨ  − the complex conjugate of the 
wavelet function )(tψ ; 
 

s  − the dilation parameter (scale) of the wavelet;  
u  − the translation parameter (location) of the 

wavelet. 
The wavelet function must satisfy certain 

mathematical criteria [2, 3].  
These are the following: 
− a wavelet function must have finite energy;  
− and u a wavelet function must have a zero 

mean, that is, has no zero frequency component. 
The simplified Complex Morlet Wavelet (CMW) 

[3, 4] is adopted in the algorithm for harmonic 
analysis as shown in Fig. 1 and is defined as 
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b
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where bf  – the bandwidth parameter; 

cf  – the center frequency of the wavelet. 
The CMW is essentially a modulated Gaussian 

function.  
It is particularly useful for harmonic analysis due 

to its smoothness and harmonic-like waveform.  
Because of the analytic nature, CMW is able to 

separate amplitude and phase information. 
Strictly speaking, the mean of the simplified 

CMW in (1) is not equal to zero as illustrated in 
2 22 / ( / 4)(2 )1( ) .c b b cj f t t f f f

b
t e e dt e

f
+∞ +∞ π − − π
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However the mean of the CMW can be made 
arbitrarily small by picking the bf  and cf  
parameters large enough [4, 5]. 
 

  
a b 

Fig. 1. The real part (a) and imaginary part (b) of the CMW 
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For example, the mean of the CMW in (2) with 
2=bf  and 1=cf  is 9106753.2 −×  which is 

practically equal to zero.  
The frequency support of the CMW in (2) is not a 

compact support but the entire frequency axis.  
The effective time support of the CMW in (2) is 

from − 1 to 8 provided that bf  is not more than 9. 
From the classical uncertainty principle, it is well 

known that there is a fundamental trade-off between 
the time and frequency localization of a signal.  

In other words, localization in one domain 
necessarily comes at the cost of localization in the 
other.  

The time-frequency localization is measured in 
the mean squares sense and is represented as the 
Heisenberg box.  

The area of the Heisenberg box is limited by  
1 ,2tδωδ ≥  

where δω  – the frequency resolution; 
tδ  – the time resolution. 

For a dilated complex Morlet wavelet, 

1 , .2
b

b

s f
t

s f
δω = δ =  (3) 

Complex Morlet Wavelet achieves a desirable 
compromise between time resolution and frequency 
resolution, with the area of the Heisenberg box equal to 0.5.  

From (3), it is seen that the frequency resolution 
is dependent on the selection of bf  and the dilation. 

The dilation is dependent on the selection of cf  
and the sampling frequency. 

4. Harmonics frequency detection 

Given a signal )(tf  represented as 
( ) ( )cos ( ),f t a t t= φ   (4) 

the wavelet function in (1) can be represented as[5], 
tje)t(g)t( ω=ψ .   (5) 

The dilated and translated wavelet families [4] 
are represented as  
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where  

( )( ), , ( ) / ;j t
s ug t sg t u s e ξ

ξ = −  

/ sξ = ω . 
The wavelet transform of the signal function 
)(tf in (4) is given as, 

( ) ˆ( , ) ( ) ( ( [ ( )])2
( , )),
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u
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where )(ˆ ωg  represents the Fourier transform of the 
function )(tg . 

The corrective term ),( ξε u  in (7) is negligible if 
)(ta and ( )t′φ  in (4) have small variations over the 

support of su,Ψ  in (6) and if su /)( ωΔ≥φ′ . 
If a power signal contains only a single frequency, 

the corrective term can be safely neglected.  
However for a power signal containing 

harmonics from low frequency to high frequency, 
the corrective term will contribute to the wavelet 
coefficients, making the frequency detection not 
straightforward. 

The instantaneous frequency is measured from 
wavelet ridges determined over the wavelet 
transform.  

