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Abstract. Numerical modeling dynamic behavior of a pipe containing inner nonhomogeneous flows of a boiling fluid 
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1. Introduction 

The pipe-line of a heat-exchanger containing 
nonhomogeneous mobile masses of a boiling fluid, 
vapour and their mixture is one of the main elements 
of modern heat and nuclear power plants. In its 
segments possessing an initial camber or taking a 
curvilinear shape due to their dynamic bending, the 
centrifugal inertia forces playing the role of active 
forces and acting in the osculating plane are 
generated. They are proportional to the pipe 
curvature, the mass of the moving fluid element and 
the square of its velocity [1]. In the case of non-
steady processes of boiling these forces change in 
time and lead to the pipe-line vibration. 

As experimental studies carried out in connection 
with analysis of boiling fluid motions in glass tubes 
heated on the outside testify, at some 
thermodynamical states and values of geometrical 
and mechanical parameters of the system there 
appear the cases of the so-called slug flows. They 
reside in the fact that in the tube heat-exchanging 
systems the regimes of fluid boiling are possible, 
when the generated vapour-water mixture is not 
homogeneous but consists of some fluid and vapour 
segments alternating and moving at high velocities. 
As the mixture flows, the process of boiling 
continues, thus the lengths of the tube segments 
filled with a fluid (called fluid clots) are decreasing 
and the lengths of cavities filled with a vapour (gas 
slugs) are increasing. In this case their velocities 
considerably increase. 

The observations carried out on heated glass 
tubes show that the lengths of fluid clots change 
approximately from 10 internal diameters of the pipe 

on their formation to a zero on a complete 
evaporation, and the volume of a fluid, as it 
evaporates, increases by tenfold. On boiling the 
volume of gas cavities can change from a zero to 50 
diameters of the pipe and then, as a result of clot 
evaporation, they mix. 

The motion of a liquid clot inside a curvilinear 
channel is accompanied by the action of a 
centrifugal inertial force on its walls in the direction 
opposite to the orientation of a principal normal. 
Besides, as each element of a fluid also takes part in 
the slewing motion together with a pipe on its 
vibrations, additional gyroscopic forces of 
interaction between the fluid and pipe walls are 
generated. If stiffness of the curved pipe is relatively 
small, then its interaction with the moving fluid clot 
can cause noticeable dynamical effects. There are 
some cases, for example, when due the vibrations by 
these effects, the holes appear (wear through) in the 
walls in the sites of the tube contacting with the 
elements of supporting structures. As a result, the 
whole heat exchanger unit gets out of order and 
radioactive heat-transfer agents can find their way 
into the atmosphere. 

For different relations between the lengths of 
fluid clots and the cavities filled with vapour 
(vapour slugs), the functioning of such mechanical 
systems can be accompanied by complex dynamical 
effects attributed to the possibility of participating 
the system bodies in several forms of these motions 
and the presence of gyroscopic interaction between 
them, like the possibility of static (divergent) loss of 
stationary motion stability, the appearance of 
unstable oscillatory motions (of a flutter-type) and 
parametric resonances [2, 3]. 



Ye. Tolbatov. Mathematical modeling of self-excited vibration of pipes containing mobile boiling fluid clots 
 

 

55

The above-mentioned types of the loss of 
stability are realized depending on the relations 
between geometrical and inertial parameters of the 
system, the velocity of clots as well as the presence 
or absence of an initial camber, so, if a pipe is 
curved in its original state, its motion can have the 
pattern of forced and be accompanied by ordinary 
resonances. If the initial camber is absent, self-
sustained vibrations associated with parametric 
resonances can be excited in it. They are attributed 
to the fact that as an nonhomogeneous fluid flows 
inside the pipe, the internal characteristics of all the 
system vary all the time that might be an additional 
cause of the vibrations excitation. 

One of the first tasks that triggered off the 
development of this problem was the task of 
elimination of considerable vibrations of the Trans-
Arabic oil pipe-line [4]. Considering its simplified 
circuit design, the authors [2, 5] obtained equations 
for a straight pipe-line dynamics and showed the 
possibility of losing its stability on attaining critical 
velocities by the flow. 

The paper studies the influence of an initial 
camber of a pipe, the size of fluid clots and vapour 
cavities and the velocity of their flow on the 
character of dynamic loss of a pipe system stability. 

