УДК 624.074.4

К ОДНОМУ СПОСОБУ РАСЧЕТА НЕОДНОРОДНЫХ АНИЗОТРОПНЫХ ПОЛОГИХ ОБОЛОЧЕК С РАЗЛИЧНЫМИ ЗАКРЕПЛЕНИЯМИ НА КРАЯХ

Заврак Н.В. (Одесская государственная академия строительства и архитектуры)

Излагается методика расчета неоднородных анизотропных пологих оболочек на прямоугольном плане с произвольными закреплениями на контуре. Результаты расчета приведены для серии пологих оболочек на прямоугольном плане с соотношением сторон а/в=2 с шарнирным закреплением по контуру, причем считалось, что толщина оболочки увеличивалась к 1/8 пролета от края опор. При этом нагрузка принималась равномерно распределенной по поверхности.

Несмотря на широкое применение на практике и большое разнообразие методов расчета неоднородных анизотропных пологие оболочек, встречаются существенные трудности при их практической реализации. Они определяются не только сложностью интегрирования системы трех дифференциальных уравнений с переменными коэффициентами, но и сложностью удовлетворения сопутствующих им граничных условий. Очень редко при решении практических задач такой расчет может быть проведен в аналитическом виде. Целесообразно, а иногда и единственно возможно использовать современные численные методы. Наиболее простым из них является метод конечных разностей /МКР/. Причем, при использовании этого метода, оказывается, что решение может быть найдено с достаточной степенью точности в одних случаях опорного закрепления, например, -шарнирно-подвижного,- на простой и достаточно редкой сетке, в других же, например - жестком защемлении,- только на сложной или весьма густой сетке, что делает соответствующий расчет очень трудоемким даже при использовании современной вычислительной техники.

Для ослабления указанного недостатка целесообразно строить численное решение так, чтобы в сложных случаях опорного закрепления и погружения решение искалось не непосредственно, а в виде поправок к известному решению для простых случаев опорного закрепления и загружения, при разыскании которых могут быть использованы аналитические способы или МКР с редкой сеткой. Такая методика расчета хотя и несколько усложняет нахождение искомого решения для сложных случаев закрепления, так как его приходится осуществлять в два шага, тем не менее, в конечном счете, оказывается более эффективной, поскольку позволяет находить составные части искомого решения с применением аналитических соотношений или сравнительно простых по структуре и небольших по числу систем конечноразностных уравнений.

Изложим методику расчета, реализующую сформулированную идею и результаты ее использования проиллюстрируем на примере.

Задача расчета неоднородной анизотропной прямоугольной пологой оболочки с произвольным закреплением на контуре может быть записана в следующем общем виде:

$$\vec{L}[\vec{q}]_{\Omega} = \vec{f}, \qquad \vec{R}_i[\vec{q}]_{\vec{S}_i^R} = \vec{Q}_i, \qquad \vec{\Gamma}_i[\vec{q}]_{\vec{S}_i^T} = \vec{\gamma}_i \tag{1}$$

где *i*=1,2; *j*=1,2,3

$$\vec{L}[\vec{q}] = \begin{bmatrix} A'C(A\vec{u} + \vec{k}\omega) \\ k'C(A\vec{u} + \vec{k}\omega) - \vec{B}'D\vec{B}\omega \end{bmatrix}, \quad \vec{R}_i[\vec{q}] = \begin{bmatrix} R_{ij} \end{bmatrix}, \quad \vec{\Gamma}_i[\vec{q}] = \begin{bmatrix} \vec{\Gamma}_{ij} \end{bmatrix}$$
(2)

Ω - прямоугольная область на которую опирается оболочка; S -ограничивающие эту область прямолинейные части контура; \vec{f} - вектор нагрузок; \vec{Q}_i и $\vec{\gamma}_i$ -векторы заданных на участках $\left[S_{ij}^R\right] = \vec{S}_i^R$ и $\left[S_{ij}^\Gamma\right] = \vec{S}_i^\Gamma$ ($S_{ij}^R < S$, $S_{ij}^R = S - S_{ij}^R$) контура значений угла поворота, перемещений, изгибных и цепных усилий; $\vec{q}' = [\vec{u}'w]$, $\vec{u}' = [uv]$ -векторы перемещений точек серединной поверхности оболочки; С и D - цепная и изгибная матрицы ее жесткости, элементы которых считаются далее произвольными функциями координат *x* и *y*.