The normalized scalogram defined by [2, 5] 
2( , )

( , )w
W f u s

P f u s
ξ ξ =η  (8) 

is calculated with 
2

2 ( )1 ˆ( , ) ( ) 1 ( , ) .4w
uP f u a u g u′⎛ ⎞φξ ⎡ ⎤ξ = η − + ε ξ⎜ ⎟⎢ ⎥η ξ⎣ ⎦⎝ ⎠

(9) 

Since )(ˆ ωg  in (9) is maximum at 0=ω , if one 
neglects ),( ξε u . (9) shows that the scalogram is 
maximum at 

( ) ( ).( ) u us u
η ′= ξ = φ  (10) 

The corresponding points ))(,( uu ξ  calculated by 
(10) are called wavelet ridges [5].  

For the CMW, )(tg  in (5) is a Gaussian function. 
Since the Fourier transform of a Gaussian function is 
also a Gaussian function, the wavelet ridge plot 
exhibits a Gaussian shape. 

Fig. 2 shows the wavelet ridges plot for the  
40 Hz signal. It can be seen that the wavelet ridges 
can accurately detect the signal frequency. 

Fig. 3 shows the wavelet ridges plot for the 
detection of the 40 Hz signal component in the 
signal containing frequencies at 40 Hz and 240 Hz,  
respectively.  

There are some fluctuations at the peak of the 
wavelet ridges, introducing small errors in the 
frequency detection. The fluctuations are due to 
imperfection of the filters produced by the dilated 
CMWs and the corrective term in (7). 
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Fig. 2. Wavelet ridges plot for a 40 Hz and 240 signal Fig. 3. Wavelet ridges plot for a 40 Hz signal 

 
Discrete Stationary Wavelet Transform (DSWT) 

[5] is adopted to remove the fluctuations of the 
wavelet ridges.   

In view of the shape of the wavelet ridges, the 
Symlet2 wavelet developed by Daubechies is used. 

It is found that a decomposition level of 5 is 
sufficient to remove the fluctuations.  

Fig. 4 shows the denoised wavelet ridges plot of 
the signal containing frequencies at 40 Hz and  
240 Hz, respectively.  

 
Fig. 4. Denoised wavelet ridges plot of the wavelet 
ridges plot in Fig. 3 

The 40 Hz frequency component of the signal is 
accurately detected by the wavelet ridges after 
denoising. 

5. Discrimination of adjacent frequencies 

The Fourier transform of a dilated CMW in (6) is 
represented as [1, 6, 7] 

2 2( )( ) .b cf sf fsf se−π −Ψ =   (11) 

The function )(sfψ  can be regarded as a 
bandpass filter centered at the frequency cf .  

The bandwidth of the bandpass filter can be 
adjusted by adjusting bf .  

The CWT of a signal is the convolution of the 
signal with a group of bandpass filters which is 
produced by the dilation of the CMW. 

Suppose that (11) is represented as  
( ) ,sf xΨ =  (12) 

where x  represents an arbitrary magnitude to be 
defined later. 

Combining (11) and (12) gives 

1 ln ,c

b

f xf s s f s
⎛ ⎞= ± ⎜ ⎟π ⎝ ⎠

 (13) 

where sf c /  – the center frequency of the dilated 
bandpass filter; and the bandwidth is  

(2 / ) ln( / ) .bs f x sπ  

Fig. 5. Shows the plot of the frequency support of 
two dilated CMWs at scales 1S  and 2S , 
respectively.  

 
Fig. 5. Frequency plot of (15) for two CMWs at scales 

1S  and 2S , respectively 
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If the two dilated CMWs are used to detect two 
adjacent frequencies in a signal, with their 
frequencies represented as  

1 2
1 2

, ,s c s cf f f ff fS S= =
 

where sf  represents the sampling frequency, then 

1 2 1 1

2 2

1 ln

1 ln .

c c

b

b

f f x
S S S f S

x
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⎛ ⎞
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Assume that 12 SS > (14) is simplified to 

2 1

2 11

1 ln .c b
f fxf f x f fS

⎛ ⎞ +> ⎜ ⎟⎜ ⎟π −⎝ ⎠
 (15) 

For 2001 =S  and ,5.0=x  

1

1 ln 0.58.x
S

⎛ ⎞
=⎜ ⎟⎜ ⎟π ⎝ ⎠

 (16) 

Substituting (16) into (15) gives 

2 1

2 1
0.58 ,c b

f ff f x f f
+> − 1 200,S ≤ 0.5x ≤ . (17) 

It is estimated that the magnitude of x  should not 
be more than 5.0 .  