2. Statement of the problem 

Consider the problem concerning transverse 
vibrations of an elastic pipe having an initial camber. 
A nonhomogeneous fluid flows inside the pipe. Let's 
assume that its nonhomogeneity might be caused, 
for example, by changing its modular state 
associated with its heating, boiling and conversion 
into vapour-and-water mixture. If typical dimensions 
of liquid clots and vapour cavities dividing them 
exceed typical dimensions of the pipe-line, for 
example the diameter of its channel (see Figure 1), 
one must take into account discontinuities in 
parameters of density and inner flow velocity. In this 
case as the pipe-line vibrates, the fluid particles have 
an accelerated flow both along and transverse the 
pipe axis, thus forming a dynamical load on the pipe. 
To calculate inertial forces acting on the pipe 
elements we assign the law of the fluid clot flow and 
the vapour-filled cavities motion in its channel 
proceeding from the condition of preserving the 
overall vapour-water mixture flow mass rate at the 
inlet and outlet. Let’s form the model of changing 
the flow parameters of motion assuming that the 
clots of length 0a  enter the channel at a velocity of 

0V . At the inlet a gap between two neighbouring 
clots is equal to zero. On motion caused by boiling 
the length of a clot varies as kteaa −= 01  and 
decreases at the rate of 1 0

kta da dt ka e−= = − . As a 
result, the lengths of the spaces (cavities) between 
clots increase at the rate of 1 0/ ktb db dt cka e−= = . 
The volume of vapour in a space is considered to be 
c  times as much as that of a fluid from which it was 
formed, therefore the relation vf cρ = ρ  is 
performed between the densities of the fluid and the 
vapour. 

As the volume the space of a cavity increases, the 
velocity 1+iV  of the 1+i -th clot increases relative to 
camber. A nonhomogeneous fluid flows inside the 
pipe. Let's assume that its nonhomogeneity might be 
caused, for example, by changing its modular state 
associated with its heating, boiling and conversion 
into vapour-and-water mixture. If typical dimensions 
of liquid clots and vapour cavities dividing them 
exceed typical dimensions of the pipe-line, for 
example the diameter of its channel (fig. 1), one 
must take into account discontinuities in parameters 
of density and inner flow velocity. In this case as the 
pipe-line vibrates, the fluid particles have an 
accelerated flow both along and transverse the pipe 
axis, thus forming a dynamical load on the pipe. To 
calculate inertial forces acting on the pipe elements 
we assign the law of the fluid clot flow and the 
vapour-filled cavities motion in its channel 
proceeding from the condition of preserving the 
overall vapour-water mixture flow mass rate at the 
inlet and outlet. Let’s form the model of changing 
the flow parameters of motion assuming that the 
clots of length 0a  enter the channel at a velocity of 

0V . At the inlet a gap between two neighbouring 
clots is equal to zero. On motion caused by boiling 
the length of a clot varies as kteaa −= 01  and 

decreases at the rate of a d a d t k a e k t= = − −
1 0 . 

As a result, the lengths of the spaces (cavities) 
between clots increase at the rate of 
b d b d t c ka e k t= = −

1 0 . The volume of vapour in 
a space is considered to be c  times as much as that 
of a fluid from which it was formed, therefore the 
relation vf cρ = ρ  is performed between the 
densities of the fluid and the vapour (fig. 1). 
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Fig. 1. The diagram of fluid clot flows and changes in internal flows velocity 
 

As the volume the space of a cavity increases, the 
velocity 1+iV  of the 1i + -th clot increases relative to 
the previous one as 1 ( 1)i iV V c a+ = − . The velocity of 
vapour in the cavity between clots is assumed to be 
distributed linearly (see Figure 1). We investigate 
the influence of the pipe initial camber on the 
character of excited vibrations and their stability. 

In studying the dynamical interaction between an 
elastic pipe and an inner flow T. B. Benjamin [6] 
showed that viscous friction forces occurring during 
flow appeared to be relatively small. As these forces 
are directed along the axis line of a pipe, they may 
be neglected in investigation of its transverse 
vibration. Thus, we consider the fluid to be perfect 
and while investigating its influence on the 
dynamics of the tube we will take into consideration 
only its inertial properties. In this connection stating 
the problem on vibrations of a pipe with an inner 
nonhomogeneous flow, we'll consider the motion of 
a fluid element along a vibrating and dynamically 
bending pipe-line. Calculate its acceleration in the 
direction perpendicular to the pipe axis and 
determine the inertial force acting on the fluid 
element and transferring to the pipe walls. 