Кроме того

$$\boldsymbol{A} = \begin{vmatrix} \frac{\partial}{\partial x} \mathbf{O} \\ \mathbf{O} \frac{\partial}{\partial y} \\ \frac{\partial}{\partial x} \frac{\partial}{\partial y} \end{vmatrix} \qquad \qquad \vec{k} = \begin{bmatrix} k_x \\ k_y \\ k_{xy} \end{bmatrix} \qquad \qquad \vec{B} = \begin{bmatrix} \frac{\partial^2}{\partial x^2} \\ \frac{\partial^2}{\partial y^2} \\ 2\frac{\partial^2}{\partial x \partial y} \end{bmatrix}$$

И далее $R_{11} = R_{12} = \Gamma_{11} = \Gamma_{12} = 0$, $R_{23} = w$ и $\Gamma_{22} = S$ при $x = \pm a$ и $y = \pm b$

$$R_{13} = \begin{cases} \mp \frac{\partial w}{\partial x} & \Gamma_{23} = \begin{cases} Q_x + \frac{\partial H}{\partial y} & npu \quad x = \pm a \\ \mp \frac{\partial w}{\partial y} & Q_y + \frac{\partial H}{\partial x} & npu \quad y = \pm b \end{cases}$$

$$R_{21} = \begin{cases} \pm u \\ \pm v \end{cases} \quad R_{22} = \begin{cases} \pm v \\ \pm u \end{cases} \quad \Gamma_{13} = \begin{cases} M_x \\ M_y \end{cases} \quad \Gamma_{21} = \begin{cases} T_x & npu \quad x = \pm a \\ T_y & npu \quad y = \pm b \end{cases}$$

Здесь штрих при матрицах обозначает их транспонирование. Рассматривая различные комбинации возможных значений элементов \vec{S}_i^R и \vec{S}_i^Γ , из (2) можно легко получить краевые задачи, описывающие состояние рассчитываемой оболочки при всех без исключения способах закрепления и нагружения ее края.

Предположим, что ищется решение задачи (1), причем известно решение соответствующей "жесткой" задачи

$$\vec{L}[\vec{z}]_{\Omega} = \vec{f}, \qquad \vec{R}_i[\vec{z}]_{\vec{S}_i^R} = \vec{\rho}_i \tag{3}$$

В работе (1) показано, что между решениями (1) и (3) имеет место зависимость

$$\vec{q}(P) = \vec{z}(P) + \tau'(P)F^{-1} \left\{ \iint_{\Omega} \vec{\tau} \vec{f} dw - \sum_{i=1}^{2} \left[\int_{\tilde{S}_{i}^{R}} \tau_{i}^{r} \vec{\rho}_{i} ds - \int_{\tilde{S}_{i}^{\Gamma}} \tau_{i}^{R} \vec{\gamma}_{i} ds \right] \right\}$$
(4)

где $F = \|F_{mn}\|_{m,n=1,2,\dots}$, $\tau_i^{\Gamma} = \|\vec{\Gamma}_{ij}\|_{j=1,2,3,\dots}$, $\tau_i^{R} = \|R_{ij}\|_{j=1,2,3,\dots}$, причем $F_{mn} = \|F_{mn}^{kl}\|_{k,l=1,2,\dots}$, $\vec{\Gamma}_{ij} = [\Gamma_{ij}^{k}]_{k=1,2,\dots}$, $\vec{R}_{ij} = [R_{ij}^{k}]_{k=1,2,\dots}$ суть мат-

рицы – блоки, элементы которых вычисляются по формулам

$$F_{11}^{kl} = (A\Phi_k)'CA\Phi_l , F_{12}^{kl} = (A\Phi_k)'C\vec{k}\chi_l , F_{21}^{kl} = (\vec{k}\chi_k)'CA\Phi_l$$

$$F_{22}^{kl} = (\vec{k}\chi_k)'C\vec{k}\chi_l - (\vec{B}\chi_k)'DB\chi_l , R_{11}^k = R_{12}^k = \Gamma_{11}^k = \Gamma_{12}^k = 0, \qquad (5)$$

$$R_{13}^k = R_{13}(\chi_k) , R_{21}^k = R_{21}(\varphi_k) , R_{22}^k = R_{22}(\varphi_k) , R_{23}^k = R_{23}(\chi_k) ,$$

$$\Gamma_{13}^k = \Gamma_{13}(\chi_k) , \Gamma_{21}^k = \Gamma_{21}(\vec{\xi}_k) , \Gamma_{22}^k = \Gamma_{22}(\vec{\xi}_k) , \Gamma_{23}^k = \Gamma_{23}(\chi_k)$$