Equation (17) is used to determine the values of 
bf  and cf  in (1) for the continuous wavelet 

transform with CMW which is a necessary condition 
to discriminate adjacent frequencies contained in the 
power signal. 

6. Harmonics amplitude detection 

Theoretically, once the algorithms developed in 3 
and 4 detect the harmonics contained in the power 
signal, the corresponding harmonics amplitudes 
would be determined readily by 

22 ( , ) /2 ( / ) ( , )
( ) 1ˆ(0)

2 ( , )
.

w W f u s sP f u
a u

g

W f u s
s

ξ η ξ
= = =

=

 (18) 

The values of ssufW /),(2 2 2 in (18) are 
obtained in the process of generating the scalogram. 

Due to the imperfection of the filters produced by 
the dilated CMWs and the corrective terms in (7), 
the amplitudes detected exhibit fluctuations.  

Simulation results show that the amplitudes for 
harmonics frequencies from 50 to 1000 Hz have 
errors of the order of ±5 %.  

Fig. 6 shows a plot of the absolute wavelet 
coefficients generated by (18) for a 991.5 Hz harmonic 
frequency component of a power signal containing 
frequencies ranging from 50 to 1000 Hz.  

 
Fig. 6. Absolute wavelet coefficients plot generated by 
CWT (using complex Morlet wavelet, 9bf = , 

7cf = ) for harmonic frequency at 991.5 Hz 

The smoothness of the absolute wavelet 
coefficients plot is also related to the number of data 
points taken per cycle of the harmonic frequency 
component.  

It is found that a minimum of 25 data points per 
cycle should be used to provide a smoother absolute 
wavelet coefficients plot. 

Discrete Stationary Wavelet Transform [2, 5] is 
adopted to remove the fluctuations. 

Since the absolute wavelet coefficients plot 
should exhibit a constant magnitude for a harmonic 
frequency of constant amplitudes, the Haar wavelet 
is used for the DSWT to denoise the absolute 
wavelet coefficients. It is found that a decomposition 
level of 5 is sufficient for harmonics up to 1000 Hz. 

Fig. 7 shows the output of the DSWT of the 
absolute wavelet coefficients shown in Fig. 6. 

The fluctuations are removed resulting in an 
accurate detection of the amplitude of the harmonics 
frequency. 
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Fig. 7. Coefficients generated by DSWT (Haar 
wavelet, level 5 decomposition) of the absolute 
wavelet coefficients plot in Fig. 6 
The proposed harmonics detection algorithm is 

presented in Fig. 8. 

 
Fig. 8. The flow chart of the proposed harmonics 
detection algorithm 
The proposed algorithm is implemented with 

Matlab software. 

7. Experimental results 

In order to characterize various bearing damage 
levels in the engine, tests were performed with three 
different bearings.  

All bearings tested were gas generator shaft 
(engine) bearings, from the second bearing location.  

First, a healthy bearing with no faults was used to 
generate baseline data.  

Second, a bearing with a seeded inner raceway 
fault was used to generate incipient fault data.  

The fault on the second bearing was seeded by 
placing two dents (Brinell marks) in the anticipated 
load path of the bearing (Fig. 9).  

  
Fig. 9. Dented Inner Raceway 
The intent of the marks was to cause the initiation 

and progression of a spall during testing to 
characterize fault progression.  

