УДК 539.3

РАСЧЕТ ПРОСТРАНСТВЕННЫХ СТЕРЖНЕВЫХ СИСТЕМ МЕТОДОМ ГРАНИЧНЫХ ЭЛЕМЕНТОВ

Оробей В.Ф., Лазарева Д.В., Козолуп Г.Н. (Одесский национальный политехнический университет, г.Одесса)

Рассмотрен расчет пространственной рамы, состоящей из тонкостенных стержней, методом граничных элементов. Проведён сравнительный анализ результатов МГЭ и МКЭ.

Результатом количественного описания модели реальной системы обычно является дифференциальное уравнение или их система. Получение решения дифференциального уравнения предполагает учет конкретных свойств той области, которую занимает рассматриваемый объект, и ее границы. При этом как сама область, так и ее граница могут иметь сложную форму, а различные условия, задаваемые на границе (граничные условия), могут быть постоянными, меняться во времени и т.д. Все это приводит к отсутствию стереотипных подходов при решении практических задач, а во многих случаях и к невозможности получить аналитическое решение.

Единственным средством решения дифференциальных уравнений зачастую являются численные методы.

В данной работе используется численно-аналитический вариант МГЭ для расчета напряженно-деформированного состояния стержневой рамы. Метод основан на преобразовании интегральных соотношений метода начальных параметров в систему линейных алгебраических уравнений [1].

Сформируем расчетную схему рамы, нагруженную поперечной нагрузкой из плоскости, разбивая продольные и поперечные стержни на одномерные модули, т.е. построим ориентированный граф рассматриваемой конструкции (рис. 1).

Рис. 1. Расчетная схема рамы

Вырезаем узлы 1, 2, 3, ... и составляем уравнения совместности линейных и угловых перемещений, а также уравнения равновесия узлов для поперечных сил, изгибающих моментов, крутящих моментов и бимоментов (сечение элементов рамы – тонкостенные профили двутавра и короба).

Уравнения совместности линейных и угловых перемещений (рис. 2) узла 1:

$$V^{0-1}(l) = V^{1-2}(0) = V^{11-1}(l);$$

$$\varphi^{0-1}(l) = \varphi^{1-2}(0) = \theta^{11-1}(l);$$

$$\theta^{0-1}(l) = \theta^{1-2}(0) = -\varphi^{11-1}(l).$$

(1)

Рис. 2. Перемещения узла 1

Уравнения равновесия узла 1 для поперечных сил (рис. 3,а), изгибающих моментов (рис. 3,б), крутящих моментов (рис. 3,в) и бимоментов (рис. 3,г):

$$Q^{0-1}(l) = Q^{1-2}(0) - Q^{1\,l-1}(l);$$

$$M^{0-1}(l) = M^{1-2}(0) + L^{1\,l-1}(l) =$$

$$= M^{1-2}(0) + M_{\omega}^{1\,l-1}(l) + GI_k \theta^{\prime l\,1-1}(l);$$

$$M_{\omega}^{0-1}(l) = M_{\omega}^{1-2}(0) - M^{1\,l-1}(l);$$

$$B_{\omega}^{0-1}(l) = B_{\omega}^{1-2}(0).$$

(2)

Для узлов второго лонжерона записанные выше соотношения примут несколько иной вид.

Уравнения совместности линейных и угловых перемещений (рис. 4) узла 11:

$$V^{10-11}(l) = V^{11-12}(0) = V^{11-1}(0);$$

$$\varphi^{10-11}(l) = \varphi^{11-12}(0) = \theta^{11-1}(0);$$

$$\theta^{10-11}(l) = \theta^{11-12}(0) = -\varphi^{11-1}(0).$$

(3)

Рис. 4. Перемещения узла 11

Уравнения равновесия узла 11 для поперечных сил (рис. 5,а), изгибающих (рис. 5,б) и крутящих моментов (рис. 5,в):

$$Q^{10-11}(l) = Q^{11-12}(0) + Q^{11-1}(0);$$

$$M^{10-11}(l) = M^{11-12}(0) - L^{11-1}(0) =$$

$$= M^{11-12}(0) - M_{\omega}^{11-1}(0) - GI_{k}\theta'^{11-1}(0);$$

$$M_{\omega}^{10-11}(l) = M_{\omega}^{11-12}(0) + M^{11-1}(0).$$
(4)

Аналогичным образом составляются уравнения совместности перемещений и уравнения равновесия для остальных узлов рамы.

