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УДК 539.3 

 

THE THERMOELASTIC CONTACT PROBLEM  

FOR A CYLINDER 

 

Gavdzinski V.N. (Odessa State Academy of Building Engineering and    

Architecture, Ukraine), El-Sheikh M. (Ain Shams University, Cairo, 

Egypt), Maltseva E.V. (Odessa National Economic University, Ukraine) 

 

The contact problem of symmetric indentation of two punches in the 

form of circular segments, without friction, into the exterior surface of a 

cylinder under harmonic force iwtePP  0  and the temperature field 

defined in [1] is considered. 
 

Assuming that the radius of the cylinder in unity, in view of the state-

ment of the problem, the boundary conditions considered here are 
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where    00001  ,,  and   12  /, . In addi-

tion, the stresses r  and r  as well as the displacement rv , are bounded 

as 0r . 

As a requirement of the solution of this problem, the normal contact 

stress r  as well as the amplitude 0v  of the vibration are to be found. The 

substitution for the components of the displacement by the expressions: 
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where   and   are the wave potentials, into the equation of motion in 

displacements [2], leads to the equations: 
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where Tm 
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; T  is the coefficient of thermal expansion 

  122
1 /Gc ,  /Gc2

2 , G  is the modulus of elasticity,   is the 

Poisson ratio,   is the density. 
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The potentials   and   can be thought of in the form 

        ,,,,,,,, ** iwtiwt ertrertr    (6) 

where ,0, 2*2**2*2  mT   (7) 
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and consequently the substitution of (4) into the Hooke law yields 
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The boundary conditions (1) and (2) can be completed as follows: 
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where 
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In the same way as in [3], the corresponding hyperbolic type mixed 

problem is converted to a discrete Riemann problem which in turn is re-

duced to the singular integral equation with Hilbert kernel 
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where 
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e  is the Euler number; 
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The Hilbert-type integral equation (13) can be inverted in the class of inte-

grable functions [4], with the result 
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where 
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The application of the finite Fourier transform to (14) leads to the fol-

lowing infinite system of linear algebraic equations: 
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where 
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In view of [3] coefficients nkN  and nR  can easily be found  
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The functions  0cosnP  are the Legendre polynomials which can be 

defined by the formula: 
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Since system (15) can in general be solved approximately, namely using 

the method of truncation, we set up function spaces and sequence spaces. 

The solutions (14) of equation (13) is in  00, L , where 
3

4
1   

[5]. Consequently the Fourier coefficients n  will belong to pl  where 

 1/ p  [5]. Thus we will work in the space  4plp  with the norm 
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where  


,0nn . The justification of truncating system (15) is a 

simple consequence of the following theorem whose proof is similar to that 

given in [6] for the case 2p  

Theorem. Suppose that: 
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1. the homogeneous system corresponding to system (15) has only trivi-

al solution in pl ; 

2. 
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Than the infinite system (15) has a unique solution in pl . The truncated 

system will also have a unique solution and the following estimate holds: 
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where 1Q  and 2Q  are constants. 

We shall assume that the frequency w  differs from those values for 

which the homogeneous system corresponding to (15) has nontrivial solu-

tions. The fulfillment of the second and the third conditions follows from 

(16) and (17) for kn   together with the formula: 
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with the estimate 
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Therefore, conditions (2) and (3) are satisfied as 4p . Recall that 

 2~  kOk . Additionally, we have 
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Thus the approximate solution of the singular integral equation (13) is 

given by: 
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where  n2  are the solutions of system (15) truncated at the Nth order. 

The equivalence condition for the approximate solution (23) can be writ-

ten in the form: 
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The quantity 0a  included in (23) is still to be defined. In fact the equa-

tion of motion of the punch is [7] 
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where M is the mass of the punch. 0P  the amplitude of the force acting on 

the punch, and RP  the reaction of the elastic cylinder: 
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Substituting the expression 
iwt

r evv  0  into (25) we have 
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Thus, the amplitude 0v  and the quantity 0a  can be calculated from 

equations (24) and (26). 

Using formulas (11), (23) we get the expression for the contact stress 
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The real values w  for which  ,1rv , the resonance frequencies, 

are the real roots of the resonance equation which for 0n  assumes the 

form: 
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where 10 and II  are Bessel functions of he first kind. On supposing that 

1c

w
  is large and making use of the asymptotic formulas: 
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The values of the contact stress   0/, Pp   are exhibited at different 

values of the dimensionless coordinate 0/  when the dimensionless 

time  21tc . If 5p  then the estimation of the error is subjected to 

the inequality: 
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Although this upper bound on the error still seems far from a value 

which would ensure precision of the contact stress, the values shown in the 

table remain stable to the first three decimals when N increases beyond the 

25
th

 order: 

 

  
0,1 0,2 0,6 0,9 0,95 0,99 

  02 P/,p   
0,6371 0,6681 0,8236 1,1874 1,4871 3,1635 
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Note that the values of the contact stresses increase unboundedly at the 

vicinities of the end points of the contact interval. 

 

CONCLUSION 
On choosing the number N and using the formula (27) we can get an ap-

proximate solution of the problem to find a contact stress up to any pre-

scribed accuracy. 

 

SUMMARY 

The problem is formulated into a singular integral equation of Hil-

bert type, its solution providing an expression for the physically im-

portant unbounded normal stress. The integral equation is converted 

into an infinite system of algebraic equations the solution of which can 

be obtained by means of truncation method. The truncation is justified 

and the error is estimated. 
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