Let a fluid element of the mass m  moves along 
the vibrating pipe at predetermined velocity ( )V x  
(see Figure 1). Considering its motion in the 
transverse direction, we write the equation 

022 =− Ntdydm f . Here fy  is the 
displacement of the fluid element together with the 
pipe in the direction of the Oy  axis, N  the force 
with which the pipe acts upon the element. In this 
equation we must turn from the function ( )fy t , 
determining the fluid element coordinate, to the 
deflection function ( , )y x t + 0( )y x  of the pipe with an 

initial camber 0( )y x  at the point x , where the 
element is located. To do so, we should take into 
consideration that the fluid element takes a new 
position in the pipe at each instant of time, therefore 
its velocity in a vertical direction is determined not 
only by the velocity of the pipe point in which the 
element is located, but also by the fact that the 
element moves to a neighbouring point in the pipe 
with another coordinate y  and velocity y  

( )0
0

fd y yy y x y y y Vd t t x x t
∂∂ ∂ ∂⎛ ⎞ ′ ′= + + = + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

.        (1) 

Differentiating once more both members of (1) 
with respect to t , one finds the vertical component 
of absolute acceleration of the fluid element in the 
vibrating pipe with an initial camber 

2
2

2

2
0 0 0

2

.

fd y
y y V V y V y V

d t
y V y V y V V y V

′ ′ ′ ′′= + + + +

′′ ′ ′ ′ ′+ + + +
                 (2) 

This formula can be correlated with the formula 
of the Coriolis theorem [7] for absolute acceleration 
of a particle, where y  is the bulk acceleration, 
2y V′  is the Coriolis acceleration, 2y V′′  the 
centripetal acceleration, ′y  the angular velocity of 
the pipe element, V  the relative velocity of the fluid 
element. 

When constructing the equation of transverse 
vibration of a tubular rod with an inner flow of an 
nonhomogeneous fluid, we model it by the Eiler-
Bernoulli beam and neglect the internal friction 
forces and the beam friction on interacting with the 
environment. Such equation of plane transverse 
vibrations of the pipe can be presented as: 

0.IV
t t f fEJ y a a+ ρ + ρ = .            (3) 
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Here EJ  is the pipe bending stiffness; tρ  the 
tube linear density; fρ  the linear density of the inner 

flow; ta , fa , are the accelerations along the axis 
Oy  of the tube and fluid elements respectively. 

Using formulas 22
ta d y d t= , 2 2

f fa d y d t=  
and taking into account (2) and (3), we write the 
equation of pipe vibrations in the sections containing 
the fluid as follows 

2

2
0 0

( )

2 .

IV
f t f

f f f f

EJ y V y y

V y Vy y V y V

′′+ ρ + ρ + ρ +

′ ′ ′′ ′+ ρ + ρ = −ρ −ρ
           (4) 

In the sections containing the vapour spaces, 
vρ = ρ  and equation (4) takes the form 

2
v v v

2
v v v 0 v 0

v 0

( ) 2

.

IV
tEJ y V y y V y

V y VV y yV y V
y VV

′′ ′+ρ + ρ +ρ + ρ +
′ ′ ′ ′′ ′+ρ +ρ = −ρ −ρ −

′ ′−ρ
               (5) 

The distinguishing feature of the assigned 
problem described by equations (4) and (5) resides 
in the fact that when the fluid clots flow, either 
equation 4 or 5 is alternately used for one and the 
same points of the pipe. Thus, the chosen 
mechanical system belongs to the systems with 
variable parameters (with approximately periodical 
coefficients and right member). Due to this fact on 
varying the velocity V  both ordinary and 
parametrical resonance vibrations, typical of such 
systems, can be excited as the result of the 
dynamical loss of stability. For the case considered, 
the problem of studying parametric vibrations is 
complicated by the presence in equation (4) the 
component 2 f y V′ρ  describing the internal force 
referring to the gyroscopic type. Their presence 
considerably complicates the mode of the pipe 
motion because its elements start vibrating at 
different phases. 