101

Далее $\Phi_k = \| \varphi_k \Psi_k \|$, а матрица τ имеет вид

$$\tau = \begin{vmatrix} \vec{\phi} & 0 & 0 \\ 0 & \vec{\psi} & 0 \\ 0 & 0 & \vec{\chi} \end{vmatrix}$$
(6)

Здесь $\vec{\varphi} = [\varphi_j]_{j=1,2,...}, \quad \vec{\psi} = [\psi_j]_{j=1,2,...}, \quad \vec{\chi} = [\chi_j]_{j=1,2,...}$. Последние должны быть линейно независимыми и удовлетворять условиям

$$\vec{L}\left(\vec{\xi}_{j}\right)_{\Omega} = 0, \quad \vec{R}_{i}\left(\vec{\xi}_{j}\right)_{\vec{S}_{i}^{R}} = 0, \quad \vec{\xi}_{j}' = \left[\vec{\varphi}_{j}'\chi_{j}\right] \qquad \vec{\varphi}_{j}' = \left[\varphi_{j}\Psi_{j}\right] \tag{7}$$

Результаты расчета приведены для серии пологих оболочек на прямоугольном плане с соотношением сторон a/B=2 с шарнирным закреплением по контуру, причем считалось, что толщина оболочки увеличивалась к 1/8 пролета от края опор. При этом нагрузка принималась равномерно распределенной по поверхности; соотношение подъемистости δ/h принимались равными 5, 10, 15, 20; величина изменения толщин (жесткостей) оболочки в указанном сечении принималась равной $h_x/h = 1$; 1,5; 2; 2,5; 3 (где h_x – толщина оболочки у 1/8 пролета, h – наименьшая толщина оболочки).

Для удобного применения результатов расчета численные значения прогибов, моментов и нормальных усилий в центре и на середине сторон ($x=\pm a/2$ и $y=\pm b/2$) оболочки приведены в таблицах 1 и 2 для v=0,3. Приведенные таблицы дают возможность судить о напряженно-деформированном состоянии оболочки.

Из рассмотрения этих таблиц следует, что прогибы в центре оболочки уменьшаются с увеличением параметра δ/h и отношения h_x/h . Величины моментов, при постоянном отношении h_x/h , с увеличением соотношения подъемистости δ/h , уменьшаются. В центре оболочки и в области, примыкающей к нему, изгибающие моменты малы и, следовательно, напряженное состояние оболочки близко к безмоментному. Ширина полосы, в которой величины изгибающих моментов малы, увеличивается с увеличением δ/h .

Кроме того, следует отметить, что моменты изменяются более сложным образом в случае увеличения отношения h_x/h при одинаковом соотношении δ/h . Значения моментов M_x в центре, при $\delta/h = 5$, уменьшаются, а начиная с $\delta/h = 10$ и более, увеличиваются. Величины моментов M_y в центре, при $\delta/h=5$, 10, уменьшаются, а начиная с $\delta/h = 15$ и более, увеличиваются. Значения моментов M_x и M_y в 1/8 пролета от края опор, при $\delta/h = 5$, увеличиваются, а начиная с $\delta/h = 10$ и более, уменьшаются.

Таблица 1

<u>a</u> b	<u>h</u> x h	<u>ð</u> h	Прогиб в центре	Моменты в центре		Моменты в 1/8 пролета от края опор	
			$w = \alpha \frac{qb^4}{Eh^3}$	$M_x = \beta_1 q b^2$ x=0, y=0	$M_y = \beta_2 q b^2$ y=0, x=0	$M_{x} = \beta_{3}qb^{2}$ $x = \pm \frac{a}{8}, y=0$	$M_{y} = \beta_{4}qb^{2}$ y=0, $x = \pm \frac{a}{8}$
			α	β_1	β_2	β ₃	β_4
	1	5	0,00441	0,00172	0,00363	0,00171	0,00211
		10	0,00110	0,00040	0,00079	0,00052	0,00060
		15	0,00048	0,00016	0,00032	0,00026	0,00029
		20	0,00025	0,00008	0,00015	0,00014	0,00016
		5	0,00358	0,00140	0,00284	0,00176	0,00245
	1,5	10	0,00101	0,00055	0,00076	0,00025	0,00054
		15	0,00046	0,00027	0,00033	0,00011	0,00025
		20	0,00026	0,00016	0,00018	0,00006	0,00015
	5	5	0,00305	0,00125	0,00234	0,00189	0,00272
2		10	0,00094	0,00067	0,00073	0,00009	0,00050
		15	0,00044	0,00035	0,00034	0,00001	0,00022
		20	0,00025	0,00021	0,00019	0,00000	0,00013
	2,5	5	0,00268	0,00119	0,00200	0,00201	0,00293
		10	0,00089	0,00077	0,00072	-0,00005	0,00047
		15	0,00043	0,00042	0,00035	-0,00007	0,00020
		20	0,00025	0,00025	0,00020	-0,00004	0,00012
	3	5	0,00242	0,00117	0,00175	0,00210	0,00310
		10	0,00086	0,00085	0,00071	-0,00018	0,00043
		15	0,00042	0,00047	0,00035	-0,00015	0,00018
		20	0,00024	0,00029	0,00002	-0,00009	0,00010