The third bearing used in testing had a large, pre-
existing spall on the inner raceway and was used to 
generate data representative of a severe fault. 

When applied to bearing vibration signals, 
autocorrelation is used to estimate the periodicity of 
the demodulated signals resulting from ImpactEnergy™, 
WT, or Short Time Energy (STE) processing [6, 8]. 

The top plot of Fig. 10 is the STE of a wavelet 
coefficient with center frequency of 18.8 kHz, which 
was decomposed from the bearing vibration signal 
as shown in Fig. 11.  

 
a 

 
b 

Fig. 10. Demodulation of Bearing Vibration Signal 
and Fault Detection: 
a − STE of a wavelet with center frequency of 18.8 kHz; 
b − autocorrelation coeffcient of STE 
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The bottom plot of Fig. 11 shows the 
autocorrelation coefficients of the STE and 
demonstrates that the first and second peaks of the 
coefficients match the lines of ball defect harmonics, 
which is indicative of a ball defect. 

 
a 

 
b 

Fig. 11. Band Selection Using a Parametric Method: 
a − time waveform of bearing vibration; 
b − band selection 

For each bearing condition, multiple test cycles 
were performed.  

Two cycles were run on the healthy bearing, 
which translated to approximately 1 hour of test 
time.  

Sixty-six cycles were run on the dented bearing, 
which translated to approximately 43 h of test time.  

Test time on the spalled bearing was limited due 
to concerns about the rapid spall progression.  

Four cycles, approximately 2 h, were run on the 
prespalled bearing. 

More cycles were put on the dented bearing to 
initiate, and hopefully propagate, the dent into a spall.  

Each of the aforementioned diagnostic techniques 
was then applied to the collected data. 

Successful diagnostic features need the ability to 
detect an anomaly in the monitored system with 
minimal false alarms, isolate potentially faulted 
components, and provide useable correlations to 
system health [8].  

The following sections detail the diagnostic 
capabilities of the various developed techniques. 

Results presented are from a single accelerometer 
location (gearbox) and only from the high speed and 
load condition (military power).  

This is because the gearbox accelerometer 
provided the clearest indication of the fault. In 
addition, the feature magnitudes varied the least 

during military power, resulting in more robust 
diagnostic features.  

Also, the signal’s modulation was more pronounced 
during military power than during the other regimes. 

To establish ground truth, the raceways were 
visually inspected twice during and once after the 
testing was complete.  

Upon final inspection of the dented raceway, 
spall initiation and slight progression was witnessed 
(Fig. 12 as compared to Fig. 9).  

 
Fig. 12. Dented Raceway End of Testing 

Although the spall had progressed, it was still a 
very small, incipient fault.  

Please note that the results shown here are from 
only during military power, which the engine was 
run at for 375 min (the total run time was 2400 min).  

The feature trend shown in the following figures 
is divided into stages to investigate the shifts in 
feature distribution as the test progressed. 

The stages correspond to intermediate teardown 
inspections of the engine to document the fault 
progression. 
8. Conclusions 
As part of this work, conventional and new signal 
processing techniques were combined in different 
ways to detect bearing faults.  

These methods were applied to data collected 
from baseline and seeded fault bearing tests to verify 
the efficacy of the integrated techniques. 

The proposed harmonics detection algorithm is 
able to identify the frequency and amplitude of 
harmonics in a power signal to a very high accuracy. 

The accuracy of the proposed harmonic detection 
algorithm has been verified by tests conducted on a 
computer-simulated signal and a field signal.  

Two techniques are adopted to achieve accurate 
frequency identification. 
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Firstly, complex Morlet wavelet is used for the 
continuous wavelet transform and secondly, wavelet 
ridges plot is used to extract the frequency 
information.  

Given that the complex Morlet wavelet is a 
Gaussian modulated function, the area of the 
Heisenberg box on the time-frequency plane is equal 
to 0.5.  

The bandwidth of the complex Morlet wavelet 
can be adjusted by carefully selecting the bandwidth 
determined accurately without the need of a large 
time window.  