The second peculiarity of the process studied is 
that due to the change of inertial properties of the 
pipe, as fluid clots travel in it, the notions of the 
frequency spectrum and modes of free vibrations do 
not exist for it, and natural frequencies in the 
vicinity of which resonances could be realized are 
lost. Therefore it’s rather difficult to predict a 
dynamical loss of stability in such systems. And, 
finally, the difficulty in studying the dynamical 
system involved increases even more at the cost of 
the discrete character of the clot flow resulting in the 

fact that the coefficients of the united set of 
equations (4) and (5) actually become discontinuous. 

The above peculiarities involve difficulties in using 
analytical methods for studying the dynamic instability 
of pipes with inner flows, based on the Liapunov and 
Floquet approaches [8]. Thus this investigation uses the 
method of direct numerical modelling the system 
motion at chosen initial disturbances and the assigned 
velocity V  of the flow. 

3. Investigation procedure 

Let's consider two problems, namely the problems 
on motion of a nonhomogeneous flow in a straight 
pipe and in the pipe with an initial camber. To 
analyze the possibility of self excitation of the 
straight pipe-line vibrations with the inner flow of a 
nonhomogeneous fluid, let’s impart the system some 
small initial perturbations in the form of a preset 
deflection and perform numerical modelling of its 
dynamical behaviour at various lengths of the clots 
and different values of the velocity V0  at the inlet. If 
the vibrations of the perturbed pipe-line decay, then 
its initial state is considered to be stable. When the 
amplitude of vibrations and divergent deflection 
increase indefinitely, the system is considered to be 
dynamically unstable. The fluid velocity V0 , at 
which periodic motion is established in the system, 
is thought to be critical. 

If dynamics of the tube with initial camber 
should be investigated, it is not necessary to 
introduce the additional perturbations into the 
system, as far as the constitutive equations are 
nonhomogeneous in advance. 

When boundary conditions are being preset, it is 
considered that the pipe-line represents a multispan 
beam with equal lengths of spans and hinged 
supports. The system vibrations are modelled by the 
least power-intensive modes having skew symmetry 
relative to the support cross-sections. Then it is 
assumed that the vibrations of neighbor sections of 
the pipe have opposite phases and in studying them 
we arbitrarily separate one span of the pipe applying 
boundary zero conditions to deflections and bending 
moments at its support points 

(0) ( ) 0y y L= = ,     (0) ( ) 0y y L′′ ′′= = .            (6) 

If the tube is assumed to have preliminary 
camber 0( )y x , the initial conditions are chosen in 
the form as follows 

( ),0 0y x = , ( ),0 0y x = . 
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If the tube is preliminary straight, the initial 
conditions are chosen as the initial static 
perturbation 

( ) 0,0 siny x w x L= π , ( ),0 0y x = . 
Here the coefficient 0w  is considered to be very small. 
For numerical integration of the equations at the 

preset boundary conditions (6) and initial 
perturbations, let's use the Houbolt implicit finite 
difference method characterized by the 
approximation of pinpoint accuracy and stability [9]. 
In this case for the time t , the time derivatives in 
equations (4) and (5) are substituted by finite 
differences in the form of: 

1

2 3

11 ( ) 18 ( )
( , ) 6

9 ( ) 2 ( )
t t

t
t t

y x y x
y x t y t

y x y x
−

− −

− +⎡ ⎤
= = Δ⎢ ⎥+ −⎣ ⎦

 

1 2

2 3

2 ( ) 5 ( )
( , )

4 ( ) ( )
t t

t
t t

y x y x
y x t y t

y x y x
−

− −

− +⎡ ⎤
= = Δ⎢ ⎥+ −⎣ ⎦

.                (7) 

Here the following designations are used: 
( ) ( , )ty x y x t= , 1( ) ( , )ty x y x t t− = −Δ , 2( ) ( , 2 )ty x y x t t− = − Δ , 

3( ) ( , 3 )ty x y x t t− = − Δ , Δt  is the time numeric 
integration step. 