Матричное уравнение имеет вид:

$$\vec{\mathbf{Y}}(x) = \overline{\mathbf{A}}(x)\vec{\mathbf{X}}(0) + \vec{\mathbf{B}}(x).$$
(5)

где векторы \vec{Y} и \vec{X} содержат параметры стержней в граничных точках x = l и x = 0. Вектор \vec{B} состоит из грузовых элементов всех стержней при x = l.

Рис. 5. Равновесие узла 11

Диагональные блоки матрицы Ā — это одинаковые или разные квадратные матрицы ортонормированных фундаментальных функций, описывающих состояние стержней.

Вектор нагрузки $\vec{B}(x)$ строится аналогично векторам \vec{Y} и \vec{X} , и включает внешнюю нагрузку всех стержней системы.

Преобразование матриц уравнения (5) выполняются в соответствии со схемой:

$$\vec{\mathbf{Y}} = \overline{\mathbf{A}}(l)\vec{\mathbf{X}}(0) + \vec{\mathbf{B}}(l) \to \overline{\mathbf{A}}(l)\vec{\mathbf{X}}(0) - \vec{\mathbf{Y}}(l) = \vec{\mathbf{B}}(l) \to \overline{\mathbf{A}}_*(l)\vec{\mathbf{X}}_*(0,l) = -\vec{\mathbf{B}}(l).$$

Матрица \overline{A} содержит граничные значения ортонормированных фундаментальных функций при $x = l_i$ и имеет квазидиагональную структуру.

Сущность схемы преобразования заключается в переносе конечных параметров вектора \vec{X} на место нулевых параметров вектора \vec{X} [2]. При этом вектор \vec{Y} становится нулевым и исключается из рассмотрения. Матрица A_* обнуляется в отдельных столбцах и в неё вводятся элементы, компенсирующие перенос параметров. Вектор \vec{X}_* уже содержит неизвестные начальные и конечные граничные параметры всех стержней системы, как это и имеет место в методе граничных элементов.

Матрица фундаментальных ортонормированных функций А_{*} будет квадратной матрицей размером 208х208, а векторы X_{*}, Y, B состоят из 208 элементов.

Таким образом, решение прямых задач механики линейных систем с помощью уравнений метода начальных параметров сводится к решению системы линейных алгебраических уравнений относительно неизвестных начальных параметров стержней.

Данную раму можно рассматривать и методом конечных элементов (МКЭ). Результаты сведены в таблицу 1.

				Таблица 1
Метод	Кол-во	Кол-во	Напряжения,	Прогиб,
расчета	узлов	элементов	МПа	Μ
МГЭ	20	26	46,0	0,0030
МКЭ	17312	16998	46,4	0,0031

Максимальные напряжения и прогибы

Выводы

Из таблицы следует, что результаты двух методов отличаются незначительно, что свидетельствует, во-первых, о достоверности результатов расчета, а во-вторых, можно оценить эффективность МГЭ относительно МКЭ. Так, для решения задачи по МГЭ нужно решить 208 уравнений, а по МКЭ потребовалось решить более 30000 уравнений. В этом контексте следует вывод о значительном преимуществе МГЭ перед МКЭ.

Summary

We consider the calculation of the space frame consisting of thin rods, the boundary element method. A comparative analysis of the BEM and FEM.

Литература

1. Дащенко А.Ф. Численно-аналитический метод граничных элементов / Дащенко А.Ф., Коломиец Л.В., Оробей В.Ф., Сурьянинов Н.Г. — в 2-х т. — Одесса, ВМВ, 2010.

2. Оробей В.Ф. Статический расчет неразрезной балки методами конечных и граничных элементов / Оробей В.Ф., Сурьянинов Н.Г., Лазарева Д.В. — Труды ОНПУ, 2004 г., вып. 2(22).— с.16-18.