О ПРИМЕНЕНИИ ЛИНЕАРИЗИРОВАННЫХ ДИАГРАММ «ИЗГИБАЮЩИЙ МОМЕНТ – КРИВИЗНА» ПРИ РАСЧЕТЕ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ЖЕЛЕЗОБЕТОННЫХ РАМНЫХ КОНСТРУКЦИЙ

Дорофеев В.С., профессор, **Ковров А.В.,** профессор, **Ковтуненко А.В.,** ассистент

Одесская государственная академия строительства и архитектуры

Актуальность исследований. Необходимость развития и совершенствования методик расчета железобетонных статически неопределимых конструкций, с использованием подходов деформационной теории, обусловлена требованиями действующих нормативных документов

Целью работы является сравнение экспериментальных данных с результатами расчета железобетонной статически-неопределимой рамной конструкции с использованием линеаризированных диаграмм «изгибающий момент – кривизна».

В ДСТУ Б В.2.6-156:2010 «Бетонные и железобетонные конструкции из тяжелого бетона. Правила проектирования» [1] для определения несущей способности сечений железобетонных элементов предлагается построение диаграмм «момент – кривизна» при помощи шаговоитерационного метода.

Однако шагово-итерационный метод построения диаграмм позволяет получить массивы значений кривизн и соответствующих им изгибающих моментов, использование которых вызывает сложности при непосредственном использовании для расчета конструкций. В связи с этим, для практических целей в работе [2] предложена методика построения линеаризированных диаграмм «изгибающий момент — кривизна» для прямоугольных сечений изгибаемых железобетонных элементов.

В Киевском национальном университете строительства и архитектуры А.Я.Барашиковым, Л.А.Мурашко и Г.М.Реминцем [3] выполнены обширные исследования работы П-образных железобетонных рам при действии повторных длительных нагрузок. Программой исследований предусматривалось испытание двух рам одноразовой кратковременной нагрузкой вплоть до разрушения. Конструкция рам представлена на рис. 1.

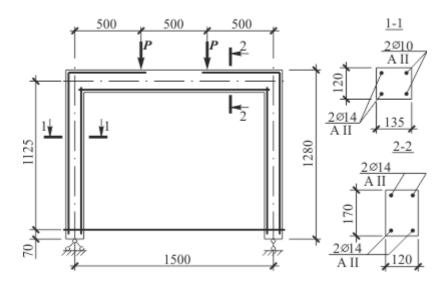


Рис. 1 Конструкция рамы $P\Pi_{28}$ [3]

Рамы имели следующие проектные размеры в осях: высота H=1125 мм; пролет L=1500 мм. Ригель имел сечение размерами 120×170 мм, стойка -120×135 мм. Для армирования рамы использовалась арматура класса A-II, имеющая предел текучести $\sigma_y=338$ МПа и модуль упругости $E_s=213000$ МПа. Максимальные деформации арматуры, соответствующие σ_y составляют $\varepsilon_{sR}=159\times10^{-5}$.

Испытание трех образцов рамы $P\Pi_{28}$ проводилось на действие одноразовой кратковременной нагрузки до разрушения в возрасте 28 суток. Призменная прочность бетона на момент испытания составляла $\mathbf{R}_b = 36,2 \ \mathrm{M}\Pi \mathrm{a}.$

Авторами задачу определения напряженно-деформированного состояния железобетонных статически-неопределимых рамных конструкций предлагается решать при помощи метода последовательного уточнения жесткостей. При этом элементы конструкции разбиваются на участки с постоянной по длине жесткостью.

Физический закон деформирования сечений железобетонной рамы имеет вид:

$$\boldsymbol{M} = \boldsymbol{B}\boldsymbol{\chi},\tag{1}$$

где M — изгибающий момент; B — изгибная жесткость сечения; χ — кривизна сечения.

Для каждого участка конструкции, имеющего постоянную изгибную жесткость, в соответствии с предложениями изложенными в работе [2], строится линеаризированная диаграмма «изгибающий момент – кривизна».

На первом этапе расчета изгибная жесткость всех элементов принимается упругой и определяется на основе формулы (1) как отношение момента трещинообразования к кривизне соответствующей началу работы элемента с трещинами

В результате расчета заданной конструкции определяются значения изгибающих моментов, возникающих в элементах конструкции. На основе формулы (1) по принятым значениям жесткостей и полученным значениями изгибающих моментов, определяются значения кривизн.

На втором и последующих этапах расчета, в соответствии с полученными на предыдущей итерации значениями кривизн, по диаграммам «изгибающий момент — кривизна» для каждого участка уточняется значение изгибной жесткости.

Значения изгибающих моментов, полученные в результате расчета на втором и последующих этапах, сравниваются со значениями, полученными на предыдущей итерации. Расчет продолжается до тех пор, пока разница между значениями на текущей и предыдущей итерации не окажется меньше заданной величины $\boldsymbol{\xi}$, характеризующей точность расчета

$$\left| \frac{\boldsymbol{M}^{(s)} - \boldsymbol{M}^{(s-1)}}{\boldsymbol{M}^{(s)}} \right| \leq \xi. \tag{2}$$

При помощи программы, составленной в системе компьютерной математики MATLAB, в соответствии с предлагаемой методикой расчета железобетонных рамных конструкций был произведен расчет экспериментальной рамы $P\Pi_{28}$ [3] на каждой ступени нагружения.

Физические характеристики бетона, необходимые для построения линеаризированных диаграмм, определены в зависимости от призменной прочности бетона по формулам, приведенным в работах [4, 5]:

- начальный модуль упругости бетона $E_b = 26377 \ \mathrm{M\Pia};$
- деформация бетона, соответствующая максимуму на диаграмме «напряжение деформация» при сжатии бетона $\varepsilon_{bR} = 244 \times 10^{-5}$;
 - предельная деформация бетона при сжатии $\varepsilon_{bu} = 339 \times 10^{-5};$
 - прочность бетона при растяжении $R_{bt} = 2,54 \text{ M}\Pi a;$
- деформация бетона, соответствующая максимуму на диаграмме «напряжение – деформация» при растяжении бетона $\varepsilon_{biR} = 9,63 \times 10^{-5}$;
 - предельная деформация бетона при растяжении $\varepsilon_{btu} = 19,2 \times 10^{-5}$.

С использованием приведенных характеристик бетона и арматуры экспериментальных рам $P\Pi_{28}$ [3], по предложениям, изложенным в работе [2], построены линеаризированные диаграммы «изгибающий момент – кривизна» для пролетных и приопорных сечений ригеля, приведенные на рис 2, 3.

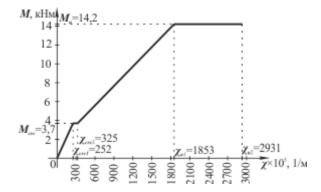


Рис. 2 Диаграмма «изгибающий момент – кривизна» для пролетных сечений ригеля

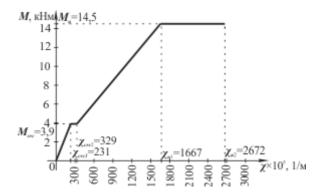


Рис. 3 Диаграмма «изгибающий момент – кривизна» для приопорных сечений ригеля

В таблице 1 приведено сравнение экспериментальных и расчетных значений изгибающих моментов, полученных по предлагаемой методике, и статистическая оценка распределения отношения экспериментальных и расчетных значений изгибающих моментов M_{exp}/M_{teor} .

Сравнение экспериментальных и теоретических значений изгибающих моментов в раме $P\Pi_{28}$ [3]

Таблица 1

Р , кН	Н ^{ехр} , кН	М ^{exp} , кН	$m{M}_{ ext{sup}}^{ ext{\it teor}}$,	$\frac{M_{\sup}^{\exp}}{M_{\sup}^{teor}}$	$m{M}_{sp}^{ m exp},$ к ${ m H}$	$m{M}_{sp}^{teor}$,	$\frac{\boldsymbol{M}_{sp}^{\text{exp}}}{\boldsymbol{M}_{sp}^{\text{teor}}}$
0	0	0	0	-	0	0	-
5	0,64	0,72	0,87	0,83	1,78	1,63	1,09
10	1,96	2,21	1,73	1,28	2,80	3,27	0,86
15	2,68	3,02	2,98	1,01	4,49	4,52	0,99
20	3,34	3,77	4,14	0,91	6,23	5,86	1,06
25	4,36	4,91	5,17	0,95	7,60	7,33	1,04
30	5,67	6,38	6,17	1,03	8,62	8,83	0,98
35	6,01	6,76	7,14	0,95	10,74	10,36	1,04
40	7,12	8,01	8,11	0,99	11,99	11,89	1,01
45	8,00	9,00	9,38	0,96	13,50	13,12	1,03
50	9,86	11,09	11,36	0,98	13,91	13,64	1,02
55	10,10	11,36	12,56	0,90	16,14	14,94	1,08
Выборочное среднее, M_x				0,98	1,02		
Выборочная дисперсия, D_x				0,11	0,06		
Выборочный коэффициент вариации, C_{ν}				0,12	0,06		
Довери- тельный верхний предел			0,91	0,98			
интервал (при P = 0,95)		нижний предел		1,05			1,06

Выводы:

Использование линеаризированных диаграмм «изгибающий момент – кривизна», построенных на основании деформационной модели работы сечений железобетонных элементов позволяет с достаточной точностью определять напряженно-деформированное состояние железобетонных рамных конструкций при любом уровне нагрузки.

Summary

In article the analysis method of the statically indeterminate reinforced concrete frame structures with application of linearized diagrams "bending moment – curvature" is described. The experimental data and the analysis data are compared.

Литература

- 1. Бетонні та залізобетонні конструкції з важкого бетону. Правила проектування: ДСТУ Б В.2.6-156: 2010. Офиц.изд. Київ: Міністерство регіонального розвитку та будівництва України, 2011. 166с. (Нормативний документ Мінрегіонбуд України)
- 2. Дорофеев В.С. К построению линеаризированных диаграмм деформирования изгибаемых железобетонных элементов / В.С.Дорофеев, А.В.Ковров, А.В.Ковтуненко, Н.К.Высочан // Ресурсоекономні матеріали, конструкції, будівлі та споруди. Зб. наук. праць. №22., Рівне, НУВГП, 2011. С.320-327.
- 3. Барашиков А.Я. Исследование деформативности железобетонных рам. / А.Я.Барашиков, Л.А.Мурашко, Г.М.Реминец, Киев: Издательство «Будівельник», 1974. 86 с.
- 4. Бамбура А.М. Експериментальні основи прикладної деформаційної теорії залізобетону: дис. на здоб. наук. ст. доктора техн. Наук : спец 05.23.01 «Будівельні конструкції, будівлі та споруди» / А.М.Бамбура Київ: НДІБК, 2005, 379 с.
- 5. Теория железобетона на экспериментальной основе / А.Б.Голышев, П.И.Кривошеев, А.Н.Бамбура.: под. ред. А.Б.Голышева. К.: Гамма-Принт. 2009. 397 с.