Taking into account the above relations, 
equations (4), (5) can be written down as: 

4 2
2

4 2 2

2

2 32 2

2

2
3 0 0

2( )

11 5( )
3

4( ) ( )

6 3

2
.3

t f
t f f t t

f f t f
t t t

t f t f
t t t t

f f f f
t t t t

f f
t t f f t f f t

d y d yEJ V y
d x d x t

V d y yt d x t

y y
t t

V Vd y d y
t d x t d x
V d y V y y Vt d x

−Δ

− Δ − Δ

−Δ − Δ

− Δ

ρ +ρ
+ρ + + +

Δ
ρ ρ +ρ

+ = −Δ Δ
ρ +ρ ρ +ρ

− + +
Δ Δ

ρ ρ
+ − +Δ Δ

ρ
′′ ′+ −ρ −ρΔ

,           (8) 

4 2
v2

v v4 2 2

v v
v

v v
22 2

v v v
32

v v v v
2 3

2
v v 0 v 0 v v 0 v

2( )

11
3

5( ) 4( )

( ) 6

3 2
3

t
t t t

t
t

t t
t t t t

t
t t t t

t t t t

t t

d y d yEJ V y
d x d x t

V d y d yVVt d x d x

y y
t t

V d yy t d xt
V Vd y d y
t d x t d x

V y y V y V

−Δ − Δ

− Δ −Δ

− Δ − Δ

ρ + ρ+ ρ + +
Δ

ρ ′+ + ρ =Δ
ρ + ρ ρ + ρ= − +
Δ Δ

ρ + ρ ρ+ + −ΔΔ
ρ ρ− + −Δ Δ

′′ ′ ′ ′−ρ − ρ − ρ v .
t

V

 

Considering the states 1( )ty x− , 2( )ty x− , 3( )ty x−  
of the system at times t t− Δ , 2t t− Δ , 3t t− Δ  to be 
known one can find the state )(xyt of the system at 
time t  using (8) with appropriate boundary 
conditions and then turn to determining the system 
states at times t t+ Δ , 2t t+ Δ , etc. Inasmuch as 
equations (8) represent the four layer difference 
scheme and we have only two initial conditions, the 
first step of the calculational processes is performed 
with the use of the three layer Newmark difference 
scheme. 

Equations (8) with boundary conditions (6) are 
solved using the method of the transfer matrix. To 
do this, the fourth order equations (8) were 
transformed to the system of the first order 
equations. For the fist equations of (8) it looks like 

31 2
2 3 4, , ,dydy dyy y ydx dx dx= = =  

4 2
2, 3,

1, 2, 1, 1

1, 2 1, 32 2

2, 1 2, 2 2, 3

2
0 0

2( ) 11 5( )
3

4( ) ( )

6 3 2
3

.

t f f t f f t

t f f f t f
t t t

t f t f
t t

f f f f f f
t t t

f f t f f t

d yEJ V y V yd x

V
y y yt t t

y y
t t

V V V
y y yt t t

V y yV

−

− −

− − −

=−ρ −ρ −

ρ +ρ ρ ρ +ρ
− − + −Δ Δ Δ

ρ +ρ ρ +ρ
− + +

Δ Δ

ρ ρ ρ
+ − +Δ Δ Δ

′′ ′−ρ −ρ

                (9) 

Let's write this system in a general form 

( ) ( )dy dx A x y f x= + .                                   (10) 

Here ( )y y s=  is the 4-dimensional vector of the 
unknown functions; x  the independent variable 
changing within the limits of 0 x L≤ ≤ ; ( )A x  the 
known discontinuous matrix-function of the 
independent variable x ; ( )f x  the preset vector of 
right members determined by the known solution 
functions at previous steps in time. 

The solution to (9) must be subset to boundary 
conditions (6) in the interval bounds, which are 
predetermined at the beginning 0x =  and at the end 
x L=  of the integration interval. 

We represent them in the general form as 

( )0 0By = , ( ) 0Dy L = ,                                    (11) 

where matrices B  and D  measure 2 4× . 
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For constructing the solution ( )y x , let's choose 
such 2 components ( )jy x  among ( ) ( 1,4)iy x i⋅ =  

components, any values (0)jy  of which don't violate 
the first equation (11) at zero values of the other 
components. After renumbering the unknown values 

( ) ( 1,4)iy x i⋅ =  in such a way that the index j  could 
take on the values 1,2j = , the solution to problems 
(10) and (11) can be given as 

( ) ( ) 0y x Y x C y= + , 

where y0  is the solution to the Cauchy problem for 
system (10) at zero initial conditions, ( )Y x  is the 
matrix 4 2×  in size of particular solutions ( )ijy x  to 
the homogeneous matrix differential equation 

( )d Y d x A x Y=            (12) 

with initial conditions (0) j
ij iy = δ  ( )1,4, 1,2i j= =  for 

independently modified variables, and with initial 
conditions chosen from the first equation of system 
(11) for the other variables ( )yij 0  ( )j = 3 4, . 

Here j
iδ  is the Kronecker symbol. 

As ( )Y x  is the solution to the homogeneous 
equation (12), then on choosing initial conditions for 
the predetermined vectors, we pay special attention 
to their linear independence. This is achieved by 
assuming the matrix of initial conditions (0)Y  to 
have the unit elements 11(0) 1y = , 22(0) 1y = . In 
doing so any pair of vectors (0)ijy  are mutually 
orthogonal that provides their linear independence. 

The vector of the constants ( )1 2, TC C C=  is 
chosen so that the equality 

( ) ( )0 0DY L C Dy L+ = , 
following from the second conditions of system (11) 
could be satisfied. 

The construction of the matrix – function ( )Y x  
and the vector-function 0( )y x  is made by integrating 
equations (10) and (12) by the fourth order Runge-
Kutta method. The peculiarity of using such 
approach is that due to the presence of large factors 
in the coefficients of the system (8), it is rigid and 
there are rapidly growing functions among its 
particular solutions. Therefore in constructing the 
matrix of its fundamental solutions, the method of 
discrete orthogonalization by Godunov is 

additionally used which makes it possible to obtain a 
stable computational process by orthogonalizing the 
vector-solutions to the Cauchy problems in the finite 
number of argument change interval points. Its 
essence is in the fact that the integration interval is 
divided into sections, and the numerical integration 
of the initial differential equation is carried out on 
each of these sections in the same way as in using 
the method of transfer matrix. The lengths of the 
sections are such that the particular solutions to a 
homogeneous equation within the limits of one 
section could remain linearly independent. When 
passing from one section to another, the matrix of 
the solutions is subject to linear transformation so 
that the vectors of particular solutions of the 
homogeneous and nonhomogeneous equations 
become orthogonal. Thus it is possible to preserve 
the linear independence of the equation solutions in 
the whole interval of integration. To avoid excessive 
increase of the numerical values of the 
nonhomogeneous equation solutions, the 
normalization factor is introduced at the section 
boundaries. 

4. Results and discussions  

The calculation algorithms and computer programs 
for carrying out numeric modelling pipe vibrations 
at various values of their geometrical parameters 
were developed on the basis of the above outlined 
procedure. 

To study the influence of the initial camber on 
the character of vibrations of a pipe system, the 
cases, when in the initial state the pipe was straight 
( )0( ) 0y x ≡  and when its centre line was curved 

according to the law 0( ) sin400
L xy x L

π=  were 

considered. For the first problem non-trivial 
solutions may appear as a result of either divergent 
or flutter bifurcations. The results of the calculations 
for the above cases are given in Table 1, where L  is 
the length of the pipe, h  the thickness of its wall, 
a0  the length of the clots at the inlet, k  the 
parameter determining the velocity of fluid 
evaporation. It was assumed for all the pipes that 

112 10E Pa= ⋅ ; ( ) ( )( )2 2
t R R hρ = − − ρ ; 

37800 kg
m

ρ = ;  2( )f wR hρ = π − ρ ; 31000w
kg
m

ρ = , 

0,015R m= ; 10c = . 
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At chosen values of the parameters eight 
problems were solved (see Table 1) differing in the 
lengths of the clots at the inlet a0  and the value k  
determining the velocity of evaporation of the 
boiling fluid. Here the value of a0  were 8L  and 

4L , and the values of k  were chosen so that during 
the flow in the pipe channel a fluid clot could 
decrease its length by 15–40 %. 

For each problem at a fixed value of V0 , 
dynamics of the pipe at a time interval equal the 
time of arrival of three hundred and more clots was 
studied. It was assumed that the pipe was given 

some initial excitation in the form of a low initial 
velocity. If then the vibrations were decaying, the 
initial state was considered to be stable, but if the 
amplitude of vibrations increased the initial state 
was unstable. To find resonance flows, the velocity 
V0  was varied and modelling the flow was repeated 
at a new value of V0 . The least value of V0  at which 
the amplitude of vibrations began to increase 
without limit was considered to be critical. The step 
ΔV0  of variation V0  was 0 0,2V m sΔ = . In the 
vicinity of a critical state the calculations were made 
specific with the step 0 0,1V m sΔ = . 

Table 1. Velocities values and periods of forced vibrations of a straight-line pipe 

 
 

For the predetermined values of velocities, the 
values of periods Tc  of arrival of clots in to the pipe 
channel (see Table 1) were calculated, which could 
be compared with the values of the time vT  between 
two neighbouring maximum values of the pipe 
middle point displacement along axis Oy . 

Note that for problems 3 ( 0 5 /V m s= , 0 5,1 /V m s= ), 
7 ( 0 3 /V m s= ) and 8 ( 0 3 /V m s= ) value vT  is equal to 
period cT  but for problems 3 ( 0 10 /V m s= , 

0 20 /V m s= ), 4 ( 0 10 /V m s= ), 8 ( 0 6,1 /V m s= ) value 

vT  is approximately a multiple of cT . 
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As the results of investigation of dynamics of 
pipes with an initial camber (see Table 2) show, 
interaction of forced and parametric vibrations has 
not led to the displacement of critical velocities 
values. Values vT  of the curved pipe have not 
practically been changed. The above- mentioned 
peculiarities for values vT  of straight pipe vibrations 
are also characteristic for the pipe with an initial 
camber. Figure 2 gives vibration graphs for the point 

2x L=  of the pipe centre line along axis Oy  for 
problem 8 (see Table 2). The associated states of a 

flow (the arrangement of clots and their velocities) 
for the instant of time, when a clot arriving at the 
channel at the velocity of V0  reaches its full length 
a0  and starts separating from its main flow at the 
point x = 0 , are shown in Fig. 3. 

The associated states of a flow (the arrangement of 
clots and their velocities) for the instant of time, when a 
clot arriving at the channel at the velocity of V0  reaches 
its full length a0  and starts separating from its main 
flow at the point 0x = , are shown in Fig. 3. 

Table 2. Velocities values and periods of forced vibrations of a pipe with camber 

 
 
One can notice that at 0 3,3V m s=  (see Figure 

2) the vibrations are decayed with additional beats. 
With further increasing the velocity 0 6V m s=  the 
pipe vibrations are stable in nature and take the 
mode of beats. In the critical case 0, 6,2crV m s=  
the pipe loses its stability in the mode of flutter, but 

not according to the linear law and with additional 
vibrations. In the postcritical state ( 0 0,crV V> ) the 
elastic system remains unstable and in doing so it 
begins to vibrate with less frequency. Figure 4 
illustrates the modes of the cambered tube plane 
vibrations which take place for problem 8 during 
time vT . The pipe was found to vibrate according to 



 ISSN 1813-1166 print / ISSN 2306-1472 online. Proceedings of the National Aviation University. 2015. N 2(63): 54–64 
 

 

62 

the combination of the first and the second modes of 
natural vibrations of a pipe without a fluid flow. 

In conclusion one may note a peculiarity 
characteristic of the dynamical process under 
discussion. The case is that when vibrational 
motions of a pipe are excited by inner mobile clots, a 
joint action of two affecting mechanisms is shown 
up,  each  of  them  having  its  own nature. First, we 

observe here only a dynamical action of inertial 
centrifugal forces on an elastic pipe, which in this 
case play the role of active forces. The action of 
these forces determines the presence of right 
member in the constitutive equations and their 
nonhomogeneity. Second, the effects characteristic 
of a parametric mechanism of vibration excitations 
are shown up here. 

 
a 

 
b 

 
c 

 
d 

Fig. 2. The forms of vibrations in time of a central cross-section of a pipe with mobile boiling away clots 
( 8 , 4L m a L= = ).  (a) 0 3,3V m s= ; (b) 0 6V m s= ;  (c) 0 6,2V m s= ; (d) 0 10V m s=  

 
a 

 
b 
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c 

 
d 

Fig. 3. The diagrams of distributing fluid clot velocities  
(a) 0 3,3V m s= ; (b) 0 6V m s= ; (c) 0 6,2V m s= ; (d) smV 100 =  

5. Conclusions 

The purpose of this paper is to carry out the 
numerical modelling of self-excited vibrations of 
tubular rods containing inner flows of 
nonhomogeneous boiling fluid. Straight rods and the 
rods having initial camber have been considered. 
The model of dynamics of flow with allowance 
made for a discontinuous character of the parameters 
of its density, as well as the fluid clots flow mode in 
the process of their heating and evaporations is 
suggested. The action of inertial forces of positional 
and gyroscopical types is taken into account. The 
analysis of the results obtained makes it possible to 
make the following conclusions: 

1. Unstable equilibrium states accompanied by 
self-excitation of vibrations and flutter type loss of 
stability can arise in a pipe from the action of inertial 
forces of a nonhomogeneous non-stationary inner 
flows on the pipe walls. In a number of cases the 
divergent conditions of losing the straight-line 
stability were realized in supercritical states. 

2. The mechanism of losing straight shape of a 
pipe results from the action of centrifugal and 
Coriolis’ inner flow inertial forces which can be 
classified as positional and gyroscopical ones. 

3. The nonhomogeneity of an inner fluid flow 
manifests itself both in the nonhomogeneity of 
centrifugal inertial forces acting on a pipe in the 
transverse direction and in the change with time of 
the system general mass geometry. In this 

connection purely dynamical and parametrical 
excitations of vibrations take place. 

4. Gyroscopic inertial forces caused by the 
interaction between slewing movement of pipe 
elements and linear flows of fluid masses have a 
marked influence on the dynamic process character. 
They lead to the system loss of a general motion 
phase and to essential complication of the modes of 
the pipe transverse vibrations. 

5. The calculations testify that in the general case 
the transverse motions of a pipe constitute non-
stationary vibrations in which one can distinguish a 
conventional period Tv . As a rule this period doesn't 
appear to be comparable to the period of arriving 
fluid clots in the pipe channel although in some 
cases these values were almost equal or multiple. 
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Є. Ю. Толбатов. Математичне моделювання коливань, що самозбуджуються та містять рухомі 
киплячі згустки рідини  
Національний авіаційний університет, просп. Космонавта Комарова, 1, Київ, Україна, 03680 
Е-mail: npazyura@ukr.net 
E-mail: tolbatov_e@mail.ru 

Представлена задача про чисельне моделювання динамічної поведінки прямолінійною труби, що містить 
внутрішні неоднорідні потоки киплячій рідини. Оскільки аналітичне рішення цієї проблеми пов'язане зі зміною 
геометрії мас системи і розривом коефіцієнтів рівнянь, представляється складним, був розроблений метод 
комп'ютерного моделювання динаміки труби, який ґрунтується на одночасному використанні методів 
чисельного інтегрування за часом і методу початкових параметрів спільно з процедурою ортогоналізації по 
просторової змінної .Були виявлені різні види коливань труби, а також можливість встановлення стійких і 
нестійких режимів руху залежно від характеру неоднорідності та швидкості руху рідинних згустків. 
Ключові слова: внутрішні потоки; динаміка; згустки рідини; коливання; неоднорідна рідина; періоди; 
теплообмінник; труба з початковою опуклістю; флатер, швидкість. 

 
Е. Ю. Толбатов. Математическое моделирование самовозбуждающихся колебаний труб, содержащих 
подвижные сгустки закипающей жидкости 
Национальный авиационный университет, просп. Космонавта Комарова, 1, Киев, Украина, 03680 
E-mail: tolbatov_e@mail.ru 

Представлена задача о численном моделировании динамического поведения прямолинейной трубы, 
содержащей внутренние неоднородные потоки кипящей жидкости. Так как аналитическое  решение  этой 
проблемы, связанное с изменением геометрии масс системы  и разрывом коэффициентов уравнений, 
представляется затруднительным, был разработан метод компьютерного моделирования динамики  трубы, 
который основывается на одновременном использовании методов численного интегрирования по времени  и 
метода начальных параметров совместно с процедурой ортогонализации по пространственной переменной. 
Были обнаружены различные виды колебаний трубы, а также возможность установления устойчивых и 
неустойчивых режимов движения в зависимости от характера неоднородности и скорости движения 
жидкостных сгустков. 
Ключевые слова: внутренние потоки; динамика; колебания; неоднородная жидкость; периоды; сгустки 
жидкости; скорость; теплообменник; труба с начальной погибью; флаттер. 
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