Таблица 2

<u>a</u> b	<u>h</u> x h		Нормальные у	силия в центре	Нормальные усилия в середине опорных сторон	
		<u>ð</u> h	$N_x = \phi_1 q$ x=0, y=0	$N_y = \phi_2 q$ y=0, x=0	$N_x = \phi_3 q$ $x = \pm \frac{a}{2}, y=0$	$N_{y} = \phi_{4}q$ $y = \pm \frac{b}{2}, x = 0$
			ϕ_1	φ ₂	φ ₃	ϕ_4
2	1	5	-2,003	-4,386	-3,278	-2,700
		10	-1,034	-2,226	-1,641	-1,360
		15	-0,695	-1,478	-1,082	-0,898
		20	-0,481	-1,082	-0,772	-0,642
	1,5	5	-2,211	-3,587	-2,526	-2,426
		10	-1,097	-2,041	-1,399	-1,303
		15	-0,730	-1,402	-0,950	-0,878
		20	-0,547	-1,062	-0,716	-0,660
	2	5	-2,270	-3,078	-1,995	-2,219
		10	-1,127	-1,910	-1,184	-1,255
		15	-0,750	-1,346	-0,820	-0,861
		20	-0,563	-1,031	-0,623	-0,652
	2,5	5	-2,254	-2,732	-1,633	-2,054
		10	-1,126	-1,824	-1,032	-1,215
		15	-0,752	-1,313	-0,727	-0,846
		20	-0,565	-1,015	-0,556	-0,645
	3	5	-2,202	-2,481	-1,377	-1,918
		10	-1,108	-1,765	-0,924	-1,180
		15	-0,742	-1,296	-0,663	-0,834
		20	-0,558	-1,009	-0,511	-0,639

Отметим, что у краев оболочки изменение значений моментов и нормальных усилий распределяется по сечению резко неравномерно. Значения нормальных усилий, развивающихся в оболочке, при постоянном отношении h_x/h с увеличением подъемистости δ/h , уменьшаются.

Проанализируем развитие нормальных усилий в оболочке в случае увеличения отношения h_x/h при одинаковом соотношении δ/h . Величины нормальных усилий N_y в центре и в середине опорных сторон значительно уменьшаются. Значения нормальных усилий N_x в центре, при $\delta/h=5$, 10, увеличиваются для $h_x/h = 1\div 2$, а начиная с $h_x/h = 2,5$ и более, уменьшаются, далее, при $\delta/h = 15$, 20, увеличиваются для $h_x/h = 1\div 2,5$, а начиная с $h_x/h = 3$, уменьшаются.

Выводы

Сравнивая таблицы распределения моментов и нормальных усилий убеждаемся в том, что ширина полосы, в которой величины изгибающих моментов и нормальных усилий значительно уменьшаются и стабилизируется при δ/h в пределах 10÷15 и h_x/h в интервале 1,5÷2 у 1/8 пролета от края опор.

Summary

Methods of calculating the non-homogeneous anisotropic gentle casings on rectangular plan with arbitrary fastenings on the contour are being stated. The results are presented for a series of gentle casings on rectangular plan with an aspect ratio a / b = 2 hinged on a contour, and it was believed that the thickness of the casing increased at 1/8 (one eighth) of the passage from the edge of the supports. In this case the load was assumed uniformly distributed over the surface.

Литература

1. Слезингер И.Н., Заврак Н.В. Расчет неоднородных анизотропных пологих оболочек на прямоугольном плане с различными условиями на краях // Изв. вузов. Стр-во и архит. -1988. -№ 4. –С.28-32

2. Заврак Н.В., Малахова Н.А. Об одном способе расчета неоднородных анизотропных пологих оболочек с различными закреплениями на краях // Современные строительные конструкции из металла и древесины. Сб. докладов Международного симпозиума. –Одесса. 1995. –С.172-177.