It is seen that the wavelet ridges plot is a 
Gaussian; the scale at which the wavelet ridges plot 
is maximal represents the frequency of the 
harmonics in the signal. 

Discrete stationary wavelet transform is used to 
remove small fluctuations near the peak of the 
wavelet ridges plot so that a smooth Gaussian-like 
wavelet ridges plot is revealed, the peak of the 
wavelet ridges plot can then by identified. 

Discrete stationary wavelet transform is proved 
to be useful in denoising the absolute wavelet 
coefficients of the continuous wavelet transform for 
amplitudes detection. 

The disadvantage of the proposed algorithm is 
that the accuracy of both frequency and amplitude 
detections is dependent on the data points taken per 
cycle of the highest harmonics in the signal.  

In other words, a higher sampling frequency 
than twice the Nyquist frequency is required. 

It is concluded that bearing fault detection is 
highly affected by the hybrid diagnostic techniques 
that are implemented, as well as the bandwidths 
chosen for scrutiny.  

In other words, the proper selection of the 
vibration bands and diagnostic techniques will result 
in better estimation of bearing health. 
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С.В. Єнчев1, С.С. Товкач2. Вейвлет-алгоритм для визначення дефектів підшипників у газотурбінному 
двигуні 
Національний авіаційний університет, просп. Космонавта Комарова, 1, Київ, Україна, 03680 
Е-mails: 1esw@ukr.net; 2tcctit7@ukr.net 

Розглянуто систему виявлення зароджуваних дефектів підшипників у газотурбінних двигунах за рахунок 
підвищення надійності та ремонтопридатності літака. Описано діагностичну систему підшипників 
газотурбінного двигуна, яка об'єднує інформацію з різних сучасних методів аналізу вібрації для досягнення 
надійного їх стану. Наведено обчислювальний алгоритм для визначення потужності коливання частоти і 
гармонік із використанням вейвлет-перетворення. Показано, що неперервне вейвлет-перетворення з 
використанням комплексного вейвлета Морле можливо застосовувати  для виявлення гармонік, які подані в 
потужності сигналу. Алгоритм виявлення частоти розроблено з вейвлет-скалограм і хребтів. Зазначено, що 
необхідною умовою є розрізнення сусідніх частот. Запропоновано метод миттєвої частотної ідентифікації для 
визначення компонентів частот. Алгоритм на основі дискретного вейвлет-перетворення використано для 
зменшення  шуму вейвлет-хребтів. 
Ключові слова: вейвлет-скалограми і хребти; газотурбінний двигун; дефекти підшипників; комплексний 
вейвлет Морле. 
 
 

C.В. Енчев1, С.С. Товкач2. Вейвлет-алгоритм для обнаружения дефектов подшипников в газотурбинном 
двигателе 
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Рассмотрена система выявления зарождающихся дефектов подшипников в газотурбинных двигателях за счет 
повышения надежности и ремонтопригодности самолета. Описана диагностическая система подшипников 
газотурбинного двигателя, объединяющая  информацию из различных современных методов анализа вибрации 
для достижения надежного их состояния. Приведен вычислительный алгоритм для определения мощности 
колебания частоты и гармоник с использованием вейвлет-преобразования. Показано, что непрерывное вейвлет-
преобразование с использованием комплексного вейвлета Морле можно применять для обнаружения гармоник, 
которые представлены в мощности сигнала. Алгоритм обнаружения частоты разработан на основе вейвлет-
скалограмм и хребтов. Отмечено, что необходимым условием является определение соседних частот. 
Предложен метод мгновенной частотной  идентификации  для определения компонентов частот. Алгоритм, 
основанный на дискретном вейвлет-преобразовании,  принят для снижения  шума вейвлет-хребтов. 
Ключевые слова: вейвлет-скалограммы и хребты; газотурбинный двигатель; дефекты подшипников;  
комплексный вейвлет Морле